
Enrique G. Abad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1254 - 1259

1254

ABSTRACT

Quality assessment of the security of sensitive information
being sent over or stored in a medium is vital in the world of
computing and communications. Hash-based message
authentication codes (HMACs) is a tool that provides such
security check using a cryptographic hash function coupled
with a secret key. In this paper, an enhanced key generation
algorithm of HMAC-MD5 using XOR bitwise operator and
left circular shifting is proposed. Six randomness tests from
the NIST statistical test suite are performed to the proposed
method which is implemented on the existing Travel Order
Management System. Results showed that the binary
sequence of the generated key is random in all tests as P-
values passed the minimum significant level. The computed
P-values are as follows: Frequency (Monobit) Test = 0.503,
Frequency Test within a Block = 0.349, Run Test = 0.553,
Test for the Longest Run of Ones in a Block = 0.022,
Approximate Entropy Test = 0.325, and Cumulative Sums
Test = 1.000. This means that the generator provides
unpredictable random sequence of key.

Key words: circular left shifting, Hash-based message
authentication codes, MD5, randomness, XOR bitwise
operator.

1. INTRODUCTION

Cryptography is the most commonly used technique in
protecting data from the hands of the attackers. The secrecy
of the data is done through the translation of the information
into unintelligibly form which could not be understood by
anybody except the real sender and intended recipient which
knows the secret key [1]-[5]. Among the many applications
of this technique, authentication is widely used in various e-
commerce activities, e-government business information,
and internet information.

In cryptography, a Hash Message Authentication Code
(HMAC) is a type of message authentication code (MAC)
calculated using a specific algorithm involving a
cryptographic hash function in combination with a secret
key. As with any MAC, it may be utilized to validate both
the authenticity and integrity of the message at the same

time. Further, HMAC's cryptographic strength basically
relies on the quality and size of the key, hash output length in
bits, and the cryptographic strength of the chosen hash
function [6], [7]. One of the well-known hash algorithms is
MD5 due to its extensive availability and shorter length [8].

Since cryptanalysists are continuously drawing efforts in
terms of designing different attacks to break hash algorithms,
much work is required to increase the strength of the HMAC
function so that its resistance will escalate against attacks.
Much studies have proposed different techniques to make
HMAC more resistant against attacks especially exhaustive
and birthday attacks. To determine how secured these
techniques are, various assessments or evaluations such as
avalanche effect, brute-force attack, randomness, and
cryptanalysis were performed to provide validation of their
performance [9], [10].

Meanwhile, there are different thoughts, some think that in
order to make HMAC non-vulnerable, existing underlying
hash function in HMAC with more secure hash functions
must be replaced, while others think that it is the key which
should be random and unpredictable enough to decrease the
vulnerability of the HMAC algorithm. As a matter of fact,
random number is widely used in cryptographic applications,
which is mainly used as key. In view of the fact that the
security of the key totally depends on the amount and
randomness of itself, it is very important to produce random
numbers. Pseudo-random MD6 compression, large random
prime numbers, and lookup tables using random numbers are
the existing methods to generate a key which makes it more
protected and harder to predict [11], [12].

Hence, this paper extends to measure and analyze the
randomness test of our proposed key generation of HMAC-
MD5 which is implemented to an existing application system
[9].

2. EXISTING HMAC ALGORITHM

Naqvi and Akram (2011) proposed a modified HMAC to
improve its strength against attacks (e.g. Birthday Attack and
Exhaustive Key Search Attack) [11]. This served as the
baseline of the modified HMAC algorithm. Its architecture is

Enrique G. Abad1, Dr. Ariel M. Sison2, Dr. Ruji P. Medina3
1Technological Institute of the Philippines, Philippines, enrique.abad@dmmmsu-sluc.com

2Emilio Aguinaldo College, Philippines, ariel.sison@eac.edu.ph
3 Technological Institute of the Philippines, Philippines, ruji.medina@tip.edu.ph

Security Evaluation of the Enhanced Key Generation Algorithm of Hashing
Message Authentication Code

 ISSN 2278-3091
Volume 8, No.4, July – August 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse35842019.pdf

https://doi.org/10.30534/ijatcse/2019/35842019

Enrique G. Abad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1254 - 1259

1255

shown in Figure 1 and steps for computation of HMAC-
MD5 are as follows:

Figure 1: HMAC Algorithm [11]

a. Compute the secret key ܭ by using MD6 function.
b. If the key has length longer that ܾ (i.e. 512 bits), hash

function ℎ is used to hash the key ܭ to a ܾ bit long
string ܭା or padded zeroes if the key is shorted than
512 bits.

c. XOR (bitwise exclusive-OR) ܭା with ipad value
which is constant 0X36 repeated ௕

଼
 times to generate

the block ௜ܵ of ܾ-bit length.
d. Append ݉ with ௜ܵ.
e. Operate ℎ on the stream produced in step (c).
f. XOR ܭା with opad which is constant value OX5C to

produce the block ܵ଴ of length ܾ-bit.
g. Attach the hash output computed in step (d) with ܵ଴.
h. Apply ℎ to the output computed in step (g) to finally

get HMAC.

It has been proven that MD6 keeps some cryptographic
properties such as pseudo randomness, unpredictability,
parallelism, and others. Hence, the key generated by MD6
compression function becomes more random and harder to
attack or forge. This implies escalating collision resistance of
HMAC.

3. PROPOSED KEY GENERATION ALGORITHM

3.1 Framework
Figure 2 shows the flowchart of the proposed key generation
algorithm to enhance HMAC. The key generation starts by

hashing the plaintext using MD5 hash function. After getting
the hash value of the plaintext, XOR bitwise operator was

Figure 2: Flowchart of the Proposed Key Generation Algorithm of

HMAC

applied between each character. Finally, the result underwent
left circular shifting. Each major component of the proposed
algorithm is briefly discussed below.

a. MD5
MD5 (Message-Digest algorithm 5) is commonly used
cryptographic hash function whose main purpose is to
examine the integrity of files. This hash function produces a
128-bit hash value, typically expressed as a 32-digit
hexadecimal number, and has been used in a wide variety of
security applications [13]-[15]. Users can always verify the
integrity of the information after it is received since MD5
hash algorithm always generates similar output with that of
given input. As a one-way operation, a hash function alters
size of information into a shorter one with a fixed size to
avoid similarity of characters [16]. Then, the resulting hash
value is compared to the hash value being sent with
information. If the two values are equal, this result entails
that the information sent has not been modified. Therefore,
the assurance of the integrity of the information is present.

MD5 cryptographic function operates 32-bit words. Let ܯ be
the message to be hashed. To make the length of the message
(in bits) equal to 448 mod 512, the message is padded. The
padded message must be 64 bits less than a multiple of 512.
The padding is composed of single bit then pad enough zeros
to attain the required length. Even if the length or size of ܯ
happens to be the same as 448 mod 512, padding is always
utilized. The resulting bits should have at least one-bit of
padding, and not more than 512 bits of padding. Then the
length or size of the message (translated to bits) before

Enrique G. Abad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1254 - 1259

1256

padding is appended as a 64-bit block.

b. XOR Bitwise Operator

The following algorithm is used to perform XOR bitwise
operator in generating the key of HMAC.
Input : hash value of plaintext n = h(plaintext)
temp = n[0]
for x = 1 to n.length -1

temp= temp ⊕ n[x]
v= v | temp

end for

temp = n[n.length-1] ⊕ n[0]
v=v | temp

It begins with accessing the first character of n and
performing bitwise XOR (bit-level operation) to adjacent
character. Each resulting value is concatenated to v. At the
end, XOR bitwise operator is applied between the first and
last character. Sample bitwise XOR operation is found in
Table 1.

c. Left Circular Shifting

Left circular shifting is applied on each character of the
XORed key. Afterwards, the number of shifts is calculated
and convert each character into binary value. Finally, the
resulting binary values are converted to corresponding
ASCII characters. The following algorithm is utilized for left
circular shifting operation. Figure 3 illustrates the graphical
representation on how left circular shifting works.

Input : XORed key v=XOR(h(plaintext)),

c_l_s=length(plaintext) mod 7
Output : Key generated
for x=1 to 32

v[x]=v[x] << c_l_s
end for
k=v

Table 1: Sample Result of XORed Key

Key = 5D451402ABC4B2A76B9719D911017C592

Value 1 Operator Value 2 Result
5 XOR D q
q XOR 4 E
E XOR 1 t
… … … …
… … … …
f XOR 5 S

XORed Key =

Figure 3: Process of Left Circular Shifting

Figure 4: Login Page of the Travel Order Management System of

DMMMSU-SLUC

After the design of the proposed key generation algorithm of
HMAC, it was implemented into an existing Travel Order
Management System (TOMS) of Don Mariano Marcos
Memorial State University – South La Union Campus.
Figure 4 shows the login page of the Travel Order
Management System of DMMMSU-SLUC. In view of the
fact that the proposed algorithm focused on password
authentication, we gathered passwords of the faculty
members and staff and digital signatures of the
administrators of DMMMSU-SLUC. These data served as
input to determine the performance evaluation of the
proposed key generation algorithm. A total of 350 faculty
members, 70 staffs, and 10 administrators have their own
password to login to Travel Order Management System.
These data were enough already to test the capability of the
proposed algorithm against attacks.

3.2 Performance Evaluation
The proposed key generation algorithm of HMAC was
evaluated through randomness tests which is also an
important property of a cryptography algorithm block cipher
to ensure that the algorithm is lack of pattern or predictability
key. We adopted six tests among the 16 tests in NIST
Statistical Test Suite [17] because of their applicability in the
study.

a. Frequency (Monobit) Test

This test pertains to the proportion of zeros and ones for the
entire binary sequence. Also, it determines whether the sum
of zeros and ones in a binary sequence are approximately the
same as would be expected for a truly random binary
sequence. Frequency (Monobit) test assesses the closeness

Enrique G. Abad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1254 - 1259

1257

of the fraction of ones to ଵ
ଶ
 wherein the count of ones and

zeros in a binary sequence should be equal. All subsequent
tests depend on the passing of this test; there is no evidence
to indicate that the tested sequence is non-random. Equation
1 is used to calculate frequency test.

ܲ − ݁ݑ݈ܽݒ = ݂ܿݎ݁ ቀ௦೚್ೞ
√ଶ
ቁ (1)

where,

݂ܿݎ݁ =
2
ඥ݌

ර ݁ି௨మ݀ݑ, ௢௕௦ݏ =
|ܵ௡|
√݊

ஶ

௭

b. Frequency Test Within a Block
This test is about the proportion of ones within M-bit blocks.
It determines whether the frequency of ones in an M-bit
block is approximately ெ

ଶ
, as would be expected under an

assumption of randomness. To do this test, the following
equation is used:

ܲ − ݁ݑ݈ܽݒ = ݅݃ܽ݉ܿ(ே
ଶ

, ௖
మ(௢௕௦)
ଶ

) (2)

c. Runs Test
This test corresponds to the total number of runs in the
binary sequence, where a run is an uninterrupted sequence of
identical bits. An exact k similar bit for a run of length k
should be attained and is bounded before and after with a bit
of the opposite value. Moreover, runs test aims to determine
whether the expected number of runs of ones and zeros for a
random binary sequence is the same as the computed number
of runs for different lengths. Particularly, this randomness
test confirms whether the oscillation between such ones and
zeros is too slow or too fast. Equation 3 is applied to do the
test.

ܲ − ݁ݑ݈ܽݒ = ݂ܿݎ݁ ൤|௏೙(௢௕௦)ିଶ௡௣(ଵି௣)|
ଶඥଶ௡௣(ଵି௣)

൨ (3)

d. Test for the Longest Run of Ones in a Block
The focus of the test is to check if the length of the longest
run of ones within M-bit blocks is consistent with the
expected length in a random sequence. It can be observed
that an irregularity in the expected length of the longest run
of ones would mean that there is also an irregularity in the
expected length of the longest run of zeroes. For this reason,
only a test for ones is required. Equation 4 is used to do this
test.

ܲ − ݁ݑ݈ܽݒ = ݅݃ܽ݉ܿ ቂ௄
ଶ

, ௖
మ(௢௕௦)
ଶ

ቃ (4)

e. Approximate Entropy Test
Its main attention is the frequency of all possible overlapping
m-bit patterns across the entire binary sequence. The purpose
of the approximate entropy test is to compare the frequency
of overlapping blocks of two consecutive or adjacent lengths

(݉	ܽ݊݀	݉ + 1) against the expected result for a random
binary sequence. The following equation is used to complete
approximate entropy test.

ܲ − ݁ݑ݈ܽݒ = ݅݃ܽ݉ܿ(2௠ିଵ, ௖
మ

ଶ
) (5)

f. Cumulative Sums Test
This test is related to the maximal excursion (from zero) of
the random walk defined by the cumulative sum of adjusted
(−1, +1) digits in the given binary sequence. It ascertains
whether there is too small or too large cumulative sum of the
partial sequences occurring in the tested binary sequence
compared to the expected cumulative sum for random
sequences. This cumulative sum may be allowed as a random
walk. The excursions of the random walk should be near
zero for a random sequence. On the other hand, the
excursions of the random walk from zero will be large for
certain types of non-random sequences. To do this test, (6) is
applied.

ܲ − ݁ݑ݈ܽݒ = 1− ෍ ቈΦቆ
(4݇ + ݖ(1

√݊
ቇ−Φቆ

(4݇ − ݖ(1
√݊

ቇ቉

ቂ௡௭ିଵቃ
ସ

௞ୀ
ቂ௡௭ିଵቃ
ସ

+ 	 ෍ ቈΦቆ
(4݇ + ݖ(3

√݊
ቇ− Φቆ

(4݇ + ݖ(1
√݊

ቇ቉

ቂ௡௭ିଵቃ
ସ

௞ୀ
ቂି௡௭ ିଷቃ

ସ

		(6)

4. SIMULATION RESULTS

Considering the latter mentioned implementation scenarios, a
thorough experimentation was carried out using the modified
key generation of HMAC. Among the 16 tests in the NIST
test suite, only six tests are appropriate in this study which
are useful in studying and evaluating the binary sequences of
the generated key. In table 2, results of these statistical tests
are shown in which each P-value is the probability that a
perfect key generator would have produced a binary
sequence less random than the binary sequence that was
tested, given the kind of non-randomness assessed by the
test.

It is worthy to mention that all tests acquired a P-value less
than 0.01. This means that the sequence of secret key is
random. Surprisingly, the binary sequence of the key appears
to have a perfect randomness for cumulative sums test as the
computed P-value is equal to 1. Further, the results also show
that the generator is suitable for cryptographic application in
view of the fact that the generated keys are unpredictable.

Enrique G. Abad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1254 - 1259

1258

Table 2: Results of Randomness Tests on the Proposed Key
Generation of HMAC

Category P-Value
Frequency (Monobit) Test 0.503
Frequency Test within a Block 0.349
Run Test 0.553
Test for the Longest Run of Ones in a Block 0.022
Approximate Entropy Test 0.325
Cumulative Sums Test 1.000

5. CONCLUSION AND FUTURE WORK

This paper proposed a modified key generation using
HMAC-MD5 to increase the security of key against various
attacks. The proposed method applied XOR bitwise and left
circular shifting to produce a 255-bit hash size. To evaluate
the binary sequences produced by the proposed key
generator, six statistical tests were conducted. The results
showed that the random number generator is secured enough
for key generation which is implemented in the existing
Travel Order Management System.

In future work, the optimization of the proposed key
generation program is considered in hardware
implementation. This might help in reducing memory and
power consumption.

ACKNOWLEDGEMENT

The authors would like to thank Don Mariano Marcos
Memorial State University - South La Union Campus for
helping us to gather data. This work was supported by
Technological Institute of the Philippines and Commission
on Higher Education.

REFERENCES

1. D. J. S. Hombrebueno, M. G. C. E. Sicat, J. D.

Niguidula, E. P. Chavez, and A. A. Hernandez.
Symmetric cryptosystem based on data encryption
standard integrating HMAC and digital signature
scheme implemented in multi-class messenger
application, in Proc 2nd International Conference on
Computer and Electrical Engineering, Dubai, United
Arab Emirates, 2019, pp. 327-334, IEEE.

2. J. A. Dev. Usage of botnets for high speed md5 hash
cracking, in Proc. 3rd International Conference on
Innovative Computing Technology, London, UK, 2013,
pp. 314-320.

3. P. Amarendra Reddy and O. Ramesh. Security
mechanisms leveraged to overcome the effects of big
data characteristics, International Journal of Advanced
Trends in Computer Science and Engineering, vol 8, no.
2, pp. 312-318, 2019.

4. A. E. Karrar and M. F. I. Fadl. Security protocol for
data transmission in cloud computing, International

Journal of Advanced Trends in Computer Science and
Engineering, vol 7, no. 1, pp. 1-5, 2018.
https://doi.org/10.30534/ijatcse/2018/01712018

5. R. S. Rubayya and R. Resmi. Memory optimization of
HMAC/SHA-2 encryption, in Proc. 2014 First
International Conference on Computational Systems and
Communications, Trivandrum, India, 2014, pp. 282-287.
https://doi.org/10.1109/COMPSC.2014.7032663

6. S. Idris, H. Zorkta, S. Khawatmi, and W. Aiyash.
Enhanced HMAC based upon 3-D rossler system, in
Proc. International Conference on Future Computer and
Communication, Kuala Lumpar, Malaysia, 2009, pp.
465-469.
https://doi.org/10.1109/ICFCC.2009.71

7. M. Najjar and F. Najjar. d-HMAC dynamic HMAC
function, in Proc. International Conference on
Dependability of Computer Systems, Szklarska Poreba,
Poland, 2006, pp. 119-126.
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.17

8. M. S. Vinola, A. M. Balamurugan, V. Chandana, and V.
Durairaji. Enhanced HMAC structure based burst
header authentication design for optical burst
switched networks, in Proc. 2nd IEEE International
Conference on Recent Trends in Electronics Information
and Communication Technology, Bangalore, India,
2017, pp. 409-411.
https://doi.org/10.1109/RTEICT.2017.8256628

9. E. G. Abad and A. M. Sison. Enhanced key generation
algorithm of hashing message authentication code, in
Proc. 3rd International Conference on Cryptography,
Security and Privacy, Malaysia, 2019, pp. 44-48.
https://doi.org/10.1145/3309074.3309098

10. X. Niu, Y. Wang, and D. Wu. A method to generate
random number for cryptographic application, in
Proc. 10th International Conference on Intelligent
Information Hiding and Multimedia Signal Processing,
Kitakyushu, Japan, 2014, pp. 235-238.
https://doi.org/10.1109/IIH-MSP.2014.65

11. S. I. Naqvi and A. Akram. Pseudo-random key
generation for secure HMAC-MD5, in Proc. IEEE 3rd
International Conference on Communication Software
and Networks, Xi'an, China, 2011, pp. 573-577.
https://doi.org/10.1109/ICCSN.2011.6014790

12. M. Bahadori, M. R. Mali, O. Sarbishei, M. Atarodi, and
M. Sharifkhani. A novel approach for secure and fast
generation of RSA public and private keys on
SmartCard, in Proc. 8th IEEE International NEWCAS
Conference, Montreal, QC, Canada, 2010, pp. 265-268.
https://doi.org/10.1109/NEWCAS.2010.5603937

13. P. Ora and P. R. Pal. Data security and integrity in
cloud computing based on RSA partial homomorphic
and MD5 cryptography, in Proc. International
Conference on Computer, Communication and Control,
Indore, India, 2015, pp. 1-6.
https://doi.org/10.1109/IC4.2015.7375655

14. H. Kumar, S. Kumar, R. Joseph, D. Kumar, S. K. S.
Singh, and P. Kumar. Rainbow table to crack
password using MD5 hashing algorithm, in Proc.
2013 IEEE Conference on Information &

Enrique G. Abad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1254 - 1259

1259

Communication Technologies, Tamil Nadu, India,
2013, pp. 433-439.
https://doi.org/10.1109/CICT.2013.6558135

15. X. Zheng and J. Jin. Research for the application and
safety of MD5 algorithm in password authentication,
in Proc. 9th International Conference on Fuzzy Systems
and Knowledge Discovery, Sichuan, China, 2012, pp.
2216-2219.
https://doi.org/10.1109/FSKD.2012.6234010

16. X. Nan-bin and H. Xiang-dan. The mixed encryption
algorithm based on MD5 and XOR transformation,

in Proc. Second International Workshop on Education
Technology and Computer Science, Wuhan, China,
2010, pp. 394-396.
https://doi.org/10.1109/ETCS.2010.127

17. L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal,
M. E. Smid, E. Barker, S. Leigh, M. Levenson, M.
Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A
statistiacl test suite for random and pseudorandom
number generators for cryptographic applications,
(No. Special Publication (NIST SP)-800-22 Rev 1a).

