
Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

403

Towards a New Framework Architecture for a Dynamic

Composition of Components Using Context Awareness and
User Goal

Younes Zouani1, Abdelmounaim Abdali1, Ahemed Outfarouin2

1Cadi Ayyad University, Faculty of sciences and technology, Laboratory (LAMAI), Marrakesh, Morocco,
zouani.younes@gmail.com

2Ibn Zohr University, National School of Business and Management, Research Laboratory on the Saharan space
(LARES), Dakhla, ah.outfarouin@gmail.com

ABSTRACT

The dynamic composition of components is an emerging
concept that aims to allow a new application to be
constructed based on a user’s request. This is achieved by
dynamically composing and assembling disturbed
components with home ones. This paper presents a
framework architecture for the dynamic composition of
components that can extract pertinent contextual data and
combine them with explicit/implicit intent, in order to
compose the relevant components to meet the real
requirements of the user. The proposed architecture
includes a user feedback system that is appropriate for the
use context in terms of the user profile and
technical/domain knowledge. Our platform can consult
the end user in order to resolve eventual composition
ambiguities. The dynamic aspect of our proposition
involves (i) the detection of environmental changes in
response to dynamic triggers; (ii) interactive adaptation to
internal changes and external stimuli; (iii) determination
of the real intent of the end user; and (iv) dynamic
generation of different composition plans and selection of
the most appropriate option, based on context data and
user intent.

Key words: Dynamic Composition of Components, Context-
Aware, User Goal, SOA, CBDE.

1. INTRODUCTION

One of the ultimate targets of software development is

the optimal reuse of services, components and APIs. To
achieve this goal, two proven concepts have been adopted
by both academia and industry, namely component-based
development engineering (CBDE) and service-oriented
architecture (SOA). CBDE allows us to break down a
system into components that encapsulate a set of services.
Each component provides an interface that displays the
services provided by this component. CBDE changes our
vision of reuse, and represents a paradigm shift from
reuse of a single service to a set of semantically linked
services. SOA solves the problem of interoperability,

allowing services to communicate regardless of the
details of their implementation.

However, several questions remain, such as which
components are to be composed, which enhancements
can be applied to the composition process that are
appropriate for the user’s profile, and how the explicit
and implicit goals of the user can be detected. The
semantic part of our approach is related to the user’s
goals, which cannot be clearly understood outside of the
specific context. By using the concept of context
awareness, the system can generate an understanding of
the real goals of the end user, and this can affect system
requests, propositions and their formats. In order to
achieve the dynamic composition of components, each
goal must be decomposed into sub-goals that could meet
the process proposed by different components' interfaces;
the overall process must then be composed to reach the
final goal.

In total, four aspects must be considered in order to
achieve dynamic composition of components: context
awareness, the user’s goal and business specificities,
SOA, and CBDE. In practice, SOA and CBDE work
together to give a universal environment for component
construction (CBDE) and component communication
(SOA) that includes context awareness and the
specificities of the domain.

2. MOTIVATING SCENARIO

Alice is an IT student who wants to learn Java, so she

consults our platform and types in the keyword Java.
First, our system collects contextual data about Alice,
such as the languages that she has already mastered, her
age, her level of programming knowledge, her current
location and her social position (can Alice afford an
online course, and if so, how much can she pay?). Next,
the system tries to understand Alice’s true intent: is she
looking for a course or online training, or is she just
asking about latest updates and news? To determine this,
the system asks her more questions to find out her goals.
Finally, when our platform understands Alice’s intent,
which is to take part in a Java course, the system (i)
collects different books and tutorials; (ii) translates them
based on Alice’s language preference; (iii) extracts those

ISSN 2278-3091
Volume 10, No.1, January - February 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse601012021.pdf

https://doi.org/10.30534/ijatcse/2021/601012021

Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

404

parts that match her level of ability; and (iv)
automatically generates evaluations (QCM, exams) to
help to test Alice’s understanding of the course. In order
to implement the last of these processes, four main
components must be composed: the acquirement
component (AC), the translation component (TC), the
profiling component (PC) and the evaluation component
(EC). The AC aims to collect and store various courses
that are related to the keyword Java (books, tutorials,
videos etc.) and to sort them based on the degree of
relevance. The second component (TC) translates non-
textual courses to textual ones and from this text-based
corpus into another language. The PC adapts the Java
course to Alice’s context: her age, level of knowledge,
language, and the hours that she can spend on the course.
This component can create a new course by combining
suitable parts from different courses, depending on
Alice’s request. The last component uses text mining to
generate a quiz and QCM in order to evaluate Alice’s
understanding of the course generated by the system.

3. AN OVERVIEW ON DYNAMIC COMPOSITION OF

COMPONENTS

Three aspects must be considered in order to achieve
dynamic composition of components: context awareness,
the user’s goal, the goal’s scenario, and SOA/CBDE.

3.1 Context Awareness Approach

Context awareness is an important concept that is used to
improve the user experience and to deliver a high-quality
product that perfectly matches the user’s goals.
Although several researchers have tried to formalize the
definition of context awareness, a universally accepted
definition has not yet been developed in the scientific
community. However, certain types have been identified
that are considered relevant and important.
The concept of context awareness was introduced in 1994
by Schilit et al. [1], who defined it as: “the ability of a
mobile user's applications to discover and react to
changes in the environment they are situated in”. In this
definition, Schilit presented the context in terms of three
important aspects: where the user is, who they are with
and what resources are nearby.
For Almutairi et al. [2], context awareness involves a
“system that uses context in an effort to provide the
appropriate information or service to the user when the
appropriate and meaningful information depends on the
requirement and need of the user”.
A logical definition was given by Dey et al. [3], who
clarified the term ‘context’ as follows: “any information
collected to define the status of an entity. An entity is a
person, object or environment that is considered relevant
to the interaction between an application and a user,
including the user and the applications themselves”. In
their work, these authors illustrated the context based on
what is relevant to the interaction between the user and
the application [4].

In addition, the term ‘context’ may refer to a

combination of different types of context, with specific
values, in order to reflect a user's situation. To control the

different focus types and the values entered by the focus
system, a focus template is used to specify the links and
the storage structure used for the different types of focus
and values [5].

Several approaches to dealing with context awareness
have been elaborated in the literature, in terms of
contextual retrieval and handling (analyzing and adapting
the core service to contextual data) [6], for example:

(1) Middleware solutions and dedicated service
platforms

(2) The use of ontology
(3) Rule-based reasoning
(4) Programming/language extensions at the

source code level
(5) Model-driven approaches
(6) Message interception

The aim of these solutions is to encapsulate contextual
adaptation into a distinct logical unit using the semantic
web (2) or a rule engine (3).
The meta-modeling of context and its categorization in
order to describe the inner structure of contextual data (1)
can be very helpful in managing contextual data in a
more accurate way. A lower level of contextual
adaptation is the addition of fragments of code ((4), (5)
and (6)), which enable the extension of contextual
adaptations by directly hard-core new ones [7].
A context awareness approach can also be used for the
adoption of architecture-level techniques such as
middleware or component-based architectures. It can also
be implemented with proper constructions at the level of
the programming language [8]. Context-oriented
programming (COP) is a new paradigm for the
implementation of this type of software, and is especially
applicable in the field of mobile and pervasive
computing. The concept of COP is used to tackle the
development of contextual systems at the language level,
by adding ad hoc language abstractions to handle the
modeling of adaptations and their activation in a dynamic
way [9].
In contrast, the core domain context is a semantic
adaptation and enhancement that is specific to a particular
application, such as highlighting a clothes item as
affordable and interesting during e-shopping, based on
the user’s budget and style. The general context involves
the static and application-independent aspects of the
context, while the core domain relates to the dynamic and
application-dependent aspects.

3.2 Goal And Scenario Fragment

A goal is determined as “something that some
stakeholder hopes to achieve in the future” [10]. It is
presented as a clause containing a main verb and several
parameters, where each parameter plays a different role
with respect to the verb. Each parameter also has a
semantic function, providing answers to the various
different questions that can be related to this verb: who,
what, when, how much, how, etc. In order to answer the
abstract question of what the goal consists of, several
works have proposed a meta-model approach.

Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

405

Figure 1: Meta-model of a goal.

A meta-model makes it possible to represent the
intentions of the user and the objectives of the services
(Fig. 1). In this model, a goal is expressed by a verb, a
target and one or more parameters, which can be
categorized as ‘direction’, ‘ways’, ‘time’, ‘beneficiary’,
‘quality’, ‘quantity’ and ‘location’. The verb and target
are mandatory, while the parameters are optional. In
general, any sentence can be expressed in the formalism
of the target, making it possible to represent both the
needs of the user and the objective that the intentional
services can achieve [11].
A scenario is defined as “a possible behavior limited to a
set of desired interactions between several agents”, and is
composed of one or more actions, each of which is an
interaction between one agent and another. The particular
combination of actions in a scenario describes a unique

pathway scenario.
Fig. 2 shows a normal scenario that achieves the desired
goal, while an exceptional scenario ends without reaching
the goal. The actions can be categorized into two types:
atomic and flux. An atomic action is an interaction
between two agents that affect an object. An agent and an
object may take part in several different interactions. A
flow of actions is used to define the scheduling between
interactions in a scenario, and is composed of several

actions. The action’s flows are classified into four types:
sequence, competition, repetition or constraint [13].

 A goal and a scenario are two complementary
concepts that can be used together to compose
components. The interface of each component is
associated with a goal that describes the human
perspective of that component, whereas the scenario
associated with the goal clarifies the inner structure of the
service, enabling us to understand how the goal will be
achieved in practice, from a workflow perspective. A
scenario workflow can be used to extend and adapt the
interface of the associated component, and hence to
achieve the dynamic composition of components [14].
The goal of the user can help us to determine which
components must be composed in order to satisfy this
goal. The main objective of understanding the expressed
goal of the user is to transform this goal into a concrete
composition plan, and then to produce a workflow for
composing components to match the final goal. However,
a full understanding of the user’s aspirations cannot be
achieved without considering context awareness, since
two users with the same expressed objective may behave
differently depending on the parameters of the context,
such as non-expressed information, profession, age,
gender, culture, knowledge, preferences, etc. Context
awareness is therefore a critical paradigm complements
and can redirect the user’s goal [15].
Business specificities involve providing a set of semantic
rules for a specific domain, in order to help the system to
identify, frame and correct the user’s initial goal. In
general, the initial rules must be developed by a domain
expert, but these rules can then evolve based on law
changes, improvements to administration and work flow
etc. This step corresponds to the platform learning stage.

A distinction is made between normal and exceptional
scenarios: the former leads to achievement of the
associated objective, while the latter fails to achieve the
objective [12].

3.3 SOA and CBDE

SOA is a set of standardized functions that allow
developers to achieve their aims using the capabilities
they have, regardless of the environment in which they

Figure 2. Meta model of a Scenario

Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

406

are located, and these capabilities can be organized or
combined for maximum business benefit [16].

In other words, an SOA is an emerging architectural style
for developing and integrating enterprise applications. It
is an organizational and technical framework that can
enable an enterprise to deliver self-describing and
platform-independent business functionality”. Through
the use of an SOA, a service can be described and
discovered, and can communicate with other services,
regardless of heterogeneities in implementation.
In many ways, the terminology used in relation to
services is much the same as that used to define
component-based development; however, certain specific
terms are used to define elements within web services.
Fig. 3 illustrates how public web services work. The
service provider publishes the web service to a discovery
agency.
A potential service consumer searches for a service from
the discovery agency, acquires the URL of the required
service, obtains the WSDL file, builds the client, and uses
the service provided [17].
 CBDE is an interesting paradigm that is used to construct
a new software by composing and assembling existing
components.

Figure 3: Principle of operation of public web services

By composing existing or customized components, a
software system can be assembled as rapidly and cost-
effectively as an automobile is assembled by composing
machine parts [18], while SOA focuses on transforming
the process implementation into a technological-
independent solution. A service component architecture
(SCA) [17] is a set of specifications for building
distributed applications by combining SOA and CBDE

with the aim of achieving technological independence
and domination. SCA is designed to be independent of
the programming language, binding details,
communication protocols, and even the data source. From
the perspective of the composition of components, SCA
provides a universal platform for creating, composing and
deploying components and exposing components service
using different SOA implementations. Our proposition is
based on the component model, in which each
composition step is achieved by a composite.

Several architectures and frameworks [19],[20],[21],[22]
have been proposed to deal with the dynamic
composition of components and/or services, where the
associated process stages are translation, generation,
evaluation and building.(Fig. 4)
Translation involves transforming the request into a
message that is comprehensible to the system, while in
the generation stage, the system attempts to generate one
or more composition plans. Based on these plans, the
evaluator chooses the most suitable plan based on the
user context. Finally, the builder executes the selected
plan and generates the associated composite.
Elahraf et al in [23] present an integrated approach that
facilitates the dynamic composition of an executable
response process. The proposed approach employs
ontology-based reasoning to determine the default actions
and resource requirements for the given incident and to
identify relevant response organizations based on their
jurisdictional and mutual aid agreement rules.
There are several problems associated with these
architectures/frameworks, for example: (i) the
composition of components is presented as a sequential,
single-step operation that takes in the context and user
goal, produces a composition plan and executes it; (ii) the
context and goal are generally misused or used
interchangeably; (iii) there is an absence of a powerful
concept to describe the operational structure of the
abstract goal; (iv) this approach involves a passive vision
of the user’s role in the composition process, since he or
she simply provides or expresses the composition plan;
and (v) there is an absence of a mechanism that can
empower the reasoning capability of the system in terms
of composing components .

4 A LAYERED ARCHITECTURE FOR

DYNAMIC COMPOSITION OF COMPONENT

4.1 High level Architecture Design

In this section, we will present our work in two parts. In
the first, we introduce the different layers in our scheme,
while in the second we explain the inner structure of the
proposed system by describing the composites of the
architecture.

Our architecture is based on five layers (Fig. 5): a
graphical user interface (GUI), a context manager (CM),
a goal manager (GM), a scenario-context manager
(SCM), and a composition manager (CoM).

 GUI layer: The interaction end-user/system is a
critical part of the composition process (the

 Figure 4. The four steps of Composition process [24]

Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

407

translation aspect), as it helps the end user to
understand the ambiguities of the system and to
adapt different requests to the user context. To
express the needs of the end user, the literature
distinguishes between internal and external
specification languages. In our proposed scheme,
we express the user goal using a GUI composed
of four parts: a business GUI, a contextual GUI, a
component registration GUI and a programming
GUI. The business GUI is responsible for
grouping components by domain area, and
enables a component search based on the goal
keyword. The main task of the contextual GUI is
to display the user’s context attributes, i.e. the
contextual attributes that are required by a
specific component and the contextual values that
will be sent during the composition process. The
component registration GUI is used to improve
our system by registering/altering components,
their interfaces, the scenarios, and their
associated contexts. The programming GUI is a
business helper that performs basic programming
actions, such as the repetition of a business action
(a simplified graphical loop), testing the result of
the execution of a process (simplified graphical
if), etc.

Figure 5: High level architecture design.

 CM layer: While the GUI layer handles the
contextual parameters to be input to the
composition process, the mission of the CM layer
is to generate these parameters by collecting
contextual data and analyzing them. Contextual
data exist everywhere, for example in the user
profile, external sensors, historical events, the
compositions of similar users, etc. There are two
types of contextual data: CRUD contextual data
and deduced contextual data. The former
represents data that have been directly received
from the environment, such as the user profile,
hardware, weather, etc., while the latter requires
more processing and system intelligence to
extract them, and can be used to enhance the
composition process.

 GM layer: This layer involves composing the
sub-goals in order to meet the final goal of the
end user. The overall goal may be superficial,
incomplete or even wrong, and the GM layer
intervenes to guide the end user based on (i) user
similarities, and (ii) a goal or component that has
been registered by a domain expert, in order to

help other users to conceive and correct their
initial goals.

 SCM layer: The goal must be adapted to the
specificity of each user. The SCM layer takes the
user goal as input and looks up the associated
scenario in order to enhance the scenario process
by contextual parameters.

 CoM layer: After constructing the composed goal
and enhancing the global scenario using
contextual parameters, the system must compose
the associated software component in order to
meet the user constraint. The component
registration step assumes that an expert user
associate component facade, goal and context
parameters. The task of this layer is to construct
and store the new component.

Our architecture is based on constructing/negotiating
the goal with a user-friendly demarche (GUI), which
enables a simple, white-box intervention by the end user
in the composition process. The constructed goal is also
associated with a global scenario that can be decorated
and enhanced by contextual parameters. Finally, the new
component that performs the requested goal is
constructed, stored and deployed.
4.2 Low Level Architecture Components and Process

In order to clarify our general architecture, we explain the
inner structure of each layer (Fig. 6).

A. GUI Composite
The GUI composite is formed of three components that

help the user to express his or her intent and help the
system to clearly understand this intent. Three kinds of
user interfaces are used in this component: a standard
input/output interface, a contextual user interface, and a
business process interface.

 Standard input/output interface: This helps the
user to express standard input/output items, such
as labels, buttons and forms, and also basic
programming statements such as conditions,
loops, etc.

 Contextual user interface: This dynamic interface
depends largely on the user profile, hardware
characteristics, current environment, and various
contextual changes. It aims to adapt the graphical
component to the user context, and especially the
user’s knowledge.

 Business process interface: This includes two
categories of services: generic and domain-
specific services. The former are transversal
services that can be used by any kind of
application, such as determination of location,
money conversion, language translation, etc.,
while the latter include component interfaces for
a specific domain, predefined shared web
services and the possibility of combining services
using possible adaptors.

The GUI composite gives a new contextual
configuration to the contextual data handler composite
and helps the user intent composite to look for user intent,
in order to elaborate a composition plan using the CM
composite.

Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

408

B. Contextual Data Handler Composite
The contextual data handler (CDH) composite has
three components: the contextual CRUD data
collector (CCDC), the contextual semantic data
collector (CSDC), and the context data analyzer
(CDA).
 CCDC: CRUD data are information gathered

directly from sensors or the application itself
(localization, user profile etc.)

 CSDC: Some intuitive information must be
extracted in order to be injected in the context.
This information is either the result of an analysis
of CRUD data or information included in the
composition process.

 CDA: This component analyzes information to
obtain useful context parameters. The CDA
transforms CRUD data collected by the CCDC
into semantic information, which is critical in
gaining an understanding of the user’s objective
and circumstances.

Contextual data is essential in order to determine the real
intent of the user.

C. User Intent Composite
The user intent (UI) composite collects the CRUD and

implicit objectives in order to extract atomic objectives.
These are directly associated with atomic services, and
thus the detection of atomic objectives and their
relationships is the first step in establishing a service
composition.

 CRUD objective detector: Collecting the
objectives explicitly expressed by the user is the
first step in understanding these objectives. The
main sources of user objectives are a standard
input/output interface (forms, basic programming
statements etc.) and the component that has been
selected to be composed in the business process
interface component.

 Implicit objective generator: The expressed
objectives, combined with contextual data and

historical composition, form the raw materials
from which the system deduces the non-expressed
objectives. Using context information, the system
can construct a group of similar users and use
historical composition requests to resolve non-
expressed objectives and propose more
appropriate alternatives.

 Objective decomposer: The user’s objective must
be decomposed into atomic ones, in order to create
the system atomic service.

The atomic service is enhanced by contextual items in
order to complete and redirect each atomic objective.

The deduction of implicit intent from similar users and

historical composition must be supported by the use of a
predefined composition template of certain categories of
users (based on their context) in order to serve the users
and guide those with no clear intent in mind.

D. Intent-Context Tree Composite
An intent-context tree (ICT) composite is responsible
for intent-context association. Context is a critical
ingredient that can help in delimiting, enhancing and
clarifying the user’s intent. The intent-service
association must therefore be preceded by context-
intent association in order to enhance atomic service
and atomic intent matching. The ICT composite has
three main components:
 Context objective mixer: The UI composite

constructs atomic objectives, whereas the CDH
composite collects implicit and explicit context
data; these two types of information must be
associated, so that every atomic objective is
matched with the linked context item.

 Ambiguity: Associating user intent with context
items is not an easy task that can be performed
without ambiguities. The use of historical
association and eventual template can be helpful
in this process. There are three possible cases: no
association is possible; exactly one association is

Figure 6: Composites of the proposed architecture.

Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

409

possible; and more than one association is
possible. The first and third cases give rise to an
ambiguity problem, and user input into the
association process is necessary to resolve this.

 Objective tree manager: The first step in
constructing this tree is to determine composite
and atomic intents, which help us to build the
frame of the tree. The second step is to associate
the composite and atomic intent of a specified
request (the composite and atomic intent
instances) with the frame constructed in the first
step. Each intent instance is associated with either
a contextual item or an abstract context, in order
to complete and enhance the intent.

This association improves the system by giving the
atomic service more input parameters in order to respond
more efficiently to the user’s request. The aim of
organizing the intent and context data into tree form is
mainly to construct a historical database that can respond
and propose compositions based on context and intent
similarities.

E. CoM Composite
The CoM is the backbone of our architecture, since it

(i) maps the objective to a scenario based on the business
rule repository and associated scenarios; (ii) maps the
scenario to a suitable component in order to meet the user
objectives; and (iii) chooses the most appropriate
composition plan based on the suitability of the provided
services and quality metrics.

 Business rule manager component: This contains
the core domain business rules, grouped by
domain and subdomain. Each business rule
reflects a business process, and reflects a set of
scenarios depending on the user’s parameters.
Business rules are defined, maintained and
enhanced by a domain expert.

 Objective scenario associator: The association of
the user objective with a predefined scenario is
one of the most important steps in the composition
process, since it enables a transformation from a
user-dependent parameter (objective) to an
element that is comprehensible to the system, in
the form of a scenario. This work is performed
based on two inputs: a predefined scenario for a
specific business rule, and the user objective.

 Component manager: This component handles the
inner and outer structure of a component. The
inner structure is related to the classes of
component and their interactions, whereas the
outer structure relates to the configuration
parameters, consumed and provided interfaces.
Each component must be registered by an expert
user so that it can be mapped to a specific business
rule scenario.

 Scenario component matcher: Dynamic matching
of a component to a specific scenario is a pivotal
step in the composition process. The component
and its associated services is a machine-friendly
concept, whereas a scenario is a user-friendly
concept; hence, combining these two elements
means that a robust bridge can be created between
the machine and the user. This mapping is

performed based on the extracted scenario
(objective scenario associator component) and the
most suitable component service (component
manager).

Composition plan manager and executor: When the
components that match the defined scenario have been
determined, the system generates a list of possible
composition plans and chooses the most suitable based on
the relevance of the constructed composite and the QoS
parameters.

5. CONCLUSION
In this paper, we present an approach that can combine

context with the user goal in the composition process.
This approach is based on a layered architecture
composed of context triggering, context collection,
composition, and deployment processes. When the
context listener composite detects changes in the
environment or in the internal system itself, the
contextual data handler composite gathers contextual
information about the new situation.
This information must be analyzed in order to obtain
relevant data for the composition process. The process of
composition may be either automatic or user-guided.
When the system is not able to resolve ambiguities in the
composition, user assistance is required. To validate the
composition plan and to select the optimal composition
alternative, the composition executor composite deploys
and compares binding possibilities

ACKNOWLEDGEMENT

The authors gratefully acknowledge support from Prof.
Abdelmounaim ABDALI, Prof. Ahmad OUTFAROUIN
and the members of LAMAI (Laboratory of Mathematics
Applied and Informatics) within the Faculty of Science and
Technologies, Cadi Ayyad University, Marrakesh.

REFERENCES

1. M. M. Theimer and B. N. Schilit, Disseminating
active map information to mobile hosts, IEEE
Netw., 1994.

2. S. Almutairi, Review on the security related issues
in context aware system, Int. J. Wirel. Mob.
Networks, 2012.

3. R. Alawadhi and T. Hussain, A method toward
privacy protection in context-aware environment,
in Procedia Computer Science, 2019.

4. W. Liu, X. Li, and D. Huang, A survey on context
awareness, International Conference on Computer
Science and Service System, CSSS 2011 -
Proceedings, 2011.

5. H. Xiao, Y. Zou, J. Ng, and L. Nigul, An approach
for context-aware service discovery and
recommendation, IEEE 8th International
Conference on Web Services, 2010.

6. G. M. Kapitsaki, G. N. Prezerakos, N. D. Tselikas,
and I. S. Venieris, Context-aware service

Younes Zouani et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 403 - 410

410

engineering: A survey, J. Syst. Softw., 2009.

7. X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung,
Ontology based context modeling and reasoning
using OWL,in Proceedings - Second IEEE Annual
Conference on Pervasive Computing and
Communications, Workshops, PerCom, 2004.

8. F. Marton and S. Booth, Learning and Awareness,
2013.

9. G. Salvaneschi, C. Ghezzi, and M. Pradella,
Context-oriented programming: A software
engineering perspective,J. Syst. Softw., 2012.

10. B. Henderson-Sellers, Bridging metamodels and
ontologies in software engineering, J. Syst. Softw.,
2011.

11. P. R. Lumertz, L. Ribeiro, and L. M. Duarte, User
interfaces metamodel based on graphs, J. Vis.
Lang. Comput., 2016.

12. K. Verbert et al., Context-aware recommender
systems for learning: A survey and future
challenges, IEEE Transactions on Learning
Technologies, 2012.

13. A. Parnianifard, A. S. Azfanizam, M. K. A. Ariffin,
and M. I. S. Ismail, An overview on robust design
hybrid metamodeling: Advanced methodology in
process optimization under uncertainty, Int. J. Ind.
Eng. Comput., 2018.

14. C. Emmanouilidis, R. A. Koutsiamanis, and A.
Tasidou, Mobile guides: Taxonomy of
architectures, context awareness, technologies and
applications, Journal of Network and Computer
Applications. 2013.

15. Y. H. Feng, T. H. Teng, and A. H. Tan, Modelling
situation awareness for context-aware decision
support, Expert Syst. Appl., 2009.

16. R. Welke, R. Hirschheim, and A. Schwarz, Service-
oriented architecture maturity, Computer (Long.
Beach. Calif.), 2011.

17. H. Petritsch, Service-oriented architecture (SOA)
vs . component based architecture, Vienna Univ.
Technol. white Pap. available …, 2006.

18. D. Ameller, X. Burgués, O. Collell, D. Costal, X.
Franch, and M. P. Papazoglou, Development of
service-oriented architectures using model-driven
development: A mapping study, Information and
Software Technology, 2015.

19. S. Kalasapur, M. Kumar, and B. A. Shirazi,
Dynamic service composition in pervasive
computing, IEEE Trans. Parallel Distrib. Syst.,
2007.

20. T. G. Stavropoulos, D. Vrakas, and I. Vlahavas, A
survey of service composition in ambient
intelligence environments, Artificial Intelligence
Review, 2013.

21. K. Fujii and T. Suda, Semantics-based context-
aware dynamic service composition, ACM Trans.
Auton. Adapt. Syst., 2009.

22. M. Kellar, H. Stern, C. Watters, and M. Shepherd,
An information architecture to support dynamic
composition of interactive lessons and reuse of
learning objects, in Proceedings of the Hawaii
International Conference on System Sciences, 2004.

23. ELAHRAF, Abeer, AFZAL, Ayesha, AKHTAR,
Ahmed, et al. A Framework for Dynamic
Composition and Management of Emergency
Response Processes. IEEE Transactions on Services
Computing, 2020.

24. IBRAHIM, Noha et MOUEL, Frederic Le. A survey
on service composition middleware in pervasive
environments. arXiv preprint arXiv:0909.2183,
2009.

