

 K. Srinivas et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7198– 7203

 … … … …

x.jpg 205

Directory

…

…
…

FA

… … … …

230

340

FF

205 230 340

X2

X3

X1

Data Clusters

FAT

 X1: Fragment1 of x.jpg
X2: Fragment2 of x.jpg
X3: Fragment3 of x.jpg

205 230 340

_.jpg 100

Directory

…

…
…

FA

… … … …

0

0

0

 … … … …

100 230 340

X2 X3 X1

Data Clusters

FAT

X1: Fragment1 of x.jpg
X2: Fragment2 of x.jpg
X3: Fragment3 of x.jpg

100 230 340

ABSTRACT
File Carving is a method of recovering deleted files without using
file-system tables. This method reassembles file fragments to
prepare a recovered file. In the literature we find the methods of
carving image files from its fragments on a storage media,
without using files’ metadata in file-system data structures [1, 2].
These methods require that the cluster containing the header of an
image be available. In this paper we propose methods that can
carve image files from its fragments when a header is corrupted
or missing. Two different cases of this problem have been
considered; 1) Only header is missing 2) A cluster containing
header is missing. We have proposed an algorithm called as
extended GSUP algorithm which is an extension of algorithms
presented in a paper [1, 2]. This algorithm is implemented in
C++ and the experimental results are also presented. We have
used the ULFS tool [3, 4] for preparing input for testing our
carving tool. This tool is also used to compare the internal
structure of a header of a bitmap file with the pseudo header
constructed for the purpose of carving.

Key words: File-carving, user-level-file-system, digital
forensics, data-recovery, image-header

1. INTRODUCTION
When a user saves a file on a disk, the Operating System
uses its File System component to handle it. A File
System is a set of software modules at kernel level for file
handling operations. Assume that a user has created a file
named as “one.txt” containing the text “abc”. The size of
this file is 3 bytes. The file system allocates one free
clusters for this new file, at the time of its creation, from
the pool of free clusters that it maintains. A cluster is a set
of consecutive sectors on the disk. A cluster is an
allocation unit. The kernel file system views the disk as a
set of clusters than as a set of bytes. When a user creates a
new file, the required number of free clusters is allocated
for it. And when a user deletes a file, all the used clusters
by the file are freed. So, for the above “one.txt” file, one
cluster is allocated. Thus when the properties of the file
“one.txt” are viewed, for example, on Windows 7
Operating System, we notice file ‘size’ as 3 bytes and ‘size
on disk’ as 4096 bytes. In this paper we assume the cluster
size as 4096 because it is the most common size but it can
vary [5].

Consider a file named “x.jpg” of size 10KB on the disk
saved at cluster numbers 205, 230 and 340. In
conventional method, to perform read operation on this
file, the file system obtains these cluster numbers (that
were saved in the file system’s data structures when the

This research work is sponsored by Vasavi College of Engineering,
Hyderabad.

file was created, as shown in Fig 1), reads data from these
clusters and presents the data to user application [6]. It is
up to user application how to interpret this data.

Figure 1:The DIR, FAT and Data Clusters sections
before

Figure 2: The file system tables after delete operation

The File Carving Method for Category B Images

1Dr. K. Srinivas, 2 Dr. T. Adilaxmi
1Associate Professor, Department of Computer Science & Engineering, Vasavi College of Engineering,

Hyderabad ,India. Email: srinivas.kaprthi@staff.vce.ac.in
2Professor and Head, Department of Computer Science & Engineering, Vasavi College of Engineering,

Hyderabad, India. Email: hodcse@staff.vce.ac.in

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse45952020.pdf

https://doi.org/10.30534/ijatcse/2020/45952020

 K. Srinivas et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7198– 7203

7199

When the file is deleted, the File System changes the first
byte of the file name of x.jpg to ‘_’. Then it stores a zero
in each of the FAT locations at indexes 200, 230 and 340
to indicate that the clusters 205, 230 and 340 are free now.
The actual data of a file x.jpg is not erased [4].

In an unconventional method of accessing files, file
fragments are to be reassembled in the absence of metadata
in file system data structures as shown in Figure 2.

Unconventional methods are applied under three different
situations. A) When files were deleted accidentally and
they need to be recovered. B) When file(s) were deleted by
a criminal intentionally to escape from the law for his
criminal activities and investigating agencies want to view
such files [1]. C) When file system data structures such as
DIR and FAT got corrupted and the files present on the
disk to be read. Under these three conditions the
conventional method cannot be used.

To face the above situations technically in the areas of data
recovery and digital forensics, a new technology known as
file carving has evolved. In file-carving file-system tables
are not used. This method reassembles relevant file-
fragments to recover a file [5].

In a conventional method of reading a file, the file system
refers to file-system’s data structures, reads the data
present in clusters and then presents the data to the
application at user level. File carving is a method of
recovering deleted files without using file system tables.
The area of image processing has wide applications like
medical field, security etc [11,12]. The digital forensics is
one among them.

The presentation of our work is planned, in this paper, as
follows. In section II, we present review of literature. In
section III, we present the analysis of the missing header
problem. In section IV, we present the design and
implementation of the image carving system utilizing our
proposed algorithm. In section V we present the details of
the experiments conducted and the results obtained to
prove our research work.

2. REVIEW OF LITERATURE
Pal et al have presented an unconventional method of
accessing image files by using greedy algorithms [1]. This
method initially identifies a cluster containing header of an
image to find image attributes such width, height, file size
etc. The process of finding adjacent clusters of an image
utilizes width attribute. File size attribute helps in
calculating number of clusters that the image spans on the
disk. This method addresses the major challenge faced in
carving process, that is, file fragmentation. In a research
paper [2], sum-of-difference (SoD) measure used in [1] is
enhanced by inventing a new measure known as
Coherence of Euclidian Distance (CED). In a research
paper [7], the problem of missing fragments is addressed
for a file type of JPEG.

In paper [5] a method for carving i-node in Linux is
introduced. Almost without using the information
contained in super block and based on use cases i-nodes
are carved. In year 2009, Pal et al presented state of
research in the area of file carving [6]. In the literature we
also find the progress in research in accessing files of
various types such as executable files, zip files, portable

document files, html files, document files, JPEG files
etc.[5,8, 9] using unconventional methods famously known
as file carving. In research paper [3], an implementation of
user-level- file-system by following broadly a FAT file
system is presented. It is a tool for generating input for file
carving algorithms by executing a sequence of commands
at its command prompt is presented. In research paper [4]
the authors have described how to write a script file for
creating a virtual disk suitable for testing a file carving
algorithm. We have utilized ULFS tool by writing script
files to generate the input for file carving tool as described
in [3, 4]. In the paper [10], camera sensor noise is used to
address the issue of missing fragments problem in file
recovery.

In this paper, we propose methods for reassembling bitmap
file fragments with missing both header and files’ metadata
in file system data structures.

3. THE MISSING HEADER PROBLEM
 We analyze the missing header problem in this

section. We consider bitmap (24-bit) files for the analysis.
We assume that image header is not available. We also do
not use file-system tables. As outlined in section II, in the
literature we find greedy algorithms for reassembling file
fragments of bitmap image type in the absence of file’s
metadata in file-system data structures but when header of
the image file is available. One such algorithm is Greedy
Sequential Unique Path Algorithm. We propose a method
by which a fragmented image of bitmap-24-bit type can be
accessed to its maximum when a header and file metadata
in file-system data structures both are not available. We
present the analysis of this problem in the following sub
sections.

Figure 3: Calculation of weight

3.1 The Overview of the GSUPA and its Limitations
The steps of GSUPA algorithm are as follows. 1) Identify
a cluster that contains image header. Let us denote such a
cluster as H. If starting bytes in a cluster are “BM” then it
is an image header cluster. 2) Decode the image header.
We get file-size, width, height etc. attributes. 3) Identify
the file fragments and reassemble them to recover a file.
The file-size attribute helps to find the count of clusters of
the image file. The width attribute helps in reassembling
the relevant clusters.

To recover a deleted image the algorithm constructs a
graph G. The unallocated clusters are the candidates for
the image fragments of a deleted file. So in the graph G, a
node represents an unallocated cluster. And an edge <I,J>

 K. Srinivas et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7198– 7203

represents the likelihood of the cluster J that followed the
cluster I in an original image. The group of adjacent pixel
pairs is saved across clusters. The smoothness property
helps in reassembling all such clusters together.

Based on this, the weights are calculated by using the
equation shown in the Figure 3. For a recovered cluster I,
to find the adjacent cluster, it finds N number of weights
namely weights(I,K) where K = 0, 1, 2, … , N-1. The
adjacent cluster is a cluster J such that weights(I,J) is
minimum.

GSUPA generates a matrix shown in Figure 4, when the
disk contains two images I1 and I2, each spanning five
clusters on the disk, at cluster numbers (0, 1, 2, 3, 4) and
(5, 6, 7, 8, 9) respectively, with headers at cluster number 0
and 5 respectively. This is the case of contiguous images
on the disk. But files may not always be saved in
contiguous areas on the disk i.e. the files may be
fragmented on the disk. The GSUPA addresses this
challenging issue of fragmentation. The elements of the
matrix are divided into two categories namely near-zero
values (NZs) and not-near-zero values (NNZs). In the
Figure NNZs are not shown for simplicity. We note that
GSUP algorithm has number of iterations and in every
iteration it generates the matrix for reassembling all the
images with equal width. With this matrix as an input, it
reassembles the two images as (0, 1, 2, 3, 4) and (5, 6, 7, 8,
9). Similarly it reassembles one image as (0, 1, 13, 3, 14)
when matrix in Figure 5 is input in its image reconstruction
phase because of NZs at the cells (0,1), (1,13), (13,3) and
(3,14). But the existence of more NZs indicates the
existence of more images on the disk that the GSUP
ignores. This situation arises when header is corrupted /
missing on the disk and GSUP cannot consider these
additional NZs.

3.2 The Image File Carving with Missing Headers
The idea here is to construct a partial greedy path. This
operation uses the residual NZs in the adjacency matrix of
the graph G. The partial greedy path is 7->9->10->12.
The full greedy path is constructed by using the header
cluster of the 2nd image. The full greedy path is 0->7->9-
>10->12.

Figure 4: The matrix generated by GSUP Algorithm

It represents the partially recovered image. From forensics
point of view this partially recovered image may turn out
to be an important clue to crack the crime.

The GSUPA constructs the adjacency matrix of the graph
shown in Figure 5. This adjacency matrix represents the

two fragmented images on a storage media. They are
image1 and image2. The OS had allocated five clusters for
each image.

Figure 5: The matrix generated by GSUP algorithm and
its residues are marked by encircling them

(Weight(A,B) = NZ) => B is an adjacent of A (1)
Pred(A) = A’ | Weight(A’,A)=NZ (2)
Succ(B) = B’ | Weight(B,B’)=NZ (3)

The algorithm begins with one of the remaining NZs. The
remaining NZs are at the cells (7, 9), (9,10) and (10, 12).
Let the starting cell is (A, B)=(9,10). In an original image,
the image fragment in cluster B follows the image
fragment in cluster A. Now the partial greedy path can be
found. Pred(A)=7 and Succ(B)=12. So the partial greedy
path is 7->9->10->12.

If the starting cell is (A, B)=(7, 9) then Pred(A) is NULL
Succ(B) is 10. And then the Succ(10) is 12. So the partial
greedy path is 7->9->10->12.

If the starting cell is (A, B)=(10, 12) then Pred(A) is 9
Succ(B) is NULL. And then the Pred(9) is 7. So the
partial greedy path is 7->9->10->12.

4. DESIGN AND IMPLEMENTATION
The data structure and an algorithm to operate on the data
structure to reassemble the images without headers are
presented below.

4.1 Using a sparse matrix for leftover NZs
The count of the remaining NZs is much less than the size
of the adjacency matrix. So a sparse matrix is the best data
structure for these NZs. We can store all the residual NZs
very efficiently by using M X 3 sparse matrix where M is
number of NZs that have not been used by GSUP
Algorithm. For the matrix shown in Figure 3, the sparse
matrix is shown in Table 1.

The file carving algorithm uses row and column values
only. It does not use the third column. So it can be

 K. Srinivas et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7198– 7203

dropped. Therefore the algorithm uses the below
mentioned sparse matrix.

The file carving algorithm uses the following set of
equations.

The row S[I] => S[I,2] is an adjacent of S[I,1] (4)

Pred(S[I,1]=
	푆[퐽, 1], 푤ℎ푒푛	퐽	|	푆[퐼, 1] = 푆[퐽, 2]

	푛푖푙, 푤ℎ푒푛	푡ℎ푒푟푒	푖푠	푛표	푠푢푐ℎ	퐽
 (5)

Succ(S[I,2]) =			
	푆[퐽, 2], 푤ℎ푒푛	퐽	|	푆[퐼, 2] = 푆[퐽, 1]

	푛푖푙, 푤ℎ푒푛	푡ℎ푒푟푒	푖푠	푛표	푠푢푐ℎ	퐽
 (6)

Pred(S[I,2]) = S[I,1] (7)

Succ(S[I],1) = S[I,2] (8)

Table 3: The MH matrix of missing header problem

The missing header problem has four categories. They are
shown in the Table 3. The name given to this matrix is
MH matrix (the long form is Missing Header Matrix). In
category A, only the header bytes in the header cluster are
corrupted for some images. In category B, header clusters
are missing for some images. In category C, only the
header bytes are corrupted for all the images. And in
category D, header clusters are missing for all the images.

4.2 Extended GSUP Algorithm to Reconstruct Images
with Missing Headers of category B

Now we explore the method to carve the images of
category B, having no header but having all the remaining
data. It is a two step process. The first step is to use one
of the existing headers as a header for carving images
without header. The second step is to find the sequence of
clusters using the data in the sparse matrix as shown in the
Figure-6 below.

The values in Table 2 i.e., 7, 9, 10 and 12 are cluster
numbers. There are 3 rows in the sparse matrix S of Table
2 representing 3 residual NZs. The row containing the
cluster numbers 7 and 9 (i.e. row S[1]) represent a cell
(7,9) in the matrix in Figure 3. Similarly S[2] and S[3]
represent the cells (9,10) and (10,12).

Figure 6: Logic of reassembling an image with missing header

The values in Table 2 i.e., 7, 9, 10 and 12 are cluster
numbers. There are 3 rows in the sparse matrix S of Table
2 representing 3 residual NZs. The row containing the
cluster numbers 7 and 9 (i.e. row S[1]) represent a cell
(7,9) in the matrix in Figure 3. Similarly S[2] and S[3]
represent the cells (9,10) and (10,12).

Using one of the clusters from the sparse matrix as a seed
cluster, Cseed and by applying the above mathematics we
find the sequence of clusters. Then we append one by one
clusters data of this sequence of clusters, to the cluster
containing pseudo header to make up an image file.

The following class named as IRWHM is used to
implement the above plan.

class IRWHM
{
 public:
 IRWHM(int s[MAXCL][3],int rc,uc psuedohd[]);
 int sparse[MAXCL][3] ;
 int maxnz ;
 int rowcount ;
 int pathlength ;
 int noheadercnt ;
 int paths[MAX_IMGS][MAX_CLS_PER_IMG] ;
 void buildhdr() ;
 int prev(int) ;
 int next(int) ;
 int get_a_path(int seedcl , int p[]) ;
 int getpaths() ;
 void reconstruct(uc *) ;
 void construct_header(ul w, ul h, uc pseudo[]);

} ;

The member function prev() is used to implement the
equations (5) and (7). The member function next() is used
to implement the equations (6) and (8). The member
function get_a_path() implements the first step of
preparing the sequence of clusters given a seed cluster. It
implements the logic of Figure 6. The member function
get_paths() is for reassembling all possible sequences.
The member function reconstruct() reassembles all the
images from the sequences by using the existing header of
another image for constructing each image. The row count
data member is to store the number of rows in the sparse
matrix.

 54-bytes header
missing

Whole cluster
missing

Some images Category A Category B
All images Category C Category D

 K. Srinivas et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7198– 7203

4.3 Extended GSUP Algorithm to Reconstruct Images
with Missing Headers of Category A

In this case we copy one of the existing headers is copied
to the first cluster of the sequence as a header. In this case
we will not see another image’s portion at the bottom of
the carved images as we will see in the next section.

5. EXPERIMENTS AND RESULTS
We prepare input for our experiments by using ULFS tool.
Any file carving software verifies a disk that is suspected
to have unlawful data. For our experiments we create a
virtual-disk using ULFS tool. So virtual-disk is the input
for our software.

The ULFS tool has CUI (Character User Interface). The
tool provides a set of commands. The user can create a
new Virtual disk. The user types in “newdisk” command
at the prompt for this purpose. The “newdisk” command
has two arguments. They are name and capacity of the
virtual disk to be created. For example, the command line
“newdisk vd 2” creates a virtual disk “vd” of the capacity
2MB.

The other commands of this tool are;
create -> To create a new file
del -> To delete a file
directory-> To display the files list
clslist -> To display the clusters’ list
isfrag -> To know whether the file is
 fragmented or not
cb -> To corrupt bytes
format -> To format the virtual disk

5.1 The experiments to recover Category B Images
The script to create a virtual disk for category B is -

newdisk one.dsk 1; create s0.txt; create s1.txt; create
1.bmp; create s2.txt; del s0.txt; create 2.bmp; del s1.txt; del
s2.txt; create 3.bmp; cb 2 0 4096; cb 3 0 4096; format;.

The files s?.txt are small text files. We could have used
any other file type. They are used to fragment the images
files. The sequence in the script is so chosen that the
virtual disk has the layout of category-B images. The
Figure 7 shows the effect of each command of the script.
This figure shows the progressive development of
category-B images. It also shows the final layout of the
data on the virtual disk. The “format” command deletes
the system tables namely File Allocation Table and the
directory table.

Figure 7: The progressive development of Category B
images on the Virtual Disk “ONE.DSK”

The Figure 8 shows the original files. The Figure 9 shows
the files that are carved by the proposed file-carving
algorithm. We have used the adjacency list for the graph in
our experiments. The Figure 10 shows the weights of the
graph G.

Figure 8: The Category B images (original) on the virtual disk
“ONE.DSK"

Figure 9: The three recovered images. (The two images are
partially recovered. These partially recovered images are also
forensically important)

The GSUPA would recover only 1.bmp image file.
The proposed algorithm has recovered all the three images.
Though two of them are partially recovered they are
forensically important. The proposed algorithm used the
header cluster of the fully recovered image for the partially
recovered images. Therefore in Figure 9, the bottom
portions of the second and third images are that of the first
image.

Figure 10: Portion of Adjacency List of the Graph
Generated for Images of Category B

1.bmp 2.bmp 3.bmp

rtv0.bmp rtv1.bmp rtv2.bmp

 K. Srinivas et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7198– 7203

7203

6. CONCLUSION

Image files can be carved even if their headers are missing.
The ULFS tool is very much useful in constructing test
data sets in the form virtual disks. The research area of file
carving is important to counter the computer based
criminal activities. In the future work we would like to
extend our work to carve the image files when all headers
are missing i.e. images of category C and category D.
Also we would like to extend our work to carve image files
when some of the data clusters are missing.

REFERENCES

1. Nasir Memon, Anandabrata Pal, “Automated

Reassembly of File Fragmented Images Using
GreedyAlgorithms”,IEEE Transactions onImage
Processing, Volume 15,No.2, February,2006

2. Yanbin Tang, Junbin Fang, K.P. Chow, S. M. Yiu, Jun
Xu, Bo Feng, Qiong Li, Qi Han: Recovery of heavily
fragmented JPEG files, ELSEVIER, Digital
Investigation, 2016.

3. K. Srinivas, T. Venugopal, “Automated Generation
of a Natural Challenge File for File Carving
Algorithms”,International Conference on Applied
Sciences, Engineering, Technology and Management-
2017 at DRK Institute of Science and Technology,
Hyderabad, Telangana, India.

4. K. Srinivas, T. Venugopal,(In press) “Testing a File
Carving Tool Using Realistic Datasets Generated with
Openness”, International Journal of Data Analysis
Techniques and Strategies.

5. Andreas Dewald, Sabine Seufert, “AFEIC: Advanced
forensic Ext4 inode carving”,DFRWS 2017 Europe –
Proceedings of the 4th Annual DFRWS Europe –
Elsevier Journal - Digital Investigation 20 (2017) S83-
S91

6. Anadabrata Pal, Nasir Memon, “The Evolution of
File Carving: The benefits and problems of forensics
recovery”,IEEE Signal Processing magazine Vol. 26.
No 2. March 2009.

7. Husrev T: Sencar, Nasir Memon: Identification and
recovery of JPEG files with missing fragments,
ELSEVIER, Digital Investigation, 2009.

8. Kulesh Shanmugasundaram, Nasir Memon: Automatic
Reassembly of Document Fragments via Context
Based Statistical Models, ACSAC '03 Proceedings of
the 19th Annual Computer Security Applications
Conference, IEEE Computer Society Washington,
DC, USA.

9. https://www.dfrws.org
10. Image Carving with Missing Headers and Missing

Fragments IEEE 2017 Emre Durmus_, Manoranjan
Mohantyy, Samet Taspinary, Erkam Uzunz and Nasir
Memon

11. Siti Salasiah Mokri, M Iqbal Saripan, Abdul Jalil
Nordin, Mohammad Hamiruce, Noraishikin
Zulkarnain “Level Set Based Whole Heart
Segmentation in Non-Contrast Enhanced CT Images”,
International Journal of Advanced Trends in Computer
Science and Engineering, Volume 8, No. 1.6, 2019.

12. Rafidah Muhamad1, Azurah A. Samah2, Hairudin
Abdul Majid3, Zuraini Ali Shah4, Haslina Hashim5,
Nik Azmi Nik Mahmood6, Dewi Nasien7, M. Hasmil

Adiya8 “Block-based Approaches for Copy-move
Image Forgery Detection :A Review”, International
Journal of Advanced Trends in Computer Science and
Engineering, Volume 8, No. 1.6, 2019.

