
 Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

646

ABSTRACT

In the era of information, humanity produces huge
quantities of data measured in terms of terabytes or
petabytes that is yet growing exponentially with time. This
situation led to the emergence of a large number of big
data systems and technologies that share similar
architectures but with different implementations. The
common architecture is composed of Data sources,
Ingestion, Visualization, Hadoop Platform management,
Hadoop Storage, Hadoop Infrastructure, Security, and
Monitoring Layers. In our way for a unified abstract
implementation, we proposed in a previous work a
meta-model for data sources and ingestion layers. We
relied on our previous comparatives studies to define key
concepts of storage in Big Data to propose a meta-model
for storage layer. Thus, in this paper, we are going to
present our meta-model for storage layer. The main goal of
this universal meta-modeling is to enable Big Data
distribution providers to offer standard and unified
solutions for a Big Data system.

Key words: Big Data, Model Driven Engineering,
Storage layer, NoSQL databases, HDFS.

1. INTRODUCTION

Today, Big Data, which appears to be a vague term, is in
reality, a massive phenomenon that has quickly become an
obsession for scientists, entrepreneurs, governments and
the media. An indication of the growing concern about
this phenomenon is that companies focus their efforts on
deploying the most efficient and secure architecture to
collect, store and process an abundance of increasingly
heterogeneous data, in real time while integrating
machine-learning technologies [1].

According to our earlier research studies of the
distributions of leading Big Data solution providers [2],
we found that each distribution of Hadoop has its own
vision for a Big Data system. We also deduce that
Programmers do not have the necessary meta-models to
create standard applications that can be compatible with

 each provider because each provider has his own policy
for a Big Data system. Indeed, this work comes after our
first Meta-modeling of the two layers Data Sources and
Ingestion [3]. In this paper, we propose a meta-model for
the Storage layer. This meta-model together with previous
ones we proposed for the other layers, can be used as an
independent cross-platform Domain Specific Language.
Correspondingly, we shall start in this article with the
definition of Hadoop and their main components. Then,
we shall discuss the Hadoop distributed file system
"HDFS" [4] and its architecture as well as the NoSQL
databases [5]. Finally, we shall propose a meta-model for
the Storage layer.

2. RELATED WORK
This paper is an extension of our earlier works. Previously,
we rely on our comparatives studies on the five main
suppliers of big data solutions [2] to define the key
concepts of storage layer at the level of the global
architecture of a big data system. The most obvious
finding to emerge from this comparative study is that
several distributions like HortonWorks, Cloudera, MapR,
Pivotal HD, and IBM's BigInsights in the IT market have
the ability to handle Big Data. Hence, rise the need to
standardize concepts through the application of
techniques related to Model-driven engineering "MDE".
Accordingly, this work is a progress report of our first
meta-modeling of the two layers: Data Sources and
Ingestion [3] [7]. It is also an extended version of our work
that has already been published in the Proceeding of a
Conference [7].

3. HADOOP
Hadoop is an open source Java framework that was created
by Doug Cutting the founder of Apache Lucene. The main
aim of this solution is to facilitate the creation and testing
of scalable and distributed methods. It brings together a
whole set of modules programmed in Java destined to
facilitate the distribution and execution of tasks on several
thousand nodes. Despite source code written in Java, any
programming language can use Hadoop (like Python,
C++, etc.). Besides that, Hadoop can provide and manage
its own distributed Hadoop Distributed File System
(HDFS) [8]. It also offers the implementation of a set of

Hadoop Storage Big Data layer: meta-modeling of key concepts and features

Allae Erraissi1, Abdessamad Belangour2
1,2Laboratory of Information Technology and Modeling, Hassan II University, Faculty of sciences Ben M’Sik,

Casablanca, Morocco, erraissi.allae@gmail.com

 ISSN 2278-3091
Volume 8, No.3, May - June 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse49832019.pdf

https://doi.org/10.30534/ijatcse/2019/49832019

 Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

647

tools for parallel data manipulation and analysis such as
Map/Reduce [6], HBase [9], Hive [10] and Pig [11].

4. META-MODELING OF HADOOP
DISTRIBUTED FILE SYSTEM
Hadoop distributed file system (HDFS) is a distributed file
system that covers all nodes of a Hadoop cluster. It
connects file systems on many local nodes in order to make
it a large file system.

The Characteristics of a Hadoop Distributed File System:

 The system manages the location of the data during

the distribution of tasks.
 It is fault tolerant, i.e. it automatically manages the

failure of these nodes. Indeed, the data is replicated
on several different hosts to ensure its reliability.

4.1 HDFS – Master / Slave Architecture

4.1.1. Master: NameNode
Manages the file system's namespace and metadata. The
FsImage stores the namespace of the entire file system,
with the mapping of blocks to files and properties of the
file system [12]. This file is stored in the local file system
of the NameNode. It contains the metadata on the disk (not
an exact copy of what the RAM contains; but up to a
certain point, a copy of control). The NameNode uses a
transaction log file called EditLog to keep a record of each
change in file system metadata and synchronizes with the
RAM metadata after each writes. The NameNode has a
knowledge of the DataNodes in which the blocks are
stored. Thus, when a client requests Hadoop to recover a
file, it is via the NameNode that the information is
extracted. This NameNode will tell the client which
DataNodes contain the blocks. All that remains for the
customer is to recover the desired blocks [13]. In the event
of a power failure on the NameNode, you must perform a
recovery using FsImage and EditLog.

4.1.2. Slave: DataNode
A cluster has multiple DataNodes. These DataNodes
handle the storage attached to the nodes and periodically
reports status for the NameNode. A DataNode contains the
data blocks. They are under the command of the
NameNode and are nicknamed the Workers. On that
account, they are solicited by NameNodes during reading
and writing operations. In reading, the DataNodes will
transmit to the client the blocks corresponding to the file to
be transmitted. In writing; the DataNodes will return the
location of the newly created blocks [14].
This figure shows the Master/Slave architecture of the
Hadoop distributed file system HDFS:

Figure 1: Master/Slave architecture of HDFS [14]

4.2 HDFS – Blocks
The HDFS is developed to support very large files. Data in
a Hadoop cluster is divided into smaller pieces, which are
distributed throughout the cluster. These smaller pieces
are called blocks. HDFS uses much larger block sizes than
conventional operating systems. By default, the size is set
to 64 MB. However, it is possible to increase to 128 MB,
256 MB, 512 MB or even 1 GB, whereas on conventional
operating systems, the size is usually 4 KB. Thus, Interest
in providing larger sizes reduces the access time to a
block. If the size of the file is smaller than the size of a
block, the file will not occupy the total size of this block
but just the size necessary for its storage. This figure shows
the difference between HDFS blocks and classical
operating systems blocks.

Figure 2: Difference between HDFS blocks and OS blocks

4.3 HDFS – Replication

Replica placement is critical to HDFS in order to ensure
reliability and performance. HDFS differs from most other
distributed file systems by placing replicas. This
characteristic requires adjustment and experience. The
purpose of this placement policy is to increase data
reliability and availability and to reduce network
bandwidth usage. HDFS provides a block replication
system with a configurable number of replications [13].
During the writing phase, each block corresponding to the
file is replicated on several nodes. As for the read phase, if
a block is unavailable on a node, copies of this block will
be available on other nodes.

 Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

648

Large instances of HDFS work on clusters that are spread
across multiple arrays. Communication between two
nodes in different racks must go through switches. In most
cases, the bandwidth between machines in the same rack is
larger than that of machines in a different rack. There is a
simple but not an optimal policy, which consists of placing
replicas in a unique rack. This, of course, avoids losing
data if an array fails and allows the use of bandwidth from
multiple racks in reading data. This policy evenly
distributes replicas in the cluster, which makes load
balancing easy if a component fails. However, this policy
increases the cost of writing because writing requires the
transfer of blocks to several Rack. The figure below
describes the replicas in HDFS.

Figure 3: Replicas in HDFS

4.4 Meta-model of Hadoop distributed file system

Figure 4: Meta-model of HDFS

The meta-model we proposed for the Hadoop distributed
file system has seven meta-classes. These meta-classes
define the HDFS Master/Slave architecture, the notion of
blocks, which are small units of split data, and finally, the
replication represented in this meta-model by Rack to
ensure reliability and the performance of Hadoop.

5. META-MODELING OF NOSQL DATABASES

The term NoSQL refers to a type of database management
system that goes beyond the relational systems associated
with the SQL language. It has the ability to accept more
complex data structures. According to their physical
models, the DBs managed by these systems fall into four
categories: columns, documents, graphs and key-value
[15]. Each category offers specific features. For example,
in a document-oriented DB such as MongoDB, data is
stored in tables whose lines can be nested. This
organization of data is coupled to operators that provide
access to nesting data [16].
The choice of the most suitable DBMS category for a given
application is related to the nature of the processing
(queries) applied to the data. However, this choice is not
exclusive since, in each category, the DBMS can provide
all types of treatments, sometimes at the cost of some
heaviness or more extensive programming. In what
follows, we shall first present the data models adopted by
each category of NoSQL DBMS, and then propose a
meta-model for these four types.

5.1 Key/Value

Key/Value [17]: This database model is based on the
principle of storing a value associated with a unique key.
Nevertheless, unlike other NoSQL databases, the value
associated with a key can be varied. It can be either a
simple string like a document or a much more complex
object that can contain a multitude of information.
However, these databases are mainly made for temporary
storage and it only allows four operations: Create Read,
Update, and Delete (or CRUD) operations. At this stage, it
is important to note that the best-known solutions are Riak
[18], Redis [19], and Voldemort [20] which were created
by LinkedIn. For example, a Redis database offers a very
good performance by its simplicity and rapidity. It can
even be used to store user sessions or the cache of your site.
This figure presents the meta-model proposed for the
Key/Value databases:

Figure 5: Meta-model for Key/Value database

 Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

649

5.2 Column-oriented
Column-oriented [21]: This model resembles relational
databases because the data is saved as a row with columns.
It stores data by column and not by row. Column-oriented
databases have two main characteristics:

 The columns are dynamic. Within the same table,

two individuals may not have the same number of
columns because the null values are not stored
(which is the case in relational RDBMS).

 Data logging is done in value and not in line as in
RDBMS. This, of course, prevents the storage of
duplicate information and thus significantly reduces
the database and computing time.

As for the solutions, we mainly find HBase [9] (Open
Source implementation of the Big Table model [22]
published by Google) as well as Cassandra [23] (Apache
project that respects the distributed architecture of
Amazon Dynamo [24] and Google's Big Table model).
Figure 6 presents the meta-model that we have proposed
for the column-oriented database:

Figure 6: Meta-model for Column-oriented database

5.3 Document-oriented
Document-oriented [25]: This model is based on the
paradigm [key, value]. The value, in this case, is a
document, which has a tree structure. This tree structure
contains a list of fields and each field is associated with a
value that can even be a list. These documents are mainly
JSON or XML type. The advantage of a
document-oriented model is its ability to recover, via a
single key, a hierarchically structured set of information.
The most popular implementations for this model are
RavenDB [26] (intended for .NET / Windows platforms
with the possibility of querying via LINQ), CouchDB from
Apache [27], and MongoDB [28].

Figure 7 presents the meta-model that we have proposed
for the document-oriented database:

Figure 7: Meta-model for Document-oriented database

5.4 Graph-oriented

Graph-oriented [29]: This model of data representation is
based on graph theory. It relies mainly on the notion of:

 Nodes that each have their own structure
 Relations between the nodes
 Properties (of nodes or relations)

Indeed, this storage model facilitates the representation of
the real world, which makes it particularly well suited to
the processing of data from social and geographical
networks for example, and all data strongly connected in a
general way. The main solution to this model is Neo4J
[30].

Figure 8: Meta-model for Graph-oriented database

 Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

650

5.5 The generic meta-model for NoSQL Databases

Figure 9: Meta-model of NoSQL Databases

Our proposed meta-model includes the four types of
NoSQL databases we have cited above. Firstly, we talked
about The Key/Value databases. These are used to manage
dictionaries that consist of a key/value pair. Then, we
present Graph-oriented databases, which can store graphs
based on the notion of nodes, relationships, and properties
attached to them. After that, we meta-modeled the
Document-oriented databases with seven meta-classes
that store collections containing documents. Finally, we
have column-oriented databases that store data as rows
with columns. However, this storage is distinguished by
the fact that the number of columns can vary from one row
to another.

6. GENERIC META-MODELING

In our previous work, we have already proposed a
universal meta-modeling for the two layers Data Sources
and Ingestion [3]. Still based on the global architecture of
a Big Data system, which we have already introduced in
our previous work [2], we have worked in this article on
the storage layer which has two essential components
which are HDFS and NoSQL databases. To express the
relationship between storage layer and the other two layers
that are Data Sources and Ingestion, we used the following
meta-package diagram:

Figure 10: Meta-package of Storage, Ingestion, and Data
Sources layers

Our meta-package diagram shows the relationship
between the three layers: Hadoop Storage, Ingestion, and
Data Sources. The HadoopStoragePkg meta-package
contains two meta-packages, which are: HDFS_Pkg and
NoSQLDb_Pkg, which define the meta-models of the
HDFS and NoSQL databases that we presented in the
previous paragraphs. The meta-package
''HadoopStoragePkg'' has a direct relationship with the
meta-packages ''IngestionPkg'' and ''DataSourcesPkg'';
that is why we used the dependency relationships between
our three meta-packages.

 Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

651

Figure 11: Meta-model of Storage, Ingestion, and Data Sources layers

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

652

Figure 11 presents the generic meta-model for the three
layers: Data Sources, Ingestion, and Storage. This
meta-model contains all the meta-classes needed to
standardize concepts at a Big Data level since the majority of
big data solution providers do not use meta-models to develop
their solutions, which causes problems with regard to the
diversity of the proposed solutions.

7. DISCUSSION

We live in a digital world, where our actions on the Internet
generate digital traces closely related to our personal lives.
The volume of these traces generated daily increases
exponentially, creating massive loads of information, called
Big Data. Such a large amount of information can not be
stored or processed by using standard Database Management
System (DBMS) tools. Hence, new tools have emerged to help
us to meet Big Data challenges. Accordingly, Big Data is an
important subject that enables us to identify and extract
valuable and relevant knowledge. Many researchers have
worked on big data, particularly on its value chain and on its
processing tools [33]. Therefore, this work relies more
particularly on our three research studies that we have already
done in the world of Big Data and its different solutions. We
have found that there are several distributions that can handle
Big Data (HortonWorks, Pivotal HD, IBM Big Insights, etc.).
Each distribution provider designs a solution in its own way
without respecting standard references such as meta-models;
the fact that caused the diversity of solutions and the
non-interoperability between the different solutions. In our
research project, we apply techniques related to the
engineering of the models to propose a universal
meta-modeling including all the layers of the architecture of a
Big Data system. After the creation of these meta-models, in
the next step, we shall work on the creation of models
respecting these meta-models. Then we shall define the
transformation rules between these meta-models using the
transformation language ATL (Atlas Transformation
Language) [31,32]. These meta-models are platform
independent according to Model Driven Architecture pattern,
which describes the structures of Data Sources, Ingestion, and
Hadoop Storage independently from any specific platform.

8. CONCLUSION AND PERSPECTIVE

The evolution of the size of the databases has increased in a
considerable way (from a few KB to To). For this, the "data
scientists" have adapted by extending different methods to
analyze and store Big Data. In this paper, we continued the
application of techniques related to the engineering of models
"MDE" in order to propose a meta-modeling for NoSQL
databases and HDFS. These methods are independent of the
model-driven structure, which describes the structures of
independent storage of any specific platform. In our next
work, we will link the proposed meta-models for storage layer
with the others proposed for the other layers, and we will

create transformations between these meta-models using the
ATL transformation language.

REFERENCES
1. Richards, Ken. Machine Learning: For Beginners -

Your Starter Guide For Data Management, Model
Training, Neural Networks, Machine Learning
Algorithms. CreateSpace Independent Publishing
Platform, 2018.

2. Abdessamad B, and Abderrahim Tragha, “Digging into
Hadoop-based Big Data Architectures,” Int. J.
Comput. Sci. Issues IJCSI, vol. 14, no. 6, pp. 52–59, Nov.
2017.
https://doi.org/10.20943/01201706.5259

3. Erraissi Allae, et Abdessamad Belangour. « Data
Sources and Ingestion Big Data Layers:
Meta-Modeling of Key Concepts and Features ».
International Journal of Engineering, s. d., 7.

4. Alapati, Sam R. Expert Hadoop Administration:
Managing, Tuning, and Securing Spark, YARN, and
HDFS. Boston, MA: Addison Wesley, 2016.
https://doi.org/10.1007/978-1-4842-3126-5_12

5. Raj, Pethuru, and Ganesh Chandra Deka. A Deep Dive
into NoSQL Databases: The Use Cases and
Applications. S.l.: Academic Press, 2018.

6. Erraissi, A., et A. Belangour. « Meta-modeling of
Zookeeper and MapReduce processing ». In 2018
International Conference on Electronics, Control,
Optimization and Computer Science (ICECOCS), 1�5,
2018. https://doi.org/10.1109/ICECOCS.2018.8610630

7. Erraissi A., Belangour A. (2019) Capturing Hadoop
Storage Big Data Layer Meta-Concepts. In: Ezziyyani
M. (eds) Advanced Intelligent Systems for Sustainable
Development (AI2SD’2018). AI2SD 2018. Advances in
Intelligent Systems and Computing, vol 915. Springer,
Cham
https://doi.org/10.1007/978-3-030-11928-7_37

8. B.Manoj, K.V.K.Sasikanth, M.V.Subbarao, et V Jyothi
Prakash. « Analysis of Data Science with the Use of
Big Data ». International Journal of Advanced Trends in
Computer Science and Engineering 7, nᵒ 6 (15 December
018): 87�90.
https://doi.org/10.30534/ijatcse/2018/02762018.

9. George, Lars. Hbase: The Definitive Guide: Random
Access to Your Planet-size Data. 2nd Revised edition.
O’Reilly Media, Inc, USA, 2018.

10. Apache Hive Essentials: Essential techniques to help
you process, and get unique insights from, big data,
2nd Edition eBook: Dayong Du: Gateway.

11. Daniel, Dai, et Gates Alan. « Programming Pig:
Dataflow Scripting with Hadoop: 9781491937099:
Computer Science Books », s. d.

12. N. Sawant and H. (Software engineer) Shah, Big data
application architecture Q & A a
problem-solution approach. Apress, 2013.
https://doi.org/10.1007/978-1-4302-6293-0

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 646 – 653

653

13. Balasubramanian, Sriram. Big Data Hadoop The
Premier Interview Guide, 2017.

14. D. Borthakur, “HDFS architecture guide,” Hadoop
Apache Proj. http//hadoop apache …, pp. 1–13, 2008.

15. Angadi, A. B., Angadi, A. B., & Gull, K. C. (2013).
Growth of New Databases & Analysis of NOSQL
Datastores. International Journal of Advanced Research
in Computer Science and Software Engineering, 3,
1307-1319.

16. Kumar, R., Charu, S., & Bansal, S. (2015). Effective
way to handling big data problems using NoSQL
Database (MongoDB). Journal of Advanced Database
Management & Systems, 2(2), 42-48.

17. M. Seeger and S. Ultra-Large-Sites, “Key-value stores:
a practical overview,” … Sci. Media, pp. 1–21, 2009.

18. M. Meyer, “Riak Handbook,” 2011.
19. Carlson, Josiah L. Redis in Action. Pap/Psc. Shelter

Island, NY: Manning Publications, 2013.
20. B. Akboka, N. Filipchuk, and E. Zimanyi, “Advance

database : Voldemort,” 2015.
21. D. Abadi, “The Design and Implementation of

Modern Column-Oriented Database Systems,”
Found. Trends® Databases, vol. 5, no. 3, pp. 197–280,
2012.
https://doi.org/10.1561/1900000024

22. F. Chang et al., “Bigtable: A distributed storage
system for structured data,” 7th Symp. Oper. Syst. Des.
Implement. (OSDI ’06), Novemb. 6-8, Seattle, WA, USA,
pp. 205–218, 2006.

23. Carpenter, Jeff, and Eben Hewitt. Cassandra – The
Definitive Guide 2e. 2nd ed. Sebastopol, CA: O′Reilly,
2015.

24. Amazon Web Services, “Amazon DynamoDB Developer
Guide API Version 2012-08-10.” 2012.

25. A. Issa and F. Schiltz, “Document oriented Databases,”
2015.

26. Syn-Hershko, Itamar. RavenDB in Action. Manning
Publications, 2016.

27. Team, CouchDB. CouchDB 2.0 Reference Manual.
Samurai Media Limited, 2015.

28. Bradshaw, Shannon, and Kristina Chodorow. Mongodb:
The Definitive Guide: Powerful and Scalable Data
Storage. 3rd ed. Place of publication not identified:
O’Reilly Media, Inc, USA, 2018.

29. Robinson, Ian, Jim Webber, and Emil Elfrem. Graph
Databases 2e. 2nd ed. Beijing: O′Reilly, 2015.

30. Baton, Jerome, and Rik Van Bruggen. Learning Neo4j
3.x - Second Edition: Effective data modeling,
performance tuning and data visualization techniques
in Neo4j. 2nd Revised edition. Packt Publishing Limited,
2017.

31. “ATL: Atlas Transformation Language Specification
of the ATL Virtual Machine.”

32. Banane, Mouad, et Abdessamad Belangour. « New
Approach Based on Model Driven Engineering for
Processing Complex SPARQL Queries on Hive ».
International Journal of Advanced Computer Science
and Applications 10, nᵒ 4 (2019).
https://doi.org/10.14569/IJACSA.2019.0100474.

33. Danish Ahamad, Shabi Alam Hameed, and MD Mobin
Akhtar. « A Review and Analysis of Big Data and
MapReduce ». International Journal of Advanced
Trends in Computer Science and Engineering 8, nᵒ 1 (15
February 2019): 1�3.
https://doi.org/10.30534/ijatcse/2019/01812019.

