
 Jyoti Goyal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 305 – 311

305

Progress on Machine Learning Techniques for Software Fault Prediction

Jyoti Goyal1 , Bal Kishan2
1,2Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana (India)

1 Jyoti.goyal24@gmail.com
2balkishan248@gmail.com

ABSTRACT

Software fault prediction is a significant part of software
engineering. Fault prediction means to identify fault prone
modules at the early stage of software development. It helps
to reduce overall testing time, effort, and cost. It significantly
improves the goodwill and profit of the organization by
providing customer satisfaction. This area attracted many
researchers over the years to improve overall software
quality. Machine learning techniques are the most widely
used techniques now-a-days in this area. This paper presents
a comprehensive review on various machine learning
techniques that will help the practitioners who are interested
in building fault prediction model. This paper also discusses
the substantial research performed in software fault
prediction using machine learning techniques. A future
dimension is also proposed to narrow the research gap by
utilizing the research findings of existing models.

Key words: Classification, Machine learning, Software
faults Prediction, Software metrics.

1. INTRODUCTION

Today, we are living in the world of computers where
software’s are used in almost every field of life. In 2018, the
worldwide software development market is about $389
billion according to IT research and advisory firm Statista
[1]. This data shows the importance of software. So, it is
necessary for a software development company to deliver
error free software. But practically it is not possible to make
software 100% error free. We can reduce it by using well
known techniques called fault prediction models which
constitute the topic of this paper [2-6]. Software fault
prediction (SFP) models are used to identify the fault prone
modules at the early stage of software development because
detecting fault at later stage will increase the cost
exceptionally high. So, this will decrease the quality as well
as leads to customer dissatisfaction. So, SFP models helps
the testing team to focus more on fault prone modules and
enables to optimize the utilization of resources [7][8].

Machine learning techniques play a significant role in
software fault prediction. Various researchers have proved
the importance of machine learning in SFP and it is
empirically proved that the performance of the prediction
model is highly influenced by the kind of technique used. So,
it is essential to select the technique appropriate for the given
dataset [9,10]. So, this paper presents various machine
learning techniques that are utilized in the field of software
fault prediction by various researchers over the years.
Modifications in the existing ML techniques making them
more efficient day by day that attracts many researchers in
this field. A future dimension is also proposed to develop
hybrid techniques for software defect prediction to improve
the overall software quality.

Our next section discusses some selected machine learning
techniques; Section 3 presents related work carried out over
years by various researchers in chronological order and
tabular form, Section 4 shows the comparison between
different machine learning techniques used by different
researchers, Section 5 presents the research contribution and
at last section 6 presents the conclusion and future work.

2. MACHINE LEARNING TECHNIQUES USED FOR
SOFTWARE FAULT PREDICTION

Machine learning methods are mainly categorized into two
main categories:

 Supervised learning: Supervised learning is a method where
both the predictors and response variables are given. We
have various techniques like Decision tree, Random Forest,
Naïve Bayes that comes under the category of supervised
learning [11].

 Unsupervised learning: Unsupervised learning approach is
basically used in those situations where no fault data is
given. Here the algorithm finds the hidden structure or
pattern in unlabeled data. In case of fault prediction, if we

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse33822019.pdf

https://doi.org/10.30534/ijatcse/2019/33822019

 Jyoti Goyal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 305 – 311

306

need to predict faults at different levels then clustering will
be the better approach [12].
Below is a brief introduction of some selected machine
learning techniques.

2.1. Support vector machine

SVM comes under the category of supervised learning
approach. It is used for both binary classification and finding
the number of faults. SVM are most commonly used for
classification problems. SVM are based on the concept of
finding a hyperplane that best divides the dataset into two
classes. When the distance between any training data of a
class and a hyperplane is large then a good separation is
obtained because a larger margin leads to a smaller error of
classifier It works better on smaller cleaner dataset. The
major drawback of SVM is that it is not possible to separate
the dataset linearly in a finite dimensional space. The
original finite space is mapped into higher dimensional space
so that we can separate the dataset. Another problem is that it
is not effective on noisier dataset with overlapping classes
[13].

2.2. Naive bayes

The NB classifier is a probabilistic classifier based on the
Bayes theorem, assuming that there is a strong (naive)
independency between the features. Naïve Bayes classifier
calculates the probability for every given input feature and
then selects the outcome with the highest probability. Naive
Bayes model is easy to build and is useful for large datasets.
It required small amount of training data for classification
process [14].

2.3. Random forest

Random develops lots of decision tree based on random
selection of data and random selection of variable. The result
of the output class is known as the mode of output classes
obtained from the individual trees. It is based on two major
belief that most of the tree can provide correct prediction of
class for most part of the data and the tree are making
mistakes at different place. In the previous studies it is
proved that it works efficiently and increases the
classification accuracy [15].

2.4. Neural network

Neural Network is a machine learning technique which is
based on human brains. It is a collection of artificial neurons.
The beauty of this technique is that it can be customized

according to needs and problems because each artificial
neuron takes number of inputs and provides single output.
Neural can solve many complex problems which cannot be
solved by human brain. GDA technique of neural network
provide superior result for fault prone modules and it can
provide simulated result in less number of iterations than
other prediction models [16].

3. LITERATURE SURVEY

This section presents some latest ongoing research
performed in SFP using machine learning approaches.

Amritanshu et al (2018) proposed smotuned that is an
automatic parameter setting tool which self-tunes the
parameters for each dataset. The author uses various learners
i.e. RF, LR, KNN, NB, DT, SVM and empirically he proves
that no learner is best across all datasets. So instead of
finding the best learner we should focus on creating the
better training data because improvement in the fault
prediction model is independent of good classifier [17].

Garvit et al. (2018) proposed the fault prediction model using
three classifiers DT, KNN and Random Forest. The author
proposed two new set of change metrics i.e. LOC-
WORKED-ON, MAX-LOC-WORKED-ON that increase the
accuracy of the fault prediction model [18]. F. Karimian et
al. (2017) presented the paper for evaluation of classifiers.
Authors analyses two issues for the selection of classifiers.
First, selection of appropriate set of metrics and instance
sampling to deal with the problem of class imbalancing.
After analysis, we conclude that the software quality
prediction model without balancing up of classes will not
produce efficient fault predictors also feature selection has
less effect on model performance [19].

David Bowes et al. (2017) able presented a very novel sight
that each classifier can identify different kinds of faults. He
empirically proves that each classifier has their own
prediction capacity. Some classifiers are consistent with the
set of detected defects, but some may vary. Here the
researcher does not focus only on performance figure but on
the different set of defects detected by classifiers [20]. Lov et
al. (2017) proposed Least square support vector machine for
building fault prediction model. The performance of SFP
model depends on the input features of the model and to
select the appropriate features feature selection and feature
ranking methods are used. These methods help to find the set
of metrics having good discriminatory power which in turn
reduces the misclassification rate [21].

 Jyoti Goyal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 305 – 311

307

Santosh Singh et al (2017) proposed heterogeneous
ensembling method means number of different base
classifier are used to predict number of faults in a given data
set. This approach is based on the assumption that each
different base classifier has different ability to predict
different types of fault [23]. Sanjay et al (2017) develops a
framework that validate and select only those set of source
code metrics which increases prediction performance. The
author uses t-test analysis and Univariate logistic regression
analysis to evaluate the potential of source code metrics in
predicting fault proneness of a module. It is empirically
proved that reduced set of metrics provides good accuracy
with less misclassification errors [24].

Gitika et al. (2016) propose a framework for providing
support in the development of Ideal BTS by creating a
precedence list of various mining algorithms which are used
in Software Bug classification.The result shows that chi
square and correlation methods are the best indicator of
severity of bugs than feature selection methods [25]. Divya
et al. (2016) uses WLSTSVM technique for software fault
prediction. Also, the author focuses on misclassification cost
because most of the defect data generally suffers from the
problem of class imbalancing. So, misclassification cost is
assigned to the software modules of each class to
compensate the negative effect of the imbalanced data on the
performance of software defect prediction. The result shows
that WLSTSWM is better than other techniques. But results
varied with the different features selection and parameters
selection techniques [26].

Tiejian et al. (2015) proposed the use of Multiple kernel with
ensemble learning approach for predicting defective
modules. MKEL is a supervised approach and based on the
historical data that generally suffers from data imbalancing
problem. So, to reduce the misclassification cost author
proposed weighted vector updating procedure that overall
improve the performance of the model [27].

Ezgi et al. (2016) proposed an iterative software defect
prediction model that uses fuzzy inference system The result
shows that it is a successful technique and it becomes an
automated tool to locate fault-prone modules. It is also
implemented as a plug-in for the Eclipse environment [28].
Santosh et al. (2016) demonstrates the capability of DTR for
finding the number of faults in two different releases of the
software i.e. inter release where training and testing data are
from different release and intra release where training and
testing data are from same release. The results proved that
DTR with intra release have better accuracy than inter
release [29].

Diego et al. (2016) deals with the situation when it is
difficult to classify the module into defective and non-
defective ones. So, the author designed an alternative called
reject option where modules that does not come under the
category of defected and non-defected are rejected for expert
opinion. So, this method reduces misclassification error up to
great extent [30]. Rathore et al. (2016) fills the research gap
where each practitioner is working on binary classification
only. Here the author is estimating the number of defects in a
given module so that it will help the testing team to optimize
the scarce resources. [31]. Ezgi et al. (2016) proposed the
framework for application of the “ANFIS”. The proposed
framework uses McCabe metrics and suggest using the
expert knowledge with ANFIS. The performance achieved
by ANFIS is 0.8573 [32].

Ming Tan et al (2015) proposed the novel approach called
online fault prediction means predicting the faults at change
level. Here the author removes the limitation of previous
works i.e. imbalancing of training data, delay between
training the model and testing the model and false high
precision of the model by resampling and updatable
classification. This model convinces the developers to
believe in the benefits of fault prediction model [33].

Issam et al. (2015) consider the two main issues related to
fault data i.e. data imbalancing and feature selection. To deal
with these two issues they proposed a software fault
classification method based on ensembling that is “average
probability ensemble” learning module. The proposed APE
system incorporates two main classifiers: random forest and
weighted SVMs (WSVMs) and the results proved that the
proposed ensembling model provide good performance with
still having poor features [34]. Agasta et al. (2014) explains
the use of supervised learning methods for software fault
prediction in case where fault data is not available. They
propose genetic algorithm for binary classification by using
the data from the similar projects for training the model. The
proposed technique is performing well on given data set [35].
Santosh et al. (2014) performs this study based on the fact
that the result of the prediction model is influenced by the
quality of fault data and to maintain the quality of data
feature ranking and feature selection techniques play a
significant role. The author empirically proved that feature
ranking techniques improves more efficiency of the model
than feature selection techniques [36].

Verbraken et al. (2013) proposes a model for fault prediction
that uses Markov blanket principle for selection of features
and different BN classifiers for making simple and
comprehensible networks with minimum arcs and nodes.

 Jyoti Goyal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 305 – 311

308

AUC and H-measure is used as a performance metric and the
results shows that augmented BN classifier is better among
other different BN classifiers [37]. Menka et al. (2013)
proposed a method that used Synthetic data Program (SD).
This method uses two step process for developing a model.
One step is for training the model using training data and
another is for testing the model using testing data. The
proposed model focused on software fault classification
based on their recovery strategies [38].

Rathore et al. (2012) evaluates the capability of design level
metrics to predict faults in individual and combined basis.
The result demonstrated that CBO, RFC, import and export
coupling metrics are equally important for predicting faults.
But this paper analysed the result at class level but not
system level [39]. Ayse et al. (2011) provided a generic fault

prediction model based on ensembling which is implemented
on embedded software projects. The proposed framework
uses three algorithms i.e. the “NBM”, “ANN” and for
ensembling they use “VFI”. The results show that false
alarms have reduced up to 15% and precision has increased
up to 43% while keeping balance rates up to 74% [40].

Chen et al. (2010) designed a novel approach “Fuzzy
Support Vector Regression” for predicting fault counts in a
given module. To handle unbalanced software metrics
dataset, fuzzification input of regressor is used. The result
states that FSVR provides better prediction for fault counts
than conventional (SVR) [41].

The research performed by various researches along with
their limitations is briefly mentioned in table.1

Table 1: Summary of Selected Studies Along with the Proposed Technique

Pub.
Year

References Authors Proposed Technique Limitations

2018 [17] Amritanshu et al Random forest

 Logistic regression

SMOTUNED (SMOTE with automatic parameter setting tool) improves
performance of model which is independent of classifiers.

 2018 [18] Garvit et al Random forest

 Decision tree(J48)

 KNN

Improving performance using change metrics only for binary
classification.

2017 [19] F. Karimian et al Bagging

 K*

 Random forest

The performance of models improves when training data is created using
sampled data over original data.

2017 [20] David et al Naive Bayes

 SVM

 Random Forest

Does not specify which feature better suits to specific classifier.

2017 [21] Lov et al Neural network

 BTE method

No fault count and specific to object-oriented paradigm only.

2017 [23] Santosh et al Genetic programming

 Multilayer perceptron

 Linear regression

Need to be implemented on industry projects to generalize the findings of
the study.

2017 [24] Lov et al. LSSVM Restricted with OO approach only.

 Jyoti Goyal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 305 – 311

309

2016 [26] Divya et al WLSTSM Biased approach.

2016 [29] Santosh et al Decision Tree
Regression

The findings are not generalized i.e. proper care of underlying pattern
of faults should be taken.

2016 [30] Diego et al rejoELM and
IrejoELM

Success of the model based on expert knowledge.

2016 [31] Rathore et al Decision tree
regression

More possibility of biasness.

2015 [32] Erturk et al ANN, SVM

 ANFIS

Not applicable in the absence of experts.

2015 [34] Issam et al RF, GB

 Regular and weighted
SVM

Does not compare the performance of APE ensembling technique with
majority voting.

2013 [37] verbraken et al Bayesian Network Results are not generalized.

2012 [39] Atul et al ULR,MLR Applicable for object-based system only.

2011 [40] Ayse et al NB, ANN,VF! No comparative analysis is presented.

2010 [41] chen et al FSVR Results are not evaluated thoroughly.

4. COMPARISON OF DIFFERENT MLT FOR FAULT
PREDICTION

In the above section we have discussed various machine
learning techniques used by researchers for prediction of
faults. The performance of each technique varies according
to dataset. So it is the responsibility of the practitioner to
select the best technique depending upon the requirements of
the dataset. The following figure 1 shows the comparative
use of Machine learning techniques over last few years.

Figure 1: Comparative Use of Various ML Techniques over last
few years

It is clear from the extensive literature survey that decision
tree is the most widely used techniques for prediction of
faults. Bayesian learner and regression is also used by the
researchers depending upon the requirements of the dataset.
In future it is better to implement hybrid approaches to
improve the accuracy of the model [42][43].

5. RESEARCH CONTRIBUTION
 This paper presents a comprehensive survey to show the
current trend of various machine learning techniques to
predict faults in software modules at different levels. Most of
the experimental work done by researchers is based on
promise data repository which does not reflect the real-life
problems. After detailed literature survey, we find some
limitations in the existing research work that is also
presented in the tabular form. In the previous research works
there are various issues that need to be reconsidered like
class rebalancing, threshold dependent performance measure
and unavailability of well documented modelling scripts
from published settings so that we are not able to generalize
the findings of the study. This survey will guide the
practitioners to explore more problems and hence solve them
by providing the relevant solution.

0%

10%

20%

30%

40%

50%

1

Regression

Bayesian
learner

Decision
Tree

Neural
Network

 Jyoti Goyal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 305 – 311

310

6. CONCLUSION AND FUTURE WORK

This paper presents detailed review on various machine
learning techniques for SFP. SFP is necessary for
minimizing the cost as well as time of software testing.
Those modules which are more prone to errors requires more
resources. SFP enables testing team to optimally utilize the
resources which helps to improve the quality of the system.
The aim of this study is to access research works done by
various researchers related to machine learning techniques
for software fault prediction so that it will helps the
practitioners who are interested in building fault prediction
model. After detailed review we found that random forest,
neural network and naïve Bayes are good enough for SFP,
but no single technique is appropriate for all kinds of dataset.
So, it is better to choose the result from the set of prediction
models. Hence, in future we are planning to implement
heterogeneous ensembling to overall increase the efficiency
of the system.

REFERENCES

[1] M. Jrgensen, K. Molkkenstvold, how large are software
cost overruns? A review of the 1994 CHAOS report,
Information and Software Technology 48 (4) (2006)
297{301}.
[2] H. Uwano, Y. Kamei, A. Monden, K.-i. Matsumoto, an
analysis of cost overrun projects using financial data and
software metrics, in: Software Measurement, 2011 Joint
Conference of the 21st International Workshop on and 6th
International Conference on Software Process and Product
Measurement, 2011, pp. 227{232}.
[3] S. Grimstad, M. Jrgensen, K. Molkkenstvold, Software
effort estimation terminology: The tower of babel,
Information and Software Technology 48 (4) (2006)
302{310}.
[4] M. Bloch, S. Blumberg, J. Laartz, delivering large-scale
it projects on time, on budget, and on value, McKinsey on
Business Technology (27) (2012) 2{7}.
[5] Sandeep D and R. S, Case Studies of Most Common
and Severe Types of Software System Failure,
International Journal of Advanced Research in Computer
Science and Software Engineering vol. 2, pp. 341-347
August 2012.
[6] Venkata U and R. A, Empirical Assessment of Machine
Learning based Software Defect Prediction Techniques,
Proceedings of the 10th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems 2005.
[7] Robert N, Why Software Fails, 2005.
[8] Rajkumar G and K.Alagarsamy, The Most Common
Factors For The Failure Of Software Development
Project, vol. 11, pp. 74-77, January 2013.

[9] L. J, Major Causes of Software Project Failures
CROSSTALK the Journal of Defense Software Engineering
pp. 9-12, July 1998.
[10] Rathore, S. S., & Kumar, S, A study on software fault
prediction techniques Artificial Intelligence Review, 1–73.
https://doi.org/10.1007/s10462-017-9563-5
[11] Hammouri, A., Hammad, M., Alnabhan, M., &
Alsarayrah, F. Software Bug Prediction using Machine
Learning Approach International journal of advanced
computer science and applications, 9(2), 78-83, 2018.
[12] Amruthnath, N., & Gupta, T. A research study on
unsupervised machine learning algorithms for early fault
detection in predictive maintenance in 2018 5th
International Conference on Industrial Engineering and
Applications (ICIEA) (pp. 355-361). IEEE.2018
[13] Press, W. H., Teukolsky, S. A., Vetterling, W. T., &
Flannery, B. P. Numerical Recipes: The Art of Scientific
Computing, Section 16.5, Support Vector Machines,
Cambridge University Press, The 3rd Edition, 2007
[14] John, G. H., & Langley, P. Estimating continuous
distributions in Bayesian classifiers. In the 11th
Conference on Uncertainty in artificial intelligence, pp. 338-
345,1995
[15] Leo Breiman. RANDOM FORESTS. Machine
Learning, pp. 5-32.2001
[16] Kumar, R., & Gupta, D. L. Software bug prediction
system using neural network. Eur. J. Adv. Eng.
Technol, 3(7), 78-82.2016
[17] Agrawal, A., & Menzies, T. Is better data better than
better data miners? on the benefits of tuning SMOTE for
defect prediction. In Proceedings of the 40th International
Conference on Software Engineering (pp. 1050-1061). ACM
may 2018.
[18] Choudhary, G. R., Kumar, S., Kumar, K., Mishra, A., &
Catal, C. Empirical analysis of change metrics for
software fault prediction. Computers & Electrical
Engineering, 67, 15-24. 2018
[19] Karimian, F., & Babamir, S. M.. Evaluation of
Classifiers in Software Fault-Proneness
Prediction. Journal of AI and Data Mining, 5(2), 149-167,
2017.
[20] Hall, T. Software defect prediction: do different
classifiers find the same defects? 2017.
[21] Kumar, L., Sripada, S. K., Sureka, A., & Rath, S. K.
Effective fault prediction model developed using least
square support vector machine (lssvm). Journal of
Systems and Software, 137, 686-712.2018
[22] Goyal, R., Chandra, P., & Singh, Y. Fuzzy inferencing
to identify degree of interaction in the development of
fault prediction models. Journal of King Saud University-
Computer and Information Sciences, 29(1), 93-102.2017.
[23] Rathore, S. S., & Kumar, S. Towards an ensemble-
based system for predicting the number of software
faults. Expert Systems with Applications, 82, 357-382.2017.
[24] Kumar, L., Misra, S., & Rath, S. K.. An empirical
analysis of the effectiveness of software metrics and fault
prediction model for identifying faulty classes. Computer
Standards & Interfaces, 53, 1-32.2017.

 Jyoti Goyal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 305 – 311

311

[25] Sharma, G., & Sharma, S. Mining Algorithms
Precedence List for Software Bug Classification, 2016,
9(46), 1–16.
[26] Tomar, D., & Agarwal, S. Prediction of defective
software modules using class imbalance learning. Applied
Computational Intelligence and Soft Computing, 2016, 6.
[27] Wang, T., Zhang, Z., Jing, X., & Zhang, L. Multiple
kernel ensemble learning for software defect
prediction. Automated Software Engineering, 2016, 23 (4),
569-590.
[28] Erturk, E., &Sezer, E. A. Iterative software fault
prediction with a hybrid approach. Applied Soft
Computing, 2016, 49, 1020-1033.
[29] Rathore, S. S. A Decision Tree Regression based
Approach for the Number of Software Faults Prediction,
2016.41(1), 1–6. https://doi.org/10.1145/2853073.2853083
[30] Mesquita, D. P., Rocha, L. S., Gomes, J. P. P., & Neto,
A. R. R. Classification with reject option for software
defect prediction. Applied Soft Computing, 2016, 49, 1085-
1093.
[31] Rathore, S. S., & Kumar, S. Linear and non-linear
heterogeneous ensemble methods to predict the number
of faults in software systems. Knowledge-Based Systems,
2017, 119, 232-256.
[32] Erturk, E., &Sezer, E. A. A comparison of some soft
computing methods for software fault prediction. Expert
systems with applications, 2015, 42 (4), 1872-1879.
[33] Tian, Y., Lo, D., Xia, X., & Sun, C. Automated
prediction of bug report priority using multi-factor
analysis. Empirical Software Engineering, 2015, 20(5),
1354-1383.
[34] Laradji, I. H., Alshayeb, M., & Ghouti, L. Software
defect prediction using ensemble learning on selected
features. Information and Software Technology, 2015, 58,
388-402.
[35] Adline, A., & Ramachandran, M. Predicting the
software fault using the method of genetic algorithm. Int.
J. Adv. Res. Electr. Electron. Instrum. Eng, 2014, 3(2), 390-
398.
[36] Rathore, S. S., & Gupta, A. A comparative study of
feature-ranking and feature-subset selection techniques
for improved fault prediction. In Proceedings of the 7th
India Software Engineering Conference (p. 7). (2014,
February) ACM.
[37] Dejaeger, K., Verbraken, T., &Baesens, B. Toward
comprehensible software fault prediction models using
bayesian network classifiers. IEEE Transactions on
Software Engineering, 39(2), 237-257, 2013.
[38] Gupta, M., & Gautam, P. A Novel Approach for
Identifying Software Fault Prediction in mining.
[39] Rathore, S. S., & Gupta, A. Investigating object-
oriented design metrics to predict fault-proneness of
software modules. In Software Engineering (CONSEG),
2012 CSI Sixth International Conference on (pp. 1-10) .
(2012, September) IEEE.
[40] Mısırlı, A. T., Bener, A. B., & Turhan, B. An industrial
case study of classifier ensembles for locating software
defects. Software Quality Journal, 2011 19(3), 515-536.

[41] Yan, Z., Chen, X., & Guo, P. Software defect
prediction using fuzzy support vector regression.
In International symposium on neural networks (pp. 17-24).
(2010, June) Springer, Berlin, Heidelberg.
[42] Maria zemzami, A modified particle swarm
optimization algorithm linking dynamic neighbourhood
topology to parallel computation, International Journal of
Advanced Trends in Computer Science and Engineering, vol
8, no. 2, 2019,112-118.
http://doi.org/10.30534/ijatcse/2019/03822019.
[43] Maria Zemzami, An evolutionary hybrid algorithm
for complex optimization problems, International Journal
of Advanced Trends in Computer Science and Engineering,
vol8,no.2,2019.https://doi.org/10.30534/ijatcse/2019/058220
19.

