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 
ABSTRACT 
 
Recent studies have demonstrated that the soft lens wearing 
during iris recognition has indicated the increase of false 
reject rate. It denies the strong belief that the soft lens wearing 
will cause no performance degradation. Therefore, it is a 
necessity for an iris recognition system to be able to detect the 
presence of soft lens prior to iris recognition. As a first step 
towards soft lens detection, this study proposed a method for 
segmenting the soft lens boundary in iris images. However, 
segmenting the soft lens boundary is a very challenging task 
due to its marginal contrast. Besides, the flash lighting effect 
during the iris image enrolment has caused the image to suffer 
from inconsistent illumination. In addition, the visibility 
condition of the soft lens boundary may be discerned as a 
bright or dark ridge as a result of the flash lighting. Three 
image enhancement techniques were therefore proposed in 
order to enhance the contrast of the soft lens boundary and to 
provide an even distribution of intensities across the image. A 
method called summed-histogram has been incorporated as a 
solution to classify the visibility condition of the soft lens 
boundary automatically. The visibility condition of the ridge 
is used to determine the directional directive magnitude by the 
ridge detection algorithm. The proposed method was 
evaluated with Notre Dame Contact Lens Detection 2013 
database. Results showed that the proposed method has 
successfully segment the soft lens boundary with an accuracy 
of over 92%.  
 
Key words :Soft Lens Boundary Segmentation, Image 
Enhancement, Summed-Histogram, Iris Recognition. 
 
1. INTRODUCTION 
 
Iris holds a unique pattern amongst biological features in the 
human body [1], whereby stumbling between two identical 
iris is almost impossible. The iris texture begins to form as 
early as the third month of gestation and completely formed 
by eight of the months. As opposed to other biological 
features, the texture of the iris is stable over time, which is 
why it is being utilised in recognition system nowadays. 
 

 

Furthermore, in comparison with other biometric modalities, 
iris recognition does not involve any physical contact [2]. 
 
Currently, detection of iris liveness has received a lot of 
concern in addressing countermeasure from spoofing attacks. 
The use of contact lenses has been identified as one way of 
spoofing [3]-[5]. This sort of threat utilises contact lens to 
imitate the pattern of one's iris to infringe a security system. 
Hence, for an iris recognition system to be extremely reliable, 
the capacity to sense spoofing attacks is essential for the 
system. In this situation, it is of utmost significance to detect 
and classify the existence and categories of contact lenses [6]. 
 
There are two types of contact lens, which are the cosmetic 
lens and soft lens (non-cosmetic lens). Cosmetic lenses are 
designed to alter the colour or visual appearance on one’s eye. 
Meanwhile, a soft lens is worn to correct or improve eye 
vision. A cosmetic lens may available in a wide variety of 
colours while a soft lens is usually colourless. Besides, one 
could hardly tell if a person is wearing a soft lens unless being 
inspected carefully. Much attention has been gained to 
achieve accurate cosmetic lens detection; contrarily, less 
attention has been gained on soft lens detection. Nevertheless, 
it is still found to be a challenging task in order to achieve an 
accurate soft lens detection [7]. 
 
Literature has suggested four approaches of soft lens 
detection, which includes the hardware-based approach, lens 
boundary analysis approach, pattern recognition approach and 
deep learning approach [8]. The hardware-based approach 
requires the use of sophisticated devices in order to detect soft 
lenses. Reference [9] proposed the use of thermal cameras to 
measure the decrement of temperature on the eye surface 
during blinking to indicate soft lens wearing. Their approach 
has managed to achieve up to 72% of Correct Classification 
Rate (CCR). However, this approach is sensitive to the 
surrounding temperature and humidity as it affects the thermal 
cameras reading. 
 
The lens boundary analysis approach deals with segmenting 
the soft lens boundary in iris images. Pioneering by [10], they 
attempted to examine the intensity profiles along the sclera 
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region for pixels with the largest intensity value that conform 
to the soft lens boundary. This approach has achieved up to 
76% of CCR. However, the CCR is highly dependent on how 
accurate the soft lens boundary is segmented. 
 
The most popular approach for soft lens detection is pattern 
recognition, which requires the combination of feature 
descriptor and classifier. Here, the feature descriptor is 
employed to extract the discriminative details of specific 
regions in iris images. Generally, discriminative details 
describe the principal characteristics such as texture, shape, 
gradient, colour, motion and others. The extracted 
discriminative details are used as training data by the 
classifier for classification. Various descriptors ranging from 
Scale-Invariant Feature Transform [11], Local Binary Pattern 
[6], Scale-Invariant Descriptor [12], Binarised Statistical 
Image Features [4], [13], [14] has been demonstrated. While 
Support Vector Machines has been used in [11]-[16], and 
other 14 different classifiers as in [6] has been used. Among of 
these, the one by [12] has achieved the highest CCR which is 
89.88%. However, the classification performance is highly 
dependent on regions where the discriminative details are 
extracted. 
 
The deep learning approach does not require the deployment 
of feature descriptor. Instead, it only works with a series of 
classifier called Convolutional Neural Network (CNN) 
trained with multiple patches of iris images of different 
variations. Related studies that implemented the deep learning 
approach for soft lens detection are such from [3] and [17]. As 
to date, the highest CCR of 89.58% has been achieved by [17]. 
The main drawback is CNN can be enormous in size as more 
convolutional layers are being implemented [18]. Thus, the 
deep learning approach is often computationally expensive. 
 
In this study, we proposed the combination of lens boundary 
analysis approach and pattern recognition approach. The lens 
boundary analysis approach emphasises on segmenting the 
soft lens boundary while the pattern recognition approach 
carries the soft lenses detection. The opt for lens boundary 
analysis approach is based on three arguments. Firstly, it is 
inspired by the principle that the soft lens boundary is partly 
visible in the sclera region and statistically achievable to be 
detected [10]. Secondly, the utilisation of soft lens boundary 
is unaffected by types or manufacturers of the soft lens since it 
does not involve any visual texture like iris and cosmetic lens 
[19]. Thirdly, the resulted segmentation of the soft lens 
boundary provides more focused region for feature extraction, 
which tends to yield finer and more meaningful details [20]. 
Meanwhile, the implementation of pattern recognition 
approach compensates the parameters re-adjustment issue of 
lens boundary approach by adopting a machine learning 
mechanism that can adapt and predict the unforeseen data 
without the need of parameters re-adjustment. The next 
section discusses the issues in soft lenses detection. 
 

2. PROBLEM BACKGROUND 
 
The wearing of soft lens will leave a circular boundary on the 
sclera region as demonstrated in Figure 1. The soft lens 
boundary is barely distinguishable due to its nature that shares 
the same colour with the surrounding pixels while having 
different intensities. This condition might increase the 
probability of the soft lens boundary is being missed from the 
segmentation. Furthermore, the use of conventional edge 
detection might generate poor result as it only works by 
detecting any sharp changes between pixel intensities, 
whereas the soft lens boundary exhibits very marginal 
changes of pixel intensities [7]. The iris images also have the 
tendency to be exposed to inconsistent illumination, where 
one area tends to be brighter than to the other area, as shown in 
Figure 2. As a result, the changes of pixel intensities between 
these areas might be falsely segmented as the soft lens 
boundary. On the other hand, as a result of inconsistent 
illumination, the soft lens boundary may visible as a bright or 
dark ridge. This would require different parameters selection 
in order to yield an accurate segmentation. The succeeding 
section describes the proposed method to address the 
aforementioned issues. 
 

 
Figure 1: Visible circular boundary on the sclera region 

 

 
Figure 2: Inconsistent illumination across the eye 

 
3. PROPOSED METHOD 
 
The proposed method comprises soft lens boundary 
segmentation and soft lenses detection which executed in 
sequence. The segmentation consists of six steps as presented 
in Figure 3 while the detection is illustrated in Figure4. The 
sub-sections onward explain every step in detail. 
 
3.1 Image Enhancement 
 
Image enhancement technique is applied to increase the 
contrast between the soft lens boundary and the sclera region. 
Apart from that, it works to normalise the pixel intensity 
across the region. In this study, three image enhancement 
techniques are evaluated which is Histogram Equalisation 



Nur AriffinMohd Zin  et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 10(1),  January – February  2021,  241 - 250 

243 
 

 

(HE), Contrast Limited Adaptive Histogram Equalisation 
(CLAHE) and Homomorphic Filter (HF). Each of the 
technique is executed and evaluated separately, thus resulting 
in its corresponding enhanced image as visualised in Figure5. 
 
3.2 Sclera Region Segmentation 
 
This step involves the segmentation of both left and right 
sclera region from the resulted enhanced image. The 
segmentation is scaled down to the region that the soft lens 
boundary is deemed to reside. It begins with the iris 
segmentation to retrieve the outer boundary of the iris, which 
also corresponds to the border between iris and sclera. During 
this process, the iris radius (rl) is obtained, which resulted in 
circular segmentation of iris. The iris segmentation reflects 
the concentric shape of sclera segmentation, where it shares 
the same centre with iris. 
 
As suggested by [10], the sclera region takes another 30 pixels 
(rs) from the iris radius (rl) that uniform to the circular 
boundary of iris. Subsequently, the circular sclera region 
segmentation is cropped into two points of vector that 
represent the upper and lower boundaries of the segmented 
region, which is annotated as PU and PL respectively. The right 
sclera region is segmented between an upper value of 150 to 
lower value of 210 degrees (), while 30 to -30 () degrees 
respectively at the left region. The use of upper and lower 
boundaries is inspired by [21] where it was initially utilised 
during iris normalisation in preparation for feature extraction. 
These values were empirically chosen to ensure minimum 
interference of noise such as eyelashes and eyelids. It also 
ensures maximum details of the soft lens boundary properties 
are being captured. Figure 6 shows the segmented sclera 
region marked as white regions. 

 
3.3 Sclera Region Normalisation 
 
The sclera region normalisation remaps each point of the 
segmented sclera region from Cartesian coordinate into polar 
coordinates using the Daugman’s rubber sheet model [22]. 
The original implementation has been modified for the 
mapping only covers the range between upper boundaries, PU 
and lower boundaries, PL.The normalised sclera region 
resulted from the mapping process is in a size of 30240 
pixels as shown in Figure7 (a) and 7 (b). 
 
3.4 Eyelash Removal 
 
The eyelash removal process is executed due to cases where 
the normalised sclera region tends to have remaining noises 
derived from eyelashes. For such condition, the highest 
possibility came from subjects which have longer eyelashes, 
hence occludes the sclera region. Commonly, the occlusion 
affects either left or right sclera region. Any segmented sclera 
region that indicates the presence of eyelashes is supposed to 
have black coloured artefacts in arbitrary shape across the 
normalised sclera region. The eyelashes may intrude the soft 

lens segmentation process as it may be falsely detected as a 
soft lens boundary. Therefore, these eyelashes are removed 
using inpainting algorithm [23]. Inpainting algorithm is an 
image correction algorithm that purposely replaces the 
targeted object (eyelashes) pixels with surrounding pixels.  

 
3.5 Summed-Histogram 
 
Due to the flash lightings, the soft lens boundary may form as 
a bright or dark ridge. A bright ridge is apparent in a region 
where excessive brightness exists while dark ridge visible in 
normal illumination condition. These variations are shown in 
Table 1. Visible inspection shows that there was no case 
where both sides of the sclera encounter bright ridges. It is due 
to the nature that bright ridge always visible on one side of the 
sclera region due to the illumination from the flash lighting 
[10]. 

 
Figure 3: The steps of soft lens boundary segmentation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure4: The steps of soft lenses detection 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure5: The (a) original image of subject 04261 with its 
corresponding enhanced images, (b) from HE, (c) from 

CLAHE and (d) fromHF 
 
 

 
Figure 6: The white regions which mark the segmented sclera 

region 
 

 
(a) 

 
(b) 

Figure7: The sclera region normalisation of (a) right and (b) left 
sclera region 

 
Table 1: Variation of the visibility condition of the soft lens 

boundary on the left and right normalised sclera region 
 
Subje

ct 
Iris image Normalised sclera region 

Left Right 
0426

1 

 
0539

2 

 
The primary purpose of summed-histogram is to provide an 
automatic classification of the visibility condition of the soft 
lens boundary, whether it is visible as bright or dark ridges. 
The visibility condition of the soft lens boundary is used as a 
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measurement to determine the directional directive magnitude 
for the ridge detection algorithm to recognise the directional 
change of intensities from dark to bright (bright ridge) and 
bright to dark (dark ridge). 
 
By default, the ridge detection algorithm in step six of the 
proposed method does not have the ability to select the ridge 
condition automatically. Without summed-histogram, the 
directional directive magnitude is not optimised to the 
visibility condition of the soft lens boundary. The 
summed-histogram works by extracting both left and right 
normalised sclera region into 256 bins of grayscale histogram. 
Every bin in this histogram represents intensity value from 0 
to 255, where it stores the occurrences of each intensity from 
the whole image. The product of the summed-histogram is the 
summation of these occurrences. For each left and right 
normalised sclera region, the summed-histogram is calculated 
and compared. The one that obtains higher sum value is 
considered to have a bright ridge while the one that obtains 
lower sum value is considered to have a dark ridge. The 
summed-histogram of individual normalised sclera region, S 
is represented in (1) as follows: 
 

 
where, P is the occurrence of the intensity values of the 
normalised sclera region I(r,) and n is the index of 
histogram bin starting from 0 to 255. The sum value, S 
determines the visibility condition of the soft lens boundary in 
the left and right normalised sclera region, IL(r,) and IR(r,), 
whether it falls under bright or dark ridges. (2) and (3) denote 
the ridges classification: 
 

 

 
where, SL and SRare the left and right normalised sclera region 
respectively. The soft lens boundary in the left normalised 
sclera region, IL(r,) is considered as a bright ridge if it has 

larger sum value,  ,
L
I rS  , as compared to the sum value from 

the right normalised sclera region,  ,
R
I rS   and vice versa. 

While the soft lens boundary in the right normalised sclera 
region, IR(r,) is considered as bright ridge if it has larger sum 

value,  ,
R
I rS  , as compared to the sum value from the left 

normalised sclera region,  ,
L
I rS   and vice versa. The soft lens 

boundaries in both normalised sclera regions are considered to 

have dark ridge if  ,
L
I rS   and  ,

R
I rS   yield approximately the 

same summed value within the tolerance of 20 points as 
suggested by [24]. 
 
3.6 Ridge Detection 
 
Once the visibility condition of the soft lens boundary is 
known, as for the last step, the soft lens boundary in both left 
and right normalised sclera regions is segmented using ridge 
detection algorithm. As mentioned earlier, detecting the soft 
lens boundary using conventional edge detection might be 
irrelevant since soft lens boundary is located in the vicinity 
where the foreground and background are sharing the same 
colour while having a different intensity. Hence, this 
condition validated that the soft lens boundary is well suited to 
be referred to as a ridge rather than an edge [20]. The ridge 
detection algorithm is applied at an image point of the 
normalised sclera region IL(r,) and IR(r,) by calculating the 
second order derivative of a Gaussian function [25] as 
denoted in (4): 
 

 
By taking its partial derivative in x gives G(x) as in (5): 

 

 
And convoluting second-order derivative matrix with IL(r,) 
and IR(r,), denoted as in (6): 
 

 
Then, applying to the local directional derivative magnitude 
operator, calculated using (7) and (8): 

 

 

 
where, pand q are coordinates of the rotated coordinate system 
of scale-space representation L. The determination of 
second-order directional derivative magnitude in pand q 
direction, Lpq is determined by (9): 
 

 
where, Lpqwill be in negative magnitude if the 
summed-histogram, I(r,) correspond to a bright ridge while 
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Lpq will be in positive magnitude if the summed-histogram, 
I(r,) correspond to a dark ridge. The directional derivative 
magnitude Lpqthat represent the segmented soft lens boundary 
is overlaid on the normalised sclera region images, IL(r,) and 
IR(r,) in the form of binary images. The segmented soft lens 
boundary is represented as logical 1s (white) while the sclera 
region represented as logical 0s (black). 
 
Once the segmentation is completed, the detection steps are 
carried out. To actualise the use of a more focused region, the 
segmented soft lens boundary is employed for feature 
extraction. The features are extracted independently using two 
feature descriptors namely Histogram of Oriented Gradients 
(HOG) and Scale-Invariant Feature Transform (SIFT). The 
feature vectors resulted from each feature descriptor are 
concatenated. These concatenated feature vectors are used to 
train a model by employing Support Vector Machines (SVM). 
Finally, the model is used to classify whether an iris image is 
belong to with or without soft lens. 
 
4. EXPERIMENTAL SETUP 
 
The proposed method was evaluated with Notre Dame 
Contact Lens Detection 2013 (NDCLD13) database. This 
database provides three classes of iris images of without 
lenses, with soft lenses and with cosmetic lenses in the format 
of grayscale images. Every class has 1000 images in total. 
However, only soft lenses and without soft lenses images 
were used in this study. For every image in this class, ground 
truth images of the ideal soft lens boundary segmentation 
were prepared. The soft lens boundary was rendered manually 
using an image editing software, Paint.NET. Some samples of 
the ground truth images are shown in Table 2. The manually 
rendered soft lens boundary is marked as red colour. For each 
normalised sclera region image, the overlapping pixels 
between the ideal segmentation of the soft lens boundary (red 
pixels) and the segmented soft lens boundary resulted from 
the proposed method were calculated. In preparation for 
logical comparison, the ground truth images were binarised 
where the ideal segmentation of the soft lens boundary will be 
regarded as logical 1s (white colour), while background pixels 
(sclera region) as logical 0s (black colour). Then, pixels that 
fall under True Positive (TP), True Negative (TN), False 
Positive (FP) and False Negative (FN) were counted. The true 
positive score reflects how many pixels were correctly 
segmented as the soft lens boundary, while the true negative 
score reflects the non-soft lens boundary pixels that were 
correctly marked. False positive score refers to pixels that 
were incorrectly segmented as the soft lens boundary, while 
false negative score refers to the non-soft lens boundary pixels 
that were incorrectly marked. 
 
 
 
 
 
 
 

Table 2: Samples of normalised sclera regions with their 
corresponding ground truth images 

 
Subject Normalised sclera 

region 
Ground truth image 

04261 
  

05682 
  

05828 
  

06136 
  

 
Subsequently, the sensitivity, specificity and accuracy 

scores were calculated as the following Equation (10), Equation 
(11) and Equation (12): 
 

TPSensitivity
TP FN




 (10) 

 
TNSpecificity

TN FN



 (11) 

 
TN TPAccuracy

TP TN FP FN



  

 (12) 

 
Six experiments were conducted, where each experiment 
differs in image enhancement applied, listed as HE, 
CLAHE and HF. The first three experiments utilised every 
image enhancement without the application of 
summed-histogram and the last three experiments 
combined every image enhancement with the application of 
summed-histogram. Each experiment was executed with 
1000 iris images with the presence of soft lenses. 
 
4. RESULTS AND ANALYSIS 
 
The results of the experiments are presented in Table 3. 
Without the application of summed-histogram, HE has 
resulted in the lowest true positive score. With CLAHE, the 
score increased over 86%, leaving it in a huge score gap. 
HF stands out by resulting in the highest true positive score, 
with an increase over 17% from CLAHE. As for the true 
negative score, HE has maintained the lowest, followed by 
CLAHE with over 3% increment from HE. The HF has 
achieved the highest true negative score with over 5% 
increment from CLAHE. With the application of 
summed-histogram, the true positive and true negative 
score from HE has increased over 24 and 7% respectively. 
An increase of 9 and 6% has been achieved for the 
respective true positive and true negative score from 
CLAHE. Meanwhile, HF has resulted in 4% increment of 
true positive score and 3% increment of true negative score.  
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Table 3: Experimental results 
 

Image enhancements Sclera 
region 

Percentage (%) 
TP TN FP FN 

W/o 
summed-histogram 

HE Left 0.38 73.18 21.50 4.94 
Right 0.48 73.79 20.94 4.79 

CLAHE Left 0.62 75.20 19.49 4.70 
Right 0.90 75.66 19.06 4.38 

HF Left 0.72 78.39 16.30 4.60 
Right 1.05 79.63 15.09 4.22 

With 
summed-histogram 

HE Left 0.47 77.82 16.87 4.85 
Right 0.57 79.27 15.45 4.70 

CLAHE Left 0.67 79.55 15.13 4.64 
Right 0.95 80.04 14.69 4.32 

HF Left 0.75 80.60 14.04 4.61 
Right 1.06 80.79 13.97 4.17 

 
In overall, the application of HF has yielded better 
segmentation of the soft lens boundary by having higher 
true positive and true negative scores, as well as 
maintaining the lowest false positive and false negative 
scores. On the other hand, the implementation of 
summed-histogram has boosted up the segmentation 
performance by increasing the true positive and true 
negative scores while lowering false positive and false 
negative scores. It is also observed that the right sclera 
region resulted in a higher true positive and true negative 
score as compared to the left sclera region. It is due to the 
right sclera region possesses better contrast compared to 
the left sclera region as the flash lighting is more exposed 
to the right side of the iris image. Hence, the soft lens 
boundary is more distinguishable in order to be segmented. 
Meanwhile, the left sclera region consistently has lower 
true positive and true negative scores. It reflects the 
condition where the left sclera region has a lesser light 
source, leaving it in a low contrast condition, thus, causing 
the visibility of the soft lens boundary is less 
distinguishable. 
 
Table 4 reported the sensitivity, specificity and accuracy 
between each image enhancement applied. In this study, 
sensitivity is expected to be lower than specificity as the 
soft lens boundary covers only a small proportion of the 
whole iris image. Among these three image enhancement 
techniques, HF has resulted in the highest sensitivity score 
which is 0.14 for the left sclera region and 0.20 for the right 
sclera region on both with and without the application of 
summed-histogram. HF again has achieved the highest 
specificity score, with 0.83 for left sclera region and 0.84 for 
right sclera region and achieved 0.85 for both sclera region 
with the application of summed-histogram. Without the 
application of summed-histogram, HF has achieved the 
highest accuracy among the other two image enhancement 
techniques. On the other hand, the application of 
summed-histogram has boosted up the accuracy to 81 and 
82% for the left and right sclera region respectively.  
 
Table 5 shows a sample result of the segmented soft lens 
boundary for an image which is among the best condition, 

in which the visibility of the soft lens boundary is 
discernible without any blur. Among the three image 
enhancement techniques applied, the application of HF has 
resulted in the closest segmentation of the soft lens 
boundary. Meanwhile, the noises are lesser as compared to 
the other two image enhancement techniques. In this case, 
noises areregarded as points that are not connected with the 
segmented soft lens boundary trail and not representing the 
soft lens boundary at all. Noises also considered as points 
that deviated from the soft lens boundary trail. These noises 
are generated from the uneven distribution of intensities as 
a result of poor image enhancement. 
 
Based on the visual comparisons, the combination of HF and 
summed-histogram has resulted in a more accurate 
segmentation and produced lesser noises. Based on the results 
presented in Table 3 and 4, there are a few interesting findings 
that can be discussed. The first finding is related to the three 
image enhancement techniques applied as contrast 
enhancement. In theory, HE improves global contrast 
throughout the image. This condition has caused the transition 
from dark to the bright area has been regarded as a misleading 
segmentation. As a result, the use of HE has shown poor 
segmentation performance. CLAHE, on the other hand 
operates on local contrast selection rather than global contrast 
selection. The use of clip limit in CLAHE aids in minimising 
over-amplification on bright and dark areas of the image. It 
was able to enhance the details of the soft lens boundary; 
however, the intensities distribution was still significantly 
uneven. It is because CLAHE enhances the local intensities at 
an equal level where unnecessary details appeared, which 
triggering false segmentation. Consequently, the 
implementation of CLAHE was unable to accomplish 
accurate soft lens segmentation. Meanwhile, HF works on 
global contrast selection, with the ability to separate 
illumination and reflectance into the frequency domain. 
Hence, HF did not over-enhance the intensities and the 
intensities distribution was evenly spread. Therefore, a more 
accurate segmentation has been achieved. 
 

Table 4: The sensitivity, specificity and accuracy results of the 
segmentation 

 
Image enhancements Scler

a 
regio

n 

Sensitivit
y 

Specificit
y 

Accurac
y (%) 

W/o 
summed-histogra

m 

HE Left 0.07 0.77 74 
Right 0.09 0.78 74 

CLAH
E 

Left 0.12 0.79 76 
Right 0.17 0.80 77 

HF Left 0.14 0.83 79 
Right 0.20 0.84 81 

With 
summed-histogra

m 

HE Left 0.09 0.82 78 
Right 0.11 0.84 80 

CLAH
E 

Left 0.13 0.84 80 
Right 0.18 0.84 81 

HF Left 0.14 0.85 81 
Right 0.20 0.85 82 
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Table 5: The visual comparisons of segmented soft lens boundary 
for every image enhancement technique applied for subject 04261 

 

Image enhancements 
Sclera region 

Left Right 

Ground truth 
  

W/o 
summed-histogra
m 

HE 

  

CLAH
E 

  

HF 

  

With 
summed-histogra
m 

HE 

  

CLAH
E 

  

HF 

  

 
The second finding relates to how effective the application of 
summed-histogram with every image enhancement technique 
applied. Based on the result presented in Table 4, the application 
of summed-histogram with HE has improved the segmentation 
accuracy up to 9%. In the meantime, with CLAHE, the 
segmentation accuracy has increased up to 6% while HF only 
achieved up to 3% increment. This trend shows that the 
application of summed-histogram has managed to significantly 
improve the segmentation accuracy of HE and CLAHE more, 
as compared to HF. Since HE and CLAHE are histogram 
based, the summed-histogram has provided a more distinctive 
set of values apart from their existing histogram bins. As the 
existing histogram bins only cater on splitting the intensities 
frequencies into a number of bins, summed-histogram 
provides the additional information on the intensity values that 
correspond to the bright or dark ridges in both left and right 
normalised sclera regions. 
 
Finally, comparisons were made with the existing state of the 
arts, which distinguished by the regions for feature extraction as 
well as the various feature descriptors applied as presented in 
Table 6. The classification annotation for the samples of 
without soft lens is referred to as N, while the samples of with 
soft lens are referred to as S. N-N refers to the probability of 
without soft lens samples are classified belongs to without soft 
lens, while S-S refers to the probability of with soft lens 
samples are classified belongs to with soft lens. Based on the 
comparisons presented in Table 6, the proposed soft lens 
detection delivered the highest average Correct Classification 
Rate (CCR), gaining over 3% increment from its closest 
competitor which is from [16]. From the results, it is proven that 
the region for feature extraction plays a definitive role in 
generating better CCR. For N-N classification, the utilisation of 
whole image as region for feature extraction by [17]has 
achieved good result, which is 91.67%. Meanwhile, the 
proposed method has resulted in 6% increment from [17], 

followed by [16] with 4% increment. For S-S classification, 
the proposed method has obtained the highest CCR which is 
87.56%. However, the application of whole image by [17] has 
surpassed the employment of iris and sclera by [16], by 
having 4% increment. The main reason behind this is the 
application of multiple convolutional layers where each layer 
is assigned to analyse specific details, generating more 
intrinsic and interpretative content. Nevertheless, the 
approach of concatenating HOG and SIFT has yielded 
competitive result by providing global and local gradient 
occurrences with lesser outliers through the segmented soft 
lens boundary region. As similar to concatenation of SIFT and 
LBP and LBP and PHOG, by [5] the results of S-S 
classification have improved as compared to a single modified 
LBP. It is deemed that their results could be better if more 
focused region is applied as implemented by [16]. 
 
Table 6: Comparisons between the proposed soft lens detection and 

state of the arts 
 

Feature 
descriptor 

Region N-N S-S Average 
CCR (%) 

SIFT+LBP [5] Pupil, iris, 
sclera 70.00 60.15 65.08 

LBP+PHOG [5] Pupil, iris, 
sclera 81.25 65.41 73.33 

Modified LBP 
[5] 

Pupil, iris, 
sclera 85.50 45.25 65.38 

CNN [3] Whole image 84.50 73.75 79.13 

BSIF[14] 
Whole image, 
iris and strip 

region 
76.50 84.50 80.50 

SID [16] Iris, sclera 95.75 84.00 89.88 
CNN [17] Whole image 91.67 87.50 89.58 

HOG+SIFT 
(Proposed) 

Segmented 
lens boundary 96.80 87.56 92.18 

 

5. CONCLUSION 
 
This study proposed a method to detect soft lenses in iris 
images by the fusion of lens boundary analysis and pattern 
recognition approach. The lens boundary analysis focuses on 
the soft lens boundary segmentation while the pattern 
recognition carries the soft lenses detection. During the 
segmentation, three image enhancement techniques have 
been evaluated to enhance the contrast of the soft lens 
boundary and to provide an even intensity distribution across 
the image. A method named summed-histogram was 
implemented to provide automatic classification of the 
visibility condition of the soft lens boundary. From the 
experiments conducted, the implementation of HF was able to 
increase the contrast of the soft lens boundary by resulting a 
segmentation accuracy of 81%. Meanwhile, the addition of 
summed-histogram has increased the segmentation accuracy 
by resulting 9% increase with HE, a 6% increase with 
CLAHE and 3% increase with HF. As for the detection, the 
segmented soft lens boundary was used as the region for 
feature extraction using two feature descriptors, namely 
Histogram of Oriented Gradients (HOG) and Scale-Invariant 
Feature Transform (SIFT). Experimental results have shown 
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that the proposed soft lens detection has achieved the 
average CCR of 92%, which rated among the highest as 
compared to other state of the arts. 
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