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ABSTRACT

A huge variety of software systems are relied upon in such
domains as aviation, healthcare, manufacturing and robotics,
and therefore, h systems and that they are reliable. Software
defect prediction helps improve software reliability by
identifying potential bugs during software maintenance.
Traditionally, the focus of software defect prediction was on
the design of static code metrics, which help with predicting
the defect probabilities of a code when input into machine
learning classifiers. While machine learning techniques such
as Deep Learning technique, Ensembling, Data Mining,
Clustering and Classification are known to help predict the
location of defects in code bases, researchers have not yet
agreed on which is the best predictor model. This paper will
use 13 software defect datasets in evaluating the performance
of the different predictor models. The results show that
consistency in high accuracy prediction was achieved using
Ensembling techniques.

Key words: software, software defect prediction, machine
learning, classification, clustering, ensemble learning.

1. INTRODUCTION

As the dependency and complexity of software grows, the
demands for maintainable and high-quality low-cost software
grows with it. However, for reduced maintenance in software
operation and software quality improvement to be actualized,
there is need for a software defect prediction system [1,2,3].
Having an early detection system in place will enable fast
delivery of maintainable software since it will allow for timely
correction of the detected faults [4]. A number of studies have
developed certain metrics that can be used as the foundation
of models in detecting any faults the software might encounter
in operation during the initial stages of the software
development life cycle.

Over the last 30 years the field of software engineering has
had a growing interest in software defect prediction. The
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current scope of defect prediction encompasses (a)
classification of software component’s defect-proneness into
the not defect-prone and defect-prone classes, (b) unearthing
any association among defects, and (c) give an estimation of
the remaining defects in software systems [5]. For the
purposes of this study, our focus will remain on the first scope.

Modules/classes in Software Defect Prediction (SDP) can be
categorized into two: fault-prone and not fault-prone. SDP
models can be constructed using the fault data and the
software metrics obtained from previous software releases or
similar software projects [6,7]. After constructing the model,
it can be integrated into current projects and help classify all
the modules/classes as being fault-prone or not fault-prone
[8]. Using these results, the software practitioners can now
make an informed decision to work on all the fault prone
areas during the early stages of development. For example, if
only 30% of testing resources have been assigned to a certain
software, having knowledge of all the fault-prone areas will
ensure that all the available resources are allocated towards
the correction of the modules/classes in these areas [9].
Thereby, resulting in a high quality and maintainable that is
of high-quality and produced with the given time frame and
budget [10].

A significant part of SDP research activity is focused in the
detection of whether software components are defect prone or
not by relying on using software metrics drawn from the code
[11]. While different machine learning algorithms have been
used in helping with the classification of software
components as being defect-prone or not by trying to fine
rules or patterns within data, none of them has proved to be
accurate on a consistent basis. Some of these techniques used
include mixed algorithms, parametric models, machine
learning methods and statistical methods. However, before
concluding on whether this problem is largely unsolvable,
there is need for the identification of the best prediction
technique to help with predicting a problem based on the
context.

This study will rely on open source software repositories to
investigate key software defect prediction models such as



ensemble techniques, clustering and classification [6]. By
giving clues about these models, and how they react with
different datasets, we do hope that results obtained in this
study will help increase confidence in them. Key findings of
this study show that the use of stacking multiple classifiers
can be of use to defect prediction.

2. LITERATURE REVIEW

There are four types of machine learning task which include
reinforcement, semi-supervised, unsupervised and supervised
learning. Though supervised and un-supervised learning
remain the most popular task group.

Supervised learning is machine learning technique that
involves the use of labelled training data, which houses
various training examples to infer a function. The training
example consists of an input object and the desired output
value and includes the regression and classification of
supervised learning tasks [12]. The regression classification
task focuses on continuous range model building while the
classification learning task focuses on building predictive
model that functions within a discreet range. Example of
supervised machine learning methods include support vector
machine, neural network, linear regression, Bayesian
learning, instance based learning, rule learning and learning
classification [13].

Unsupervised learning enables systems to examine all the
data to identify any patterns caused by common examples
without knowledge of the presence or the number of patterns
available in the data set. It also known as learning from
observation and key examples include clustering, sequential
pattern mining and association rule mining [13,14].

The rapid growth of research in machine learning has
resulted in the creation of different learning algorithms that
can be used across different applications [15]. Additionally,
the ability of machine learning algorithms to solve-real world
problems will often determine its ultimate value making the
reproduction and application of algorithms in new tasks
critical to the field’s progress. However, the current research
landscape features numerous publications regarding software
fault prediction model development. These can be placed into
categories based on ensemble, clustering and classification
methods.

A. Classification methods

A study by [6] records performance measures of 0.8573,
0.8685 and 0.7795 when using the ANFIS, ANN and SVM
algorithms. Their study is based on data obtained from
PROMISE Software Engineering Repository. They also
deployed McCabe software metrics in their study.

In a bid to reduce the time and costs by finding the total
number of defects using the ID3 classification algorithm,
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Naidu & Geethanjali [16] concludes by classifying the defect
into five parameters including Time, effort, difficulty, length,
program and value estimator. Singh and Salaria [9]
developed a model using the Levenberg-Marquardt (LM)
algorithm based neural network tool in a bid to explore the
fault prone of early software testing for all data drawn from
the PROMISE repository of empirical software engineering
data. The accuracy of the LM was then compared to that of the
polynomial function-based neural network. The LM recorded
higher level of accuracy compared to the polynomial
function-based neural network at 88.1%.

Aleem et al [5], after suing various machine learning methods
to conduct a study on 15 datasets (KC3, KC1, CM1, ARG, and
AR1 etc) found out that bagging, multilayer perceptron
(MLP) and support vector machine (SVM) achieved high
levels of performance and accuracy.

An investigation done by [17] relied on a novel benchmark
framework in evaluating and predicting software defect. The
activities involved evaluating and comparing different
learning schemes to the selected one and using it to build a
predictor that has all the historical data [1]. This predictor is
now ready to predict any defect in any new data.

B. Clustering methods

When using the function cluster to increase the performance
of the software prediction model, Tan et al [10] managed to
upgrade the model’s precision and performance from 73.8%
and 31.6% to 91.6% and 99.2% respectively.

According to Kaur and Sandhu [18] the k-mean based
clustering approach has an accuracy of 62.4% in fault
proneness of object-oriented programming. The model
building relied on the EM and X-means clustering algorithms
drawn from the AR3. AR4 and AR5 promise repository data
to aid in the prediction of software faults. The experiment,
which involved normalizing data set 0 to 1 followed by the use
of the CfsSubsetEval as the applied attribute selection
algorithm vyields an accuracy level of (90.48) in X-means
clustering algorithms for dataset AR3 compared to other
models.

C. Ensemble approaches

In an attempt to address the use of the ensemble approach in
software fault prediction, Shanthini & Chandrasekaran [19]
tried to use the ensemble approach to conduct model building.
The data was categorized into package level, class level and
method level. The metrics used in the method and class level
paired with the data for the package relied on NASA KCI data
using ensemble methods such as voting, staking, boosting and
bagging. From the experiment, bagging was a better ensemble
method compared to the rest at both the package and method
level [20]. When using the AUC-curve at the method level,



the performance measurement includes voting (0.63), staking
(0.79), boosting (0.782) and bagging (0.809). As for the
package level, the performance measurement was voting
(0.76), staking (0.72), boosting (0.78) and bagging (0.82).
The metric level recorded the following (0.82), staking (0.8),
boosting (0.74) and bagging (0.78), although not similar to
other metrics relying on the AUC-curve.

A study by Kaur & Malhotra [15], records an AUC of 0.81, an
F-measure of 75, a recall of 79%, a precision of 72% and an
accuracy RF of 74.24%. In their experiment, Kaur &
Malhotra relied on a JEdit open source software with
object-oriented metrics in evaluating the use of random forest
in an open source software to predict fault prone class.

Peng et al [20] evaluates the use of ensemble approaches in
the prediction of software faults with an analytical
hierarchical process. They drew 10 publicly NASA MDP data
that relied on 13 different performance measures. The
ensemble method used is staking, Boosting and Bagging and
records a result accuracy of 92.53% for a decision tree base
classifier.

3. SDP MACHINE LEARNING ALGORITHMS

This section presents the algorithms used in the evaluation.
The study compared supervise learning algorithms such as
Linear SVC, Maximum vote classifier, Light GBM, Gaussian
Naive Bayes classifier, Passive Aggressive classifier, Xgboost
and Extra Tree Classifiers. Unsupervised learning methods
involved the comparison of clustering techniques such as
Stacking classifiers, GMM and mini-batch K-means
algorithm against each other.

A. Maximum Voting Classifier (MVC)
The maximum voting involves a number of classifiers
constantly generating predictions and testing the resulting
data. The final prediction is determined by looking onto
which had the most votes (more than half) [21]. Different
classifiers can be combined to increase the accuracy of this
algorithm. The maximum voting classifier works in the
following way:

(a) Use both ET and RF classifiers on the training data

(b) Record the performance of both classifiers and come

up with a comparison
(c) Conduct voting with every step/observation

B.Extra Tree Classifier (ET)

This algorithm works on randomizing a tree building much
further through numerical input figures in a case where a
significant part of the induced tree’s variance falls under the
choice of the optimal cut point [22]. The algorithm would
switch to using bootstrap copies in the vase of random forests
rather than finding the optimal cut off point for all the

6611

Mohammad Amimul lhsan Aquil et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July — August 2020, 6609 — 6616

randomly chosen K features on every node. The selection of
the cut of point is random. This method is ideal for cases
involving large number of varying numerical features. The
method’s smoothing yields greater accuracy while reducing
any computational challenges associated with determining
the location of optimal cut-off points in both random forests
and standard trees.

C. Passive Agressive Classifier (PAC)

Under Passive, the model is retained if it falls under the right
type of classification. In aggressive mode, any incorrect
classification should be updated to help account for the
misclassified example. While under passive it shows the lack
of sufficient information prevents updates. Under aggressive
terms, having a better model will help you modify any
mistakes since the last time you were wrong.

D. Xgboost

Xgboost is a tool belonging to the Distributed Machine
Learning Community (DMLC) and is popular for its
increased performance and speed when it comes to
gradient-boosted decision trees. Xghoost was first designed
and used by Tiangi Chen in the year (1995) and has worked
as a way to provide a boost to machines. It has gone through a
number of iteration by various developers.

In tree boosting algorithms, eXtreme or XGBoost are used to
aid in the exploitation of all hardware and memory resources
available, allowing for its deployment in computing
environments, tuning the model and enhancing the algorithm
[20]. There are three techniques of gradient boosting in
XGBoost, include: stochastic boosting, Regularized Boosting
and Gradient Boosting. Additionally, it is very effective in the
tuning and adding regularization parameters, optimal use of
memory resources and reducing the time used in computing
activities. XGBoost can also perform on the trained model’s
added data, allow parallel structures and takes care of any
missing value (Sparse Aware).

E.Light Gradient Boost Model (LGBM)

When determining optimality, this algorithm assumes that
when the K-Means algorithm uses the one-pass over input
data, it optimizes the K-Means to increase the production of
the centroids. Multiple passes over input data will reduce the
running time since costs in largescale computations will
increase after having to go through a large data set. In a
simplified version, this algorithm uses incoming points as
basis for a new cluster or assigns them to a nearby cluster and
makes a decision regarding distances to the closest cluster
using an adaptive scale parameter.

F. Gaussian Mixture Model (GMM)
This is a parametric model used in examining the probability
distribution of features or continuous measurements in a



biometric system in the form of a weighted sum of Gaussian
component densities (parametric probability density
function). The estimation of GMM parameters is done using
the iterative Expectation-Maximizations (EM) algorithm
from a prior model to the training data.

G. Stacking Classifier

In the world of Netflix and other competition, stacking has
proved beneficial as one of the ensembling methods in
machine learning [23]. The main idea with this algorithm is
to use the confidence scores as features in combining multiple
models and training a meta-classifier to help combine the
predictions of multiple learners. The study employed three
classifiers which include a Random Forest Classifiers,
Adaboot and KNN, which rely on logistic regression to help
test and train all type of slots.

H. Gaussian Naive Bayes (GNB)

This classification algorithm that works with both multi-class
and binary (two class) classification problems and can be
quite simple to understand when described using categorical
or binary input values [16]. Naive Bayes allows extension to
real value attributes, which is also known as the Gaussian
Naive Bayes. Working with the Normal distribution
(Gaussian) is very simple, all one has to do is use the training
data to estimate the standard deviation and mean.

I. Quadratic Discriminant Analysis (QDA)

This is a generative probabilistic method used in classifying
problems. QDA’s conditional distributions are used in the
classification of observations across different classes as they
are assumed to be multivariate Gaussian derived using the
posterior distributions in the Bayes theorem. Traditionally,
the estimation of QDA was done through the maximization of
joint likelihood of observations together with their
corresponding associate class labels.

4. METHODOLOGY

This section presents the methodological tools, steps and
procedures used in achieving the study objectives.

3.1 Data Preparation

The use of Machine-learning techniques is critical in
achieving software reusability, maintainability and quality
since it helps with finding the bas smell, ambiguity, fault and
defect in software. Accomplishing this requires software fault
prediction techniques, which rely on statistical techniques to
any software defects [24]. However, software detection can
also be done through machine learning techniques.
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Pre-processing helps shape the data into a form that the
classification engine can use [25,26]. For example, when
using an image as the input data, pre-processing will simplify
the feature selection processing by sharpening the image or
rotating and translating the image into a standard orientation
and position. In cases where the input is made of records or
vectors of data, pre-processing might involve using the
dataset’s statistical property or priori criteria to filter out
inputs. Key benefits of pre-processing include normalizing
numeric data and helping fill in missing data.

The experiments relied on datasets drawn from the PROMISE
data repository collected from real NASA software projects
and entail various software modules. The benchmarking
involved using public domain datasets. This benchmarking
procedure allows other researchers compare their studies.
some of the code metrics used in the datasets include
McCabe’s cyclomatic complexity, code size and Halstead’s
complexity among others. The description of Datasets is
summarized in the Table 1. The target variables in the NASA
MDP data sets are binary in nature, 1: Yes, 0: No. Table 2
shows the performance evaluator matrices that are used in
this study. Python programming and Scikit-learn (machine
learning framework) is used in data examination.

Table 1: Description of NASA MDP DATSETS

Variables Description Metrics
Type
loc Line count of Code McCabe
v(Q) Cyclomatic Complexity | McCabe
ev(g) Essential Complexity McCabe
iv(g) Design Complexity Halstead
n Total operators and Halstead
Operands
\ Volume Halstead
| Program Length Halstead
d Difficulty Halstead
i Intelligence Halstead
e Effort Halstead
b Number of Bugs Halstead
t Time estimator Halstead
I0Code Line Count Halstead
IOComment Line count of Comments | Halstead
IOBlank Count of Blank Lines Halstead
IOCodeAndCommen | Lines of Comment and N/A
t Code
Unig_Op Unique Operators Halstead
Uniq_Opnd Unique Operands Halstead
Total_Op Total Operators Halstead
Total_Opnd Total Operands Halstead
branchCount Flow Graph’s Branch Halstead
Count
defects Reported Defects N/A
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Table 2: Performance Matrices Table 4: Performance of Ensemble Learning Algorithms
Performance Matrices Formula
Accuracy TP+ TN Ensemble Learning
TP+ TN+ FP+FN Dataset | RF ET | XgBoost | LGBM | SIC | MVC
= 7 + Recall + Precision AR1 §7.63 | 9179 | 9256 923 918 | 9256
Recall + Precision AR6 | 8567 | 8274 | 8456 7273 | 8567 | 8456
MAE ITrue values-Predicted values | CML | 8624 | 85.66 | 8501 | 8182 | 847 | 85.02
™M1 80.84 | 79.14 78.1 80.8 78.1 | 781
KC1 8538 | 832 82.87 8151 | 84.06 | 8287

3.2 Feature extraction
Feature extraction facilitates the conversion of

K2 8127 | 7878 79.24 66.03 8173 | 7924

preprocessed data into a form that can be used by the pattern KC3 | 8341 ] %0 9036 89.13 | 89.72 | 90.36
recognition engine. Pattern recognition algorithms express MC1 | 57.69 | 97.99 | 9784 9749 | 97.84 | 97.84
different levels of sensitivity regarding the form of data MCZ O} 271 72T 71.49 7055 1 7211 | 7149
provided and therefore the need for a feature selection. In this MWL | 9756 | 9799 | 9784 749 | 97.84 | 97584
study, Random forest feature importance score was used for PC1 5207 | 9343 9296 5396 | 0333 | 6336
finding best features for all algorithms. e T 5536 15556 | o5 4% TR TYT R TS

PC3 | 8746 | 8784 | 8519 87.01 | 8765 | 87.01

3.3 Classification

. . . PCA 892 | 9037 | 9073 8527 | 90.13 | 90.7%
Solving the translation problem allowed the creation of
e - . . PCS 67.18 | 9655 | 96.64 9697 | 97.09 | 9664
numerous classification algorithms, which can be customized
in line to flows to defect, fragments or machining source code Mean | 8818 | 8776 | 8814 | 8595 | 8363 | 8827
tokens. Each classifier comes with different strength and
weaknesses aimed to fit specific needs. Finally, the
performance of the mentioned algorithms is measured based Table 5: F-measure Performance of Supervised and
on the performance metrics in Table 2. Unsupervised Learning Algorithms
5 RESULTS Supervised Learming Unsupervised Learning
Dataset | Perceptron | PAC | QDA | GNB | MinBatch | KNN | GMM
This section discusses the results of the different ML - - Eomesn
techniques for defect prediction using various datasets are o S Riall Wil il MGG Wil M
h q Table3 45 6p7 d8. Th g L. f q ARG 651 716 8208 | 8122 5935 766 5572
Z OV\én In afeld’ e |a3 o Etrammg was per orme M1 30.09 63.44 | 8223 | 8129 587.82 81.54 812
ased on 10-fold cross validation. M 56.74 6312 | 766 750 3561 713 Ta02
i i KC1 G798 7212 ] 8136 | 81384 g2z 7RE 7141
Table 3: Performance of Supervised and Unsupervised e TR EoC T Mror vy o =3 T5o5
Learning Algorithms K3 5401 7318 | 8458 | 568 §426 | 5448 | 8617
Supervised Learning Unsupervised Learning MC1 9652 9512 | 968 | 94.18 3314 97.02 | 9654
MC2 34.15 6521 | 7028 | 6798 48.13 583 5108
Dataset | Perceptron | PAC QDA | GNB | MiniBatch | KNN | GMM -
K-mean MW1 96.52 9512 ] 968 9418 34.14 97.02 96.54
ARL 892.63 89.20 | 81.79 | 77.56 90.06 84.42 1 84.17 PCY 63.73 BG.75 | BOB1 | 89237 3603 §8.89 1 8871
ARG 7455 | 72.73 | 8760 | 8a.35 | 6002 | 784 | 63.55 PCZ 567 9444 | 668 [ 93de | seSsI [ 954 | 87
Mt 57.01 7687 | 84.73 | 81.32 | 6805 | 8192 | 87.1/6 PC3 58.86 3886 | $4.56 | 1596 | 8057 795 | 8L73
Y 5843 | 7115 | 7993 | 8044 ] 3763 | 78.89 | 8066 e 73S | 7R6T | 5645 BAS | S1A8 | T4 | 6RE4
BCS 6575 QRIS | 9589 | 9664 5973 8577 | 9552
Ke1 59.48 | 76.45 | 81.05 | 82.34 |  B3.06 | 78.89 | 68.7
Mean 68.00 7616 | R216 | 8023 G212 8225 7862
KC2 4565 | 6252 | 82.29 | B2.85 | 6847 | 60.37 | 7951
ki3 5796 | 6500 | 8645 | 8.4 | 83.75 | BAGS | 8067
M1 9764 | 5264 | 67.18 | 97.91 | 314 8738 9745
MC2 48.99 67 | 75.21 | 727 58.8 6031 | 64.4
MWL 5764 | D264 | 97.48 | 9291 | 524 9718 | 9769
PCy 67.65 7802 | 90.27 | 89.18 55.1 8001 1 8306
L3 9758 | 93.3 | 67.86 | 615 | 8666 | 65.17 | 8.9
PC3 62.7 5285 | 47.34 ] 2008 80.71 80.12 § 8756
pCa 79.14 76.89 | 30.59 | 8501 558 70.88 § 6877
PCS 50.07 95.67 | 95.53 | 97.14 58.67 95.65 97
Mean 7re1 77.53 | B3.02 | 815D 63.57 B82.82 | B83.26
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Table 6: F-measure Performance of Ensemble Learning Table 8: MAE Performance of Ensemble Learning
Algorithms Algorithms
Ensemble Learning Ensemble Learning
Dataset RF ET XgBoost LGBM STC MVC Dataset RF ET XgBoost LGBM STC MVC
AR1 86.22 | 8918 90.32 913 8867 | 891 AR1 012 | 008 0.07 0.08 0.08 0.07
ARS g1.02 791 8177 71.89 8263 &l6 ARG 0.14 0.17 0.1% o 0.14 0.1%
M1 §1.69 81.2 82.66 80.86 84,71 80.89 Il il .14 .14 015 0.18 015 0.1%
M 7457 | 7559 75.96 73.84 757 | 73.13 it ST 55 T8 5] 53
KC1 | 8169 | 8119 8147 80.68 8165 | 8oz 7T XCEE BXT 515 5TE T ¥
2 z 72 78 .
K¢z [ 817 7878 785 48 878 | 8049 TS =T 50 53 553 XT3 53
XC3 | 8583 | 8757 38.96 90.73 3972 | 8394 =3 5 T535 T XV T T
MC1 | 9634 ] 9763 97.24 93.5 97.84 | 96.54 ST YR MY R E 555 555
MC2 6874 7082 89.73 73 7211 | 6261
MC2 027 | 027 0.29 0.29 0.28 0.29
MW1 | 9638 | 9763 9724 933 5725 | 96.34
MWl | oo2 | 002 0.02 0.03 0.02 0.02
PC1 5503 | 921 9178 89.32 916 | BRI
PC1 007 | 007 0.08 0.07 0.07 0.08
PC2 966 | 96.8 96.59 84.93 9673 | 96.8
PC2 003 | 002 0.03 0.03 0.02 0.03
PC3 8293 | 844z 853 50.15 8424 | 8142
el 3
PC4 | 5636 | 5883 90.21 5407 SG.13 | 8077 pes 013 1 012 015 013 012 013
PCs | 9655 | 967 56.46 97.06 96.63 | 9627 pes 011§ 010 0-09 0-13 0-10 009
Mean | 53.48 | 8630 86.5% 8520 8722 | 8480 PCs 003 003 0.03 0.03 0.03 0.03
Mean | 012 | 012 012 0.14 0.11 0.12

Table 7: MAE Performance of Supervised and Unsupervised

Learning Algorithms ACCURACY
Supervised Learning Unsupervised Learning - PERF 0 RMAN C E
Dataset Perceptron PAC 1 QDA | GNB | MiniBatch | KNN | GMM f : ) ; j = J
K-mean
AR1 007 011 008 022 810 15 416
ARS 0.25 0.27 .12 0.16 0.40 022 0.36
CM1 0.43 0.23 G6.15 0.1% 0.32 0.18 913 )
O o & A, A, ™ O U o) [ A AS
“ 3 3 & & & & AT S R \a
%) 64z 535 | 020 | 020 i 921 | 6.8 o & \%Qo %\,cg‘"' S & Q}J\" \;\%\
KC1 0.31 024 | o9 | 018 0.16 0.21 031 ﬂ__b‘ q“' »qs\\
KC2 054 038 | 0.18 0.17 032 040 020 . . .
Figure 1: Accuracy Chart of Different algorithms
KC3 032 035 | 014 0.14 016 .13 .09
MC1 0.0z 007 | 003 | 002 0.68 003 | 002 Based on Accuracy chart (Figure 1), it can be clearly depicted
MC2 051 033 | 025 | 027 041 040 | 036 that the proposed stacking classifier (STC) proposed in this
TR 5y YT WY TR WYY YT YT YT study scored better comparing to other algorithms. All the
ensemble classifiers performed better in accuracy measure
PCL 0.532 022 .10 01l 0,45 011 0.07 . i .
than other supervised and unsupervised learning. In
" 7 7 5 2 . g - -
pez 002 ] 0071002 005 013 ] 003 ) 012 classification algorithm, QDA scored better than other
BC3 037 047 | 053 | 080 0.19 020 | 042 algorithms and GMM performed better than other clustering
BCa 521 023 | 049 | n.i4 0.44 020 | 031 algorithms. Between classification and clustering algorithms,
3E3 o YT M Y ryn YU T clustering algorithms performed relatively well.
Mean 0.28 0.22 0.17 0.18 038 017 817
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Figure 2: F-Measure of Different Algorithms

The above chart (Figure 2) represents the average F-measure
of machine learning algorithms in all 13 datasets. Based on
F-measure, STC remained in top list and all ensemble
classifiers are consistently preformed higher than other
algorithms. Among all the supervised learning algorithms,
QDA performed relatively higher followed by GNB. As for
unsupervised learning algorithms, KNN scored higher than
other clustering algorithms. Unsupervised algorithm
outperformed supervised algorithm in F-measure in terms of
highest relative scores.

MAE
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<

Figure 3: MAE Performance of Different Algorithms

Based on MAE score chart (Figure 3), all ensemble classifiers
have lowest MAE score where STC is on top. QDA acquired
the lowest score among all supervised learning algorithms.
KNN and GMM both achieved same lowest score among all
other unsupervised learning. Unsupervised algorithm has
lower MAE score than Supervised Algorithm based on
relative lowest minimum scores.

Overall, STC performed well in all 3 performance measures
and outperformed all other algorithms. Ensemble algorithms
performed relatively well than individual classification and
clustering algorithms. In supervised learning, QDA showed
promising performance. In unsupervised learning, GMM and
KNN both performed well in all 3 performance measures.
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6. CONCLUSION

Recent years have seen a growth in the development of
software-based systems even though the quality of the system
has to be guaranteed before delivery to the end-users.
Software quality can be enhanced through several quality
metrics such as I1SO standards, CMM, and software testing.
The need for software testing grows with each day, and its
efficiency can be improved by using software defect
prediction. The objective of this study was to investigate
different software defect prediction models, which were
identified as the ensemble, clustering, and classification
techniques. The findings of this study show that stacking
multiple classifiers can be used to defect prediction. It is our
hope that these results will help increase the confidence in
these models. In the future, more time ought to be spent on
time and resources when dealing with error-prone modules.
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