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ABSTRACT 
 
Virtual machines are assigned to hosts, depending on its 
current resource usage and not considering their overall 
utilization. It is one of the main problems in cloud 
computing that can reduces the system performance. The 
scheduling is used to schedule tasks for better utilization of 
resources by allocating certain tasks to particular resources 
at a particular time. The purpose of scheduling is to select 
the most excellent and suitable resource available to execute 
the tasks or to assign computer machines to execute tasks 
with minimal completion time is but still feasible. An 
efficient task scheduling algorithm is needed for improve 
the system performance. In this paper, the focus is on 
improving the virtual machines scheduling performance for 
makespan and cost. The proposed process of scheduling 
includes three main processes. The first process is the 
Clustering Formation based on the characteristics such as 
Processor, Memory and Bandwidth. The second process is 
known as the Hyper Analytical Task Scheduling Algorithm, 
and based on the scheduled tasks, the Policy-based Profit 
Maximization Algorithm was proposed in the final process. 
The performance comparison of the proposed work is 
analyzed through some empirical results. The result shows 
that the proposed work significantly reduces the makespan 
of task scheduling and gives high profit compared with the 
other scheduling algorithms. 

KEY WORDS: Virtual Machine, Makespan, Policy-based 
Profit Maximization, Hyper Analytical Task Scheduling, 
VM Cluster Formation 

1. INTRODUCTION 
 
Cloud computing is a model where the configurable 
computing resources are being shared, which are based on 
on-demand usage, that can be minimally managed or needed 
interaction for service providers[1]. 

Cloud computing is categorized into three types of service 
models known as Infrastructure as a Service (IaaS), 
Platform as a Service (PaaS), and Software as a Service 
(SaaS). In IaaS, computing resources are considered as 

services. In any IaaS, services provided by service providers 
are similar to facilitating hardware resources to users. Cloud 
computing can be considered as an extension to Grid 
Computing. One of the main features of this type of Cloud 
Computing is Virtualization. With virtualization, virtual 
machines are created on physical machines, which are 
limited in numbers. In PaaS model, providers deliver 
computing platform software [2]. For SaaS model, 
applications are provided as services that runs on 
infrastructure created and maintained by the providers [3]. 

Depending on the location of cloud providers, the virtual 
machines are placed inside physical machines along with 
the distributed data centers. These computing resources are 
also being shared between users according to the user needs 
over the resources. These are the factors that requires a 
proper resource allocation that can give huge impact on the 
system performance [4]. 

In order to satisfy user’s requests, these virtual machines 
created in data centers in cloud needs to be efficiently 
scheduled [5]. The scheduling process of virtual machines is 
to find the way in which physical machine resources are 
allocated in order to create a virtual machine object [6]. The 
requests to create virtual machines are sent the Physical 
Machines (PM) at a suitable Data Center (DC), which are 
then scheduled in order to fulfill the needed resources such 
as RAM, Memory, Central Processing Unit. 

Today, cloud computing is the most preferred way over 
handling tasks because of the flexibility and reliability. It 
also scalable as physical machines can be added easily. The 
tasks sent to these cloud systems are mostly based on NP-
Hard and NP-Complete, and some scheduling algorithms, 
which are based on rules such as deterministic algorithms 
are used as they are simple and easy to be build. However, 
according to [19, 21], these algorithms are not suitable as 
the tasks requirements varies in demands. 

As tasks begins to change to more complex demands, 
scheduling of these resources also changes. Heuristic 
algorithms are being introduced to improve the scheduling 
process in cloud computing, which also attracts cross 
domain researchers. Some of the later research even 
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proposed of combining more than two heuristic algorithms 
to improve scheduling process, which are also known as 
hybrid heuristic scheduling algorithms.  

There are a few basic heuristic algorithms which are used to 
create hybrid heuristic scheduling algorithms. The main 
objective of combining these basic algorithms is to find 
better results of heuristic algorithms such as Artificial Bee 
Colony, Invasive Weed Optimization, Particle Swarm 
Optimization, and Ant Colony Optimization. 

The main contribution of this work is to group available 
PMs into number of clusters before their allocation. 
Provided with efficient VM scheduling algorithm, this could 
minimize the makespan of the tasks and finally find the 
maximum profit for provides based on the policy. 
 
2. RELATED RESEARCH 
 
Schedulers can be classified into several types, and listed 
above are the most essential ones: 

 Optimal or non-optimal: An optimal scheduler is 
able to schedule a specific set of tasks if it is 
schedulable by schedulers.    

 Preemptive or non -preemptive: A preemptive 
scheduler is able to make a decision on the 
suspension of a particular task before the execution 
is completed, and resume the process at a later 
time, as a higher priority tasks are ready. However, 
non-preemptive schedulers are not able to suspend 
the tasks in a similar manner, as the tasks that are 
already in progress will be able to be balanced 
unwillingly.  

 Static or dynamic: Static scheduler works by 
computing the tasks implementation sequence 
preceding the run-time. The task characteristics 
information is essential for this scheduler, but it 
also generates small run-time overhead. This type 
however, is not able to handle non-predicted or 
periodic events. On the other hand, dynamic 
schedulers decides during the the system run-time. 
While this permits in creating a system that is more 
flexible, it however, also produces some overhead.  

Over the years, a number of traditional scheduling 
algorithms have been presented, namely earliest due date 
(EDD) [7], critical path method (CPM) [8], project 
evaluation and review technique (PRET) [9], dynamic 
programming [10], and branch-and-bound [11]. As these 
methods are constructed based on singular or a small 
number of rules in arranging and managing the tasks, they 
are mostly simpler in implementation. While several 
traditional methods guarantee in providing the scheduling 
problem with the best solution, they all however, fell short 
in terms of solving the problem in reasonable time frame, 
mainly on a larger or complex problem. 

The two main disadvantages mentioned earlier have 
inspired researchers to identify ways to modify the search 
strategy of these methods. Firstly, the time consumption of a 
majority of full search algorithms, namely dynamic 
programming and branch-and-bound are usually high, 
mainly due to the large number of checks they have to 
perform. Secondly, although deterministic algorithms are 
easy to implement and substantially fast, they do come with 
one major drawback, which is easily falling into local 
optima. As discussed earlier, although the traditional 
algorithms are efficient enough in generating optimal 
solution for small scheduling problems in a timely manner 
[12], but the same cannot be said for larger scheduling 
problems [13]. 

The main cloud scheduling problem is that the resources 
and jobs have to be assigned and scheduled in a manner that 
can ease the users in multiple areas, namely job completion 
in minimal time, and boost the throughput Cloud Resource 
Provider and user satisfaction.  

The major distinction between scheduling in a traditional 
single processor and cloud environment is that, the latter 
consists of several processors. In addition, the cost and 
execution time in carrying out similar tasks in different 
processor units might differ due to the fact that the processor 
units might consist of different resources in a cloud. 
Generally, scheduling in a cloud computing system or a 
multi-core processor can be divided into two parts, namely 
the execution order of the tasks determination, and also 
assigning tasks to suitable processor unit. The most crucial 
problem in multi-processor systems is task mapping and 
scheduling with various sets of limitations, which is an NP-
complete problem. Task queues in a system are divided into 
three parts, namely high priority, medium priority, and low 
priority tasks [27]. Upon the arrival of requests, the 
algorithm then measures the priority level based on the cost 
of the requests on each processor, before sending them to 
task queues that match them best. After all the steps have 
been completed, the tasks are executed by the system based 
on their priorities. Lin and Lu [28] proposed SHEFT 
method, which works by selecting the task with the highest 
priority, to measure the time completion for every processor 
units, before sending the it to the processor with the shortest 
time completion. 

Besides the methods discussed earlier, heuristics algorithms 
have also been utilized in recent studies for the purpose of 
scheduling in cloud computing systems. Meta-heuristics is 
mainly utilized to acquire a possible solution in a short time 
frame [29]. In order to identify possible directions or 
combinations from huge space of solution, this method 
utilizes strategic guesses, and discovers better possible 
solutions through repeated calculations. This method 
consists of three major operators, which are transition, 
evaluation, and determination. The first in the category, the 
transition operator, works by modifying the current solution 
to the later state. The two usual methods of transition for 
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combinatorial problems are constructive and perturbative. 
This operator’s complexity level also differs based on the 
meta-heuristics design. The second operator, which is the 
evaluation operator, measures the value of the problem’s 
objection function, which includes scheduling problem’s 
makespan. When measuring the solutions, a number of 
metaheuristics do not utilize an objection function directly. 
Rather, other measurement instruments are employed in 
determining the decision space value. Thus, the value might 
not be representative of what the real quality of the 
optimization problem solution, as the value can be measured 
through either the decision or objective space. The third 
operator, which is the determination operator, guides the 
search. It decides both the directions, and also the search’s 
diversification or intensification, which might manipulate 
the speed of convergence. 
A majority of the studies which employed meta-heuristics in 
scheduling have been utilized on job scheduling problems 
and grid computing, namely tabu searches, genetic 
algorithms, particle swarm optimization (PSO), and ant 
colony optimization (ACO), and also large distributed 
systems.  Cloud computing systems scheduling is a job shop 
scheduling problem variant. Optimization algorithm has 
been employed by numerous studies to solve problems in 
scheduling. In this work the new hyper scheduling 
algorithm contains, Ant Colony Optimization (ACO), 
Particle Object Swarm (PSO), Artificial Bee Colony (ABC), 
and Invasive Weed Optimization (IWO). These scheduling 
algorithms are selected based on their priority. 
Resource-Aware Scheduling Algorithm (RASA), a new task 
scheduling algorithm has been proposed by Saeed Parsa and 
Reza Entezari-Maleki [14]. RASA mainly consists of two 
traditional algorithms, namely Min-min and Max-min. This 
algorithm uses the benefits of Min-min and Max-min and 
hides their shortcomings. This algorithm takes into account 
the tasks’ incoming rate, task’s limit, and task execution 
expenditure on every resource, but does not consider the cost 
of the transmission. Another reliable scheduling algorithm 
has been proposed by Arash Ghorbannia et al., [15], which 
divides major job into sub jobs. The acknowledge and 
request time are determined separately to balance the jobs. 
 
Another new algorithm which is based on the effect of 
RASA has been proposed by El-Sayed T. El-kenawy et al, 
[16]. They have improved Max-min algorithm by changing 
its selection basis from total time into predictable 
implementation time. In order to display the disseminated 
systems’ simultaneous performance, petri nets are employed. 
It has been shown that Max-min achieves agendas that are 
equivalent to the lower makespan before unique Max-min 
and RASA. SLA Based Resource Provisioning for Hosted 
Software as-a-Service Applications in Cloud Computing 
Environments Cloud computing has been proposed by 
Linlin Wu, and Saurabh Kumar Greg [17], which is a 
solution to address problems on namely, distribution, 
configuration, licensing, and enterprise applications 
operation that are linked to the traditional IT infrastructure, 

deployment models, and software sales. By moving to the 
cloud model from a traditional model has a number of 
advantages, namely providing revenue that is ongoing for 
SaaS providers, and lowering the cost for enterprise clients 
and complexity of maintenance. In order to measure the 
Quality of Service (QoS), a Service Level Agreement (SLA) 
needs to be established.   
 
A Stochastic model has been introduced by Dario Bruneo 
[18] to identify the performance of data center and QoS in 
IaaS cloud computing systems by Dario Bruno [18]. As a 
result of the various strategies available, which ranges from 
the association with other clouds to the placement of VM, 
the management of cloud datacenter has been the main 
issue. To comply with the users that do not have a sufficient 
readily available compute resources, W.R. Helen [19] has 
introduced Self-Adaptive Learning PSO-Based Deadline 
Constrained Task Scheduling for Hybrid IaaS, which 
provides Infrastructure as a Service (IaaS). IaaS works by 
multiplexing to attain the economy of scale, thus encounters 
a tasks scheduling challenge, in order to achieve the peak 
demand, whilst still factoring in the QoS preservation. A 
few solutions have been proposed by previous studies to 
solve this issue, namely, cloud federation, and proactive 
machine purchasing. Nevertheless, cloud federation is 
currently still hardly achievable, and the proactive machine 
purchasing is not economic. In this study, the researcher has 
proposed source allocation framework which is beneficial 
when the demand is higher that the resources, as it can be 
utilized by the IaaS provider to transfer the tasks to External 
Clouds (ECs). Besides that, no formal agreement on inter 
cloud is needed by this architecture for the cloud federation. 
However, the main challenge of this proposed way is on how 
the allocation of users tasks can be done in such a way that 
it will be beneficial in boosting the IaaS provider profit, 
while still factoring in the QoS. Integer programming model 
(IP) is then used to formulate this problem, and which then 
utilizes self-adaptive learning particle swarm optimization 
based scheduling approach (SLPSO) to solve it. SLPSO 
consists of four strategies of updating, which provide the 
robustness and diversity of each particle by adaptively 
updating its velocity.    
 
In a separate study, done by Jianying Luo, Lei Rao, and Xue 
Liu[20], the Temporal Load Balancing with Service Delay 
Guarantees has been proposed for Data Center Energy Cost 
Optimization Cloud computing services, as they have been 
integrated in our daily lives. Internet data center (IDC) is an 
infrastructure that is used to support these services, and the 
amount of IDCs energy consumption soars with the rising 
demand for cloud computing services. The issue of IDCs 
energy management has brought great attention from 
various sectors, namely the industry and academia. Energy 
cost minimizing in deregulated electricity for IDCs is the 
main focal point of this study. They have proposed Energy 
Cost Optimization-IDC algorithm (eco-IDC) and a two-
stage design, in order to schedule workload dynamically, 



Ahmad Alauddin Ariffin  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216 
 

209 
 

 

before implementing it on IDC servers through an input 
queue, and to manipulate the electricity price’s temporal 
diversity. A real life enterprise production data center 
workload traces and the price of electricity are used for 
experiment purposes. The study has identified that the 
energy cost of IDCs has been significantly reduced through 
the selected approach, which assures a service delay bound, 
and when the size of the service delay bound is huge, it 
helps to alleviate the workload drop. 
 
Besides that, in boosting performance and lowering the cost,  
Haitao Yuan, Jing Bi [21] have also proposed Cost-Aware 
Workload Scheduling and Admission Control (CAWSAC) 
to be implemented on Distributed Cloud Data Centers 
Multiple heterogeneous applications which concurrently run 
in distributed cloud data centers (CDCs). A market with a 
diverse geographical range of energy cost and bandwidth 
may cause a challenging problem, especially on the ways of 
minimizing CDC’s provider’s total cost. Based on the 
problem encountered, this study proposed two approaches, 
which firstly, a revenue-based workload admission control 
method, that considers various factors, namely revenue, 
expected response time, and priority, before admitting the 
requests. Secondly, a cost-aware workload scheduling 
method, which optimizes the internet service providers’ 
selection pool for CDC, and also the total figure of servers 
that are active in each CDC. From the results of the trace 
driven simulation, they have discovered that when compared 
with other existing methods, the two methods proposed 
earlier not only can reduce the total cost tremendously, but 
also boosts CDCs provider’s throughput. Wenhong Tian 
[22] developed an essential element for large-scale Cloud 
applications, which is a toolkit modeling and simulation of 
real-time VM allocation in a Cloud Data Center Resource 
scheduling in infrastructure as a service (IaaS). As the two 
main elements, which are the network infrastructure, 
conditions, and environment might be beyond developers’ 
control, it is highly challenging to conduct extensive 
research regarding real environment issues.   
 
In their study, Ferrandi et al. [30] have utilized ACO in 
scheduling both the tasks and also the communications 
between each tasks. In the effort of reducing exploration’s 
execution time, they have proposed a multi-stage decision 
process. Besides that, they have also added a forgetting 
factor to increase the diversity by reserving the worst 
solutions. In another study, Wang et al. [31] have 
introduced CPACO as a solution for multi-agent task 
allocation problem. As the factor of efficiency, this study 
utilized agent capacities, while factoring in the cost of 
communication simultaneously. However, Bai et al. [32] 
have identified that the application of single colony system 
in ACO is usually dependent on the pheromones’ positive 
feedback, leading to the fall of system into local optima. 
Thus, to achieve load balancing for the task scheduling, the 
study has introduced MACO approach. MACO works by 
considering the feedbacks from both positive and negative 

angles from the information shared among multiple 
colonies, to prevent idle situations. Another solution for this 
problem has been proposed by Lu and Gu [33] through an 
ACO based model, which is a load-adaptive cloud resource 
scheduling model. This model works by monitoring the 
utilization of CPU and memory, computing node bandwidth, 
and identifies the hotspot node through a cluster controller. 
A node that turns into a hotspot releases ants which help to 
swiftly locate the stagnant nodes nearby, and transfers a part 
of the load to the stagnant node.  
 
In boosting the service providers in an IaaS environment’s 
profit, Zuo et al. [34] have introduced a self-adaptive 
learning particle swarm optimization (SLPSO) method. This 
method consists of four updating strategies that are utilized 
in updating the particle's velocity and boosting the diversity 
of the search. PSO has also been employed on traffic lights 
programming in a study by Garcia-Nieto et al. [35]. The 
researchers have managed to identify traffic light cycle 
programs that are successful through PSO. In a separate 
research done by Wen at al. [36], PSO and ACO are 
combined to develop a hybrid algorithm. The hybrid 
resources scheduling algorithm is employed on global and 
local optimal solution, and also the solutions obtained 
through ACO. In a similar study, Xie and Wu [37] have 
experimented on the ACO parameters optimal combination. 
In order to identify a more efficient parameters combination 
for ACO performance boosting, the study has utilized PSO.  
 
In addition, honey bee behavior inspired load balancing 
(HBB-LB), is another algorithm that has been proposed by 
Babu et al. [40]. By identifying VMs that are overloaded, 
the algorithm then sends the tasks of these VMs to other 
VMs with a low load. This algorithm considers the priority 
level of each tasks removed from the VMs that were 
overloaded. Besides that, the Artificial Bee Colony (ABC) 
[38] has been employed for the VM machine scheduling 
optimization on Cloud computing. This study aims to both 
analyze the VM load balancing algorithm difference, and 
reduce data processing time makespan. Heuristic task 
scheduling with Artificial Bee Colony (HABC) algorithm 
has also been proposed [39] to be utilized on VMs in 
heterogeneous Cloud computing. The main objective of the 
study is the introduction of the current task scheduling and 
load balancing algorithm, HABC, in minimizing the 
system’s makespan. Multi-objective Artificial Bee Colony 
Algorithm (TA-ABC) has been proposed through another 
study [41] to attain task scheduling efficiency. This 
algorithm works by optimizing a number of areas, namely 
cost, energy, processing time, and resource utilization of the 
cloud environment.  
 
Cloud computing is extremely useful to universal users, as it 
is able to efficiently present the computing resources above 
the network that are on-demand. In general, users receive 
the computing resources in cloud data centers through the 
pay-as-you-go pricing model. Furthermore, the number of 
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companies that are attracted to set up their applications in 
cloud data centers are growing due to the scale economy 
introduced through cloud computing. Providing cost-
effective services to the users while simultaneously able to 
guarantee the specified QoS are the main aims of a private 
cloud provider. Thus, this also means that a private cloud 
provider’s vital objective is to be able to maximize the profit 
margin.  
 
Yeo and Buyya [23] have proposed a pricing function 
method that is dependent on both utilization and base 
pricing rate. Profit maximization can be achieved through 
this method, as clients are inclined on paying higher price 
range for resources when the utilization is high, as it boosts 
the demand for the sources. The opposite will happen if for 
lower utilization, as providers are inclined to offer lower 
prices to gain the clients’ attention. 
 
Dynamic pricing strategies has also been discussed by 
Maglaras and Meissner [24], where a fixed amount of a 
resource is owned by a company, and then utilized for the 
delivery of various products. The study has demonstrated 
that the problem can be modified into a simpler form, which 
gives the company the ability to control the aggregate rate 
where resources have been used. Another study, done by 
Eren and Maglaras [25] has examined the the scenario of 
monopoly pricing for sellers that are equipped with market 
information that is limited, by taking sellers’ various 
learning capabilities demand into account. They have found 
that the particular policies will perform better when the 
pricing policies are not updated and re-optimized constantly. 
Thus, this will be a suitable option for models that are 
active, as they tend to demand assumptions that are more 
rigid.  
 
H. Chen. et al. [42] have done a comparative study between 
the performance of traditional heuristic algorithms for 
scheduling, which includes Opportunistic Load Balancing 
(OLB), FCFS, Minimum Completion Time (MCT), 
Minimum Execution Time (MET), Max-min, Min-min, and 
others. Besides thats, as a solution to the makespan and 
boost the utilization of resources, they have also employed 
Min-min algorithm in their study. From their findings, they 
have discovered that, compared to other algorithms, they are 
able to achieve a better schedule that aids the makespan 
minimization through Min-min algorithm. 
 
S. Devipriya et al. [43] proposed an alternative of complete 
time through simple changes in Max-min algorithm based 
on expected execution time. Through these small changes, 
the improved Max-min can aid the tasks within cloud in a 
acquiring lower makespan, when compared with the 
previous version of Max-min. Z. Zheng et al. [44] in their 
study, have introduced Parallel Genetic Algorithm (PGA), 
which is able to accomplish the given tasks 1.5 times faster 
with two threads, and 2.7 times faster with the usage of four 
threads, when compared to the performance of the original 

GA. The rate of resource utilization is significantly higher 
when it is compared to Round Robin algorithm and the first 
fit, thus making it easily applied on numerous types of 
parallel mainframes and computer networks. 
 
K. Dasgupta et al. [45] have conducted an experiment on 
using GA for the load balancing of resource while 
scheduling the tasks on the cloud. Experimental outcomes 
shows that GA manage to reduce 25 to 26% of the response 
time.  M. Shojafar et al. [46] presented a combination of 
fuzzy idea and GA (FUGE) which is predicted to lower the 
cost, makespan, imbalance level in cloud while conducting 
the scheduling of tasks. Fuzzy hypothesis works by 
analyzing the chromosomes’ fitness estimation and 
crossover operation. The addition of GA helps to improve 
the performance by lowering the cost of execution and 
makespan. A 45% of improvement has been demonstrated 
on the cost of execution, and 50% of makespan 
improvement over the traditional GA. 
 
Besides that, a study by M. A. Tawfeek et al. [47] also 
concentrates on the makespan minimization through 
objective function. In this study, the heuristic function is 
based on two elements, which are the expected task transfer 
time, and the execution time. Each ant is also constrained to 
visiting each VM once. The experiment is employed on 
Cloudsim simulator, with the tasks number ranging from 
100 to 1000. The findings of simulations have demonstrated 
that when compared with FCFS and RR algorithms, ACO 
requires lesser time with the increasing number of tasks. 
The findings have shown that for 1000 tasks, there is a 
reduction of around 29 to 32% in makespan. 
 
W. N. Chen et al. [48] proposed an improved workflow 
scheduling algorithm that is based on Ant Colony System 
(ACS) algorithm. The algorithm has been designed to lower 
the cost, while still keeping to deadline. To ensure the 
success of solving the problem, the study has employed two 
variants of well-defined pheromone, which function as 
firstly, cost minimizer, and also also makespan minimizer. 
In order to control the ants in identifying the search 
directions, the study has divided heuristic information into 
three types. Each ant utilizes one type of pheromone and one 
type of heuristics in every cycle to view the probabilities that 
are controlled adaptively, and balances parameters in the 
algorithm. 
 
3. METHODOLOGY 
 
To solve the problem an efficient VM scheduling algorithm 
is needed to provide a better VM scheduling in cloud to 
reduce the make-span. This work introduces novel policy 
based service model, which aim at maximizing the profit of 
cloud providers. 
The VM scheduling problem can be defined as follows:  

   Find an optimal solution to schedule a given set of 
VMs  NVMVMVMVM ,,, 21   to a given set of 
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physical machines 
 MPMPMPMPM ,,, 21  . There are 

M heterogeneous physical machines for dispatching 
the VM requests.  

 
   A VM request set  rq RRRVM ,,, 21Re  is the set of 

input requests. The VM request represents 
 BMCRi ,,  where C is the number of cores, M is 

the memory and B is the Bandwidth of VM. 
In order to accomplish VM scheduling process, this research 
first group the physical machine (PM) based on their 
characteristic. Each PM has own number of CPU, Memory 
and Bandwidth.  Using K-Means Clustering Algorithm, 
PMs are clustered into groups. Next, the hyper task 
scheduling algorithm is executed to allocate the VM to a 
suitable cluster that minimize the make-span. Based on the 
allocated VM, the next phase is the profit value calculation.  
 
The existing system uses hyper heuristic algorithm [26]. 
This algorithm leverages strengths of heuristic algorithm 
such as simulated annealing, genetic algorithm, particle 
swarm optimization, and ant colony optimization by 
integrating them into a single algorithm. By using this 
algorithm, the make-span was reduced. But it has some 
limitations; it uses random selection mechanism to select the 
low level heuristic. It leads to increase in computational cost 
for the resource allocation which in turn becomes a burden 
for both service provider and consumer. The service 
provider needs to reallocate resources again. In this work 
the new hyper scheduling algorithm contains, Particle 
Object Swarm (PSO), Ant Colony Optimization (ACO), 
Invasive Weed Optimization (IWO) and Artificial Bee 
Colony (ABC). These scheduling algorithms are selected 
based on their priority. For maximizing the profit, 
productive estimation (based on the scheduled VM) and 
basic First in First Out policy is used to find the maximum 
profit. Figure 1 shows the system architecture of the VM 
Scheduling. 
 
4. PROPOSED ALGORITHM 
 
4.1 VM Cluster Formation 
The K-means clustering algorithm is used to cluster the 
available PM into K-Groups. Steps for K-means clustering: 

   Let },,,{ 21 nxxxX   be the set of data point and 

},,,{ 21 cvvvV   be the set of centers. 
   Step1: Randomly select c cluster centers. 
   Step 2: Calculate the distance between each data 

point and cluster centers. 
   Step 3: Assign the data point to the cluster center 

whose distance from the cluster center is minimum 
of all the cluster centers. 

   Step 4: Recalculate the new cluster center using:   





ic

j
i

i
i x

c
v

1

1  

   Step 5: Recalculate the distance between each data 
point and new obtained cluster centers. 

   Step 6: If no data point was reassigned then stop, 
otherwise repeat from step 3. 
 

 
Figure 1 : System Architecture 

4.2 Task Sscheduling Algorithm 

After grouping the PM into number of clusters, the hyper 
analytical task scheduling algorithm is applied to allocate 
the task to the particular cluster that minimize the makespan 
of tasks. 

A hyper-heuristic is a methodology for selecting or 
generating heuristics to solve hard computational search 
problems [26]. The basic idea of the algorithm is to use two 
operator diversity detection and improvement detection to 
balance the intensity and diversification in the search of the 
solutions during the process. The algorithm is below 
 
Input: Cloudlet 
Output: Makespan 

   Step 1: Input Task and PM Details 
   Step 2: Initialize the population Z= {z1, z2,…, zn}. 

(Based on the Task) 
   Step 3: Is it the First Execution? 
   Step 4: If Yes => 

o    Step 4.1:  Randomly select a one 
algorithm. (ABC, ACO, IWO and PSO) 

   Step 5: If No => 
o Step 5.1: Select the algorithm with highest 

priority for scheduling. 
   Step 6: While the termination criterion is not met. 

o     Step 6.1: Update the population of 
solutions Z by using the selected 
algorithm. 

   Step 7: Compute F1 = Improvement Detection (Z). 
   Step 8: Compute F2= Diversity Detection (Z). 
   Step 9: Compute F3=Pertub(Z) 
   Step 10: Compute If Pertub(Z) is true 

o      Step 10.1: Assign “Lowest Priority” to 
the current algorithm. 

o      Step 10.2:  Select another algorithm with 
the “Highest Priority”. 
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   Step 11: Repeat the scheduling process until the 
maximum number of iteration is reached. 

Output the Best Makespan as the final solution. 

Improvement Detection (Z) The improvement detection 
operator is used to decide whether to change algorithm or 
not. This can be done by comparing the makespan obtained 
using Hi with the current makespan. If the makespan 
obtained in the Hi is greater than current makespan it results 
“true”. This operator returns false for the following 
conditions. 

 If the current makespan is not improved after ϕni 
iterations  

 When maximum number of iteration is reached 
 When stop condition is reached. 

 
Improvement Detection function can be depicted as follows 
 








otherwise true;

 
iteration  after  improvednot  ismakespancurrent ;

1

nifalse
F

 

Diversity Detection (Z) This operator is used to decide when 
to change new algorithm to perform scheduling. The 
working of this algorithm is as follows. Initially it assigns 
the solution obtained in the first iteration as the threshold 
value (ω), ie ω=D(Z0). And compares values with the 
current solution. If the current value is greater than ω, it 
returns true, else it returns false.  

Diversity Detection Function can be depicted as follows 



 


otherwisefalse

ZDtrue
F

;
)(; 0

2



 
 
Perturbation Operator (Z) Perturbation operator is used to 
select a new low level algorithm for the process of effective 
scheduling. This operator returns false when improvement 
detection operator and diversity detection operator returns 
true, else it returns true. At once it returns true, 

1. It assigns “Lowest Priority” to the current 
algorithm   

2. It selects the algorithm with the highest priority 
for the next schedule. 



 


                        otherwise ,

   , 21
3 true

trueFandtrueFfalse
F

 
 
4.3 Profit Maximization Algorithm 
Productive estimation and basic First in First Out policy is 
used to find the maximum profit. Procedure: 
  While (Task List is not empty) 
  { 

    First it takes the first task (i.e first task that 
allocated to VM) 

    Find the utilization of resources (i.e how 
much it use the resources (cpu, memory and 
bandwidth) 

    Compute the price  
    Remove the first task 

  } 
5. SIMULATION IMPLEMENTATION 

This work was done using CloudSim. It is a simulator; 
hence, it doesn’t run any actual software. It can be defined 
as ‘running a model of an environment in a model of 
hardware’, where technology-specific details are abstracted. 
Figure 2 illustrated the Implementation Workflow of our 
work. 
 

 
Figure 2 : Implementation Workflow 

 6. RESULTS AND DISCUSSION 
 
In running the simulation, there are 54 Physical Machines 
(PM) are used. Each PM has three important properties, 
which are CPU, Memory and Bandwidth. After applying the 
K-means Clustering Algorithm, the PMs are categorized 
into 4 clusters groups, which has different number of PMs. 
The Instance Type of Each cluster group are Low, Medium, 
High and Very High. Table 1 shows the Clustered PM that 
was created after applying K-means Clustering Algorithm. 
Table 2 shows the requested VM. Each VM contains VM 
ID, duration (time for accessing the resources), CPU, 
Memory and Bandwidth. 

Table 1 : Clustered PM 
 

Cluster Id Instance Type No of PM 

1 Low 20 

2 Medium 16 

3 High 9 

4 Very High 9 



Ahmad Alauddin Ariffin  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216 
 

213 
 

 

Table 3 and Figure 4 show makespan calculated by each 
algorithm for the different algorithm implemented in this 
research. Hyper-heuristic algorithm showing much less 
makespan than other and it is much better than other 
algorithms which are PSO, ACO, ABC, and IWO. From the 
result, it is clear that hyper-heuristic is the makespan 
reducing high-performance algorithm than other heuristic 
algorithms. (Proposed < ABC < PSO < IWO < ACO). 

 
Table 2 : VM Request 

 

 
Table 3 : Scheduling Time 

 
Figure 3 shows the scheduled VM.  In the graph, x-axis 
represent VMID and y-axis represent cluster ID. Table 4 
and Figure 5 show the profit comparison for the different 
algorithms implemented in this research. Hyper-heuristic 
algorithm showing a much better profit than other 
algorithms which are PSO, ACO, ABC, and IWO. From the 
result, the proposed work maximizes profit compared to 
other heuristic algorithms. (Proposed > IWO > PSO > ACO 
> ABC). 
 

 
Figure 3 : Scheduled VM 

Figure 4 : Makespan Comparison 

 
Figure 5: Profit Comparison 

 
Table 4 : Profit Value 

 
 
7. CONCLUSION 
 
The research provides the novel solution in order to 
minimize the makespan and maximize the profit of the task 
in cloud environment. This research is supported by various 

VM Id Duration CPU Memory Bandwidth 

v1 4 1 5 200 

v2 8 2 8 300 

v3 2 4 10 600 

v4 10 5 12 600 

v5 4 6 15 800 

v6 5 8 32 800 

v7 12 10 20 1000 

v8 10 12 25 2500 

Algorithm Makespan 

ACO 20 

PSO 17 

ABC 16 

IWO 18 

Proposed 14 

Algorithm Profit 

ACO 0.788 

PSO 1.711 

ABC 0.406 

IWO 1.905 

Proposed 2.642 



Ahmad Alauddin Ariffin  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216 
 

214 
 

 

ideas that are discussed in the literature review supporting 
the different views towards task scheduling in cloud 
computing. 
 
Effective scheduling plays a significant role in performance 
provided by the cloud environment. This thesis analyzed 
various scheduling algorithm and found the shortcomings of 
the existing system. And modify the hyper scheduling 
algorithm based on their priority which could overcome the 
shortcomings of the existing work. This research also 
proposed the policy based profit maximization. Further the 
proposed algorithm to be implemented in a simulator 
(Cloudsim). 
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