
Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

206

ABSTRACT

Virtual machines are assigned to hosts, depending on its
current resource usage and not considering their overall
utilization. It is one of the main problems in cloud
computing that can reduces the system performance. The
scheduling is used to schedule tasks for better utilization of
resources by allocating certain tasks to particular resources
at a particular time. The purpose of scheduling is to select
the most excellent and suitable resource available to execute
the tasks or to assign computer machines to execute tasks
with minimal completion time is but still feasible. An
efficient task scheduling algorithm is needed for improve
the system performance. In this paper, the focus is on
improving the virtual machines scheduling performance for
makespan and cost. The proposed process of scheduling
includes three main processes. The first process is the
Clustering Formation based on the characteristics such as
Processor, Memory and Bandwidth. The second process is
known as the Hyper Analytical Task Scheduling Algorithm,
and based on the scheduled tasks, the Policy-based Profit
Maximization Algorithm was proposed in the final process.
The performance comparison of the proposed work is
analyzed through some empirical results. The result shows
that the proposed work significantly reduces the makespan
of task scheduling and gives high profit compared with the
other scheduling algorithms.

KEY WORDS: Virtual Machine, Makespan, Policy-based
Profit Maximization, Hyper Analytical Task Scheduling,
VM Cluster Formation

1. INTRODUCTION

Cloud computing is a model where the configurable
computing resources are being shared, which are based on
on-demand usage, that can be minimally managed or needed
interaction for service providers[1].

Cloud computing is categorized into three types of service
models known as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS). In IaaS, computing resources are considered as

services. In any IaaS, services provided by service providers
are similar to facilitating hardware resources to users. Cloud
computing can be considered as an extension to Grid
Computing. One of the main features of this type of Cloud
Computing is Virtualization. With virtualization, virtual
machines are created on physical machines, which are
limited in numbers. In PaaS model, providers deliver
computing platform software [2]. For SaaS model,
applications are provided as services that runs on
infrastructure created and maintained by the providers [3].

Depending on the location of cloud providers, the virtual
machines are placed inside physical machines along with
the distributed data centers. These computing resources are
also being shared between users according to the user needs
over the resources. These are the factors that requires a
proper resource allocation that can give huge impact on the
system performance [4].

In order to satisfy user’s requests, these virtual machines
created in data centers in cloud needs to be efficiently
scheduled [5]. The scheduling process of virtual machines is
to find the way in which physical machine resources are
allocated in order to create a virtual machine object [6]. The
requests to create virtual machines are sent the Physical
Machines (PM) at a suitable Data Center (DC), which are
then scheduled in order to fulfill the needed resources such
as RAM, Memory, Central Processing Unit.

Today, cloud computing is the most preferred way over
handling tasks because of the flexibility and reliability. It
also scalable as physical machines can be added easily. The
tasks sent to these cloud systems are mostly based on NP-
Hard and NP-Complete, and some scheduling algorithms,
which are based on rules such as deterministic algorithms
are used as they are simple and easy to be build. However,
according to [19, 21], these algorithms are not suitable as
the tasks requirements varies in demands.

As tasks begins to change to more complex demands,
scheduling of these resources also changes. Heuristic
algorithms are being introduced to improve the scheduling
process in cloud computing, which also attracts cross
domain researchers. Some of the later research even

An Efficient Virtual Machine Scheduling Algorithm To Minimize Makespan

And Maximize Profit Using Hyper Heuristic Approach

Ahmad Alauddin Ariffin1, Aws Fadhil Ibrahim2, Sazlinah Hasan3, Rohaya Latip4
UPM Faculty of Computer Science and Information Technology, Malaysia

1alauddin@upm.edu.my
2awsfadhili91@gmail.com

3sazlinah@upm.edu.my
4rohayalt@upm.edu.my

 ISSN 2278-3091
Volume 8, No.1.4, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse3281.42019.pdf

https://doi.org/10.30534/ijatcse/2019/3281.42019

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

207

proposed of combining more than two heuristic algorithms
to improve scheduling process, which are also known as
hybrid heuristic scheduling algorithms.

There are a few basic heuristic algorithms which are used to
create hybrid heuristic scheduling algorithms. The main
objective of combining these basic algorithms is to find
better results of heuristic algorithms such as Artificial Bee
Colony, Invasive Weed Optimization, Particle Swarm
Optimization, and Ant Colony Optimization.

The main contribution of this work is to group available
PMs into number of clusters before their allocation.
Provided with efficient VM scheduling algorithm, this could
minimize the makespan of the tasks and finally find the
maximum profit for provides based on the policy.

2. RELATED RESEARCH

Schedulers can be classified into several types, and listed
above are the most essential ones:

 Optimal or non-optimal: An optimal scheduler is
able to schedule a specific set of tasks if it is
schedulable by schedulers.

 Preemptive or non -preemptive: A preemptive
scheduler is able to make a decision on the
suspension of a particular task before the execution
is completed, and resume the process at a later
time, as a higher priority tasks are ready. However,
non-preemptive schedulers are not able to suspend
the tasks in a similar manner, as the tasks that are
already in progress will be able to be balanced
unwillingly.

 Static or dynamic: Static scheduler works by
computing the tasks implementation sequence
preceding the run-time. The task characteristics
information is essential for this scheduler, but it
also generates small run-time overhead. This type
however, is not able to handle non-predicted or
periodic events. On the other hand, dynamic
schedulers decides during the the system run-time.
While this permits in creating a system that is more
flexible, it however, also produces some overhead.

Over the years, a number of traditional scheduling
algorithms have been presented, namely earliest due date
(EDD) [7], critical path method (CPM) [8], project
evaluation and review technique (PRET) [9], dynamic
programming [10], and branch-and-bound [11]. As these
methods are constructed based on singular or a small
number of rules in arranging and managing the tasks, they
are mostly simpler in implementation. While several
traditional methods guarantee in providing the scheduling
problem with the best solution, they all however, fell short
in terms of solving the problem in reasonable time frame,
mainly on a larger or complex problem.

The two main disadvantages mentioned earlier have
inspired researchers to identify ways to modify the search
strategy of these methods. Firstly, the time consumption of a
majority of full search algorithms, namely dynamic
programming and branch-and-bound are usually high,
mainly due to the large number of checks they have to
perform. Secondly, although deterministic algorithms are
easy to implement and substantially fast, they do come with
one major drawback, which is easily falling into local
optima. As discussed earlier, although the traditional
algorithms are efficient enough in generating optimal
solution for small scheduling problems in a timely manner
[12], but the same cannot be said for larger scheduling
problems [13].

The main cloud scheduling problem is that the resources
and jobs have to be assigned and scheduled in a manner that
can ease the users in multiple areas, namely job completion
in minimal time, and boost the throughput Cloud Resource
Provider and user satisfaction.

The major distinction between scheduling in a traditional
single processor and cloud environment is that, the latter
consists of several processors. In addition, the cost and
execution time in carrying out similar tasks in different
processor units might differ due to the fact that the processor
units might consist of different resources in a cloud.
Generally, scheduling in a cloud computing system or a
multi-core processor can be divided into two parts, namely
the execution order of the tasks determination, and also
assigning tasks to suitable processor unit. The most crucial
problem in multi-processor systems is task mapping and
scheduling with various sets of limitations, which is an NP-
complete problem. Task queues in a system are divided into
three parts, namely high priority, medium priority, and low
priority tasks [27]. Upon the arrival of requests, the
algorithm then measures the priority level based on the cost
of the requests on each processor, before sending them to
task queues that match them best. After all the steps have
been completed, the tasks are executed by the system based
on their priorities. Lin and Lu [28] proposed SHEFT
method, which works by selecting the task with the highest
priority, to measure the time completion for every processor
units, before sending the it to the processor with the shortest
time completion.

Besides the methods discussed earlier, heuristics algorithms
have also been utilized in recent studies for the purpose of
scheduling in cloud computing systems. Meta-heuristics is
mainly utilized to acquire a possible solution in a short time
frame [29]. In order to identify possible directions or
combinations from huge space of solution, this method
utilizes strategic guesses, and discovers better possible
solutions through repeated calculations. This method
consists of three major operators, which are transition,
evaluation, and determination. The first in the category, the
transition operator, works by modifying the current solution
to the later state. The two usual methods of transition for

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

208

combinatorial problems are constructive and perturbative.
This operator’s complexity level also differs based on the
meta-heuristics design. The second operator, which is the
evaluation operator, measures the value of the problem’s
objection function, which includes scheduling problem’s
makespan. When measuring the solutions, a number of
metaheuristics do not utilize an objection function directly.
Rather, other measurement instruments are employed in
determining the decision space value. Thus, the value might
not be representative of what the real quality of the
optimization problem solution, as the value can be measured
through either the decision or objective space. The third
operator, which is the determination operator, guides the
search. It decides both the directions, and also the search’s
diversification or intensification, which might manipulate
the speed of convergence.
A majority of the studies which employed meta-heuristics in
scheduling have been utilized on job scheduling problems
and grid computing, namely tabu searches, genetic
algorithms, particle swarm optimization (PSO), and ant
colony optimization (ACO), and also large distributed
systems. Cloud computing systems scheduling is a job shop
scheduling problem variant. Optimization algorithm has
been employed by numerous studies to solve problems in
scheduling. In this work the new hyper scheduling
algorithm contains, Ant Colony Optimization (ACO),
Particle Object Swarm (PSO), Artificial Bee Colony (ABC),
and Invasive Weed Optimization (IWO). These scheduling
algorithms are selected based on their priority.
Resource-Aware Scheduling Algorithm (RASA), a new task
scheduling algorithm has been proposed by Saeed Parsa and
Reza Entezari-Maleki [14]. RASA mainly consists of two
traditional algorithms, namely Min-min and Max-min. This
algorithm uses the benefits of Min-min and Max-min and
hides their shortcomings. This algorithm takes into account
the tasks’ incoming rate, task’s limit, and task execution
expenditure on every resource, but does not consider the cost
of the transmission. Another reliable scheduling algorithm
has been proposed by Arash Ghorbannia et al., [15], which
divides major job into sub jobs. The acknowledge and
request time are determined separately to balance the jobs.

Another new algorithm which is based on the effect of
RASA has been proposed by El-Sayed T. El-kenawy et al,
[16]. They have improved Max-min algorithm by changing
its selection basis from total time into predictable
implementation time. In order to display the disseminated
systems’ simultaneous performance, petri nets are employed.
It has been shown that Max-min achieves agendas that are
equivalent to the lower makespan before unique Max-min
and RASA. SLA Based Resource Provisioning for Hosted
Software as-a-Service Applications in Cloud Computing
Environments Cloud computing has been proposed by
Linlin Wu, and Saurabh Kumar Greg [17], which is a
solution to address problems on namely, distribution,
configuration, licensing, and enterprise applications
operation that are linked to the traditional IT infrastructure,

deployment models, and software sales. By moving to the
cloud model from a traditional model has a number of
advantages, namely providing revenue that is ongoing for
SaaS providers, and lowering the cost for enterprise clients
and complexity of maintenance. In order to measure the
Quality of Service (QoS), a Service Level Agreement (SLA)
needs to be established.

A Stochastic model has been introduced by Dario Bruneo
[18] to identify the performance of data center and QoS in
IaaS cloud computing systems by Dario Bruno [18]. As a
result of the various strategies available, which ranges from
the association with other clouds to the placement of VM,
the management of cloud datacenter has been the main
issue. To comply with the users that do not have a sufficient
readily available compute resources, W.R. Helen [19] has
introduced Self-Adaptive Learning PSO-Based Deadline
Constrained Task Scheduling for Hybrid IaaS, which
provides Infrastructure as a Service (IaaS). IaaS works by
multiplexing to attain the economy of scale, thus encounters
a tasks scheduling challenge, in order to achieve the peak
demand, whilst still factoring in the QoS preservation. A
few solutions have been proposed by previous studies to
solve this issue, namely, cloud federation, and proactive
machine purchasing. Nevertheless, cloud federation is
currently still hardly achievable, and the proactive machine
purchasing is not economic. In this study, the researcher has
proposed source allocation framework which is beneficial
when the demand is higher that the resources, as it can be
utilized by the IaaS provider to transfer the tasks to External
Clouds (ECs). Besides that, no formal agreement on inter
cloud is needed by this architecture for the cloud federation.
However, the main challenge of this proposed way is on how
the allocation of users tasks can be done in such a way that
it will be beneficial in boosting the IaaS provider profit,
while still factoring in the QoS. Integer programming model
(IP) is then used to formulate this problem, and which then
utilizes self-adaptive learning particle swarm optimization
based scheduling approach (SLPSO) to solve it. SLPSO
consists of four strategies of updating, which provide the
robustness and diversity of each particle by adaptively
updating its velocity.

In a separate study, done by Jianying Luo, Lei Rao, and Xue
Liu[20], the Temporal Load Balancing with Service Delay
Guarantees has been proposed for Data Center Energy Cost
Optimization Cloud computing services, as they have been
integrated in our daily lives. Internet data center (IDC) is an
infrastructure that is used to support these services, and the
amount of IDCs energy consumption soars with the rising
demand for cloud computing services. The issue of IDCs
energy management has brought great attention from
various sectors, namely the industry and academia. Energy
cost minimizing in deregulated electricity for IDCs is the
main focal point of this study. They have proposed Energy
Cost Optimization-IDC algorithm (eco-IDC) and a two-
stage design, in order to schedule workload dynamically,

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

209

before implementing it on IDC servers through an input
queue, and to manipulate the electricity price’s temporal
diversity. A real life enterprise production data center
workload traces and the price of electricity are used for
experiment purposes. The study has identified that the
energy cost of IDCs has been significantly reduced through
the selected approach, which assures a service delay bound,
and when the size of the service delay bound is huge, it
helps to alleviate the workload drop.

Besides that, in boosting performance and lowering the cost,
Haitao Yuan, Jing Bi [21] have also proposed Cost-Aware
Workload Scheduling and Admission Control (CAWSAC)
to be implemented on Distributed Cloud Data Centers
Multiple heterogeneous applications which concurrently run
in distributed cloud data centers (CDCs). A market with a
diverse geographical range of energy cost and bandwidth
may cause a challenging problem, especially on the ways of
minimizing CDC’s provider’s total cost. Based on the
problem encountered, this study proposed two approaches,
which firstly, a revenue-based workload admission control
method, that considers various factors, namely revenue,
expected response time, and priority, before admitting the
requests. Secondly, a cost-aware workload scheduling
method, which optimizes the internet service providers’
selection pool for CDC, and also the total figure of servers
that are active in each CDC. From the results of the trace
driven simulation, they have discovered that when compared
with other existing methods, the two methods proposed
earlier not only can reduce the total cost tremendously, but
also boosts CDCs provider’s throughput. Wenhong Tian
[22] developed an essential element for large-scale Cloud
applications, which is a toolkit modeling and simulation of
real-time VM allocation in a Cloud Data Center Resource
scheduling in infrastructure as a service (IaaS). As the two
main elements, which are the network infrastructure,
conditions, and environment might be beyond developers’
control, it is highly challenging to conduct extensive
research regarding real environment issues.

In their study, Ferrandi et al. [30] have utilized ACO in
scheduling both the tasks and also the communications
between each tasks. In the effort of reducing exploration’s
execution time, they have proposed a multi-stage decision
process. Besides that, they have also added a forgetting
factor to increase the diversity by reserving the worst
solutions. In another study, Wang et al. [31] have
introduced CPACO as a solution for multi-agent task
allocation problem. As the factor of efficiency, this study
utilized agent capacities, while factoring in the cost of
communication simultaneously. However, Bai et al. [32]
have identified that the application of single colony system
in ACO is usually dependent on the pheromones’ positive
feedback, leading to the fall of system into local optima.
Thus, to achieve load balancing for the task scheduling, the
study has introduced MACO approach. MACO works by
considering the feedbacks from both positive and negative

angles from the information shared among multiple
colonies, to prevent idle situations. Another solution for this
problem has been proposed by Lu and Gu [33] through an
ACO based model, which is a load-adaptive cloud resource
scheduling model. This model works by monitoring the
utilization of CPU and memory, computing node bandwidth,
and identifies the hotspot node through a cluster controller.
A node that turns into a hotspot releases ants which help to
swiftly locate the stagnant nodes nearby, and transfers a part
of the load to the stagnant node.

In boosting the service providers in an IaaS environment’s
profit, Zuo et al. [34] have introduced a self-adaptive
learning particle swarm optimization (SLPSO) method. This
method consists of four updating strategies that are utilized
in updating the particle's velocity and boosting the diversity
of the search. PSO has also been employed on traffic lights
programming in a study by Garcia-Nieto et al. [35]. The
researchers have managed to identify traffic light cycle
programs that are successful through PSO. In a separate
research done by Wen at al. [36], PSO and ACO are
combined to develop a hybrid algorithm. The hybrid
resources scheduling algorithm is employed on global and
local optimal solution, and also the solutions obtained
through ACO. In a similar study, Xie and Wu [37] have
experimented on the ACO parameters optimal combination.
In order to identify a more efficient parameters combination
for ACO performance boosting, the study has utilized PSO.

In addition, honey bee behavior inspired load balancing
(HBB-LB), is another algorithm that has been proposed by
Babu et al. [40]. By identifying VMs that are overloaded,
the algorithm then sends the tasks of these VMs to other
VMs with a low load. This algorithm considers the priority
level of each tasks removed from the VMs that were
overloaded. Besides that, the Artificial Bee Colony (ABC)
[38] has been employed for the VM machine scheduling
optimization on Cloud computing. This study aims to both
analyze the VM load balancing algorithm difference, and
reduce data processing time makespan. Heuristic task
scheduling with Artificial Bee Colony (HABC) algorithm
has also been proposed [39] to be utilized on VMs in
heterogeneous Cloud computing. The main objective of the
study is the introduction of the current task scheduling and
load balancing algorithm, HABC, in minimizing the
system’s makespan. Multi-objective Artificial Bee Colony
Algorithm (TA-ABC) has been proposed through another
study [41] to attain task scheduling efficiency. This
algorithm works by optimizing a number of areas, namely
cost, energy, processing time, and resource utilization of the
cloud environment.

Cloud computing is extremely useful to universal users, as it
is able to efficiently present the computing resources above
the network that are on-demand. In general, users receive
the computing resources in cloud data centers through the
pay-as-you-go pricing model. Furthermore, the number of

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

210

companies that are attracted to set up their applications in
cloud data centers are growing due to the scale economy
introduced through cloud computing. Providing cost-
effective services to the users while simultaneously able to
guarantee the specified QoS are the main aims of a private
cloud provider. Thus, this also means that a private cloud
provider’s vital objective is to be able to maximize the profit
margin.

Yeo and Buyya [23] have proposed a pricing function
method that is dependent on both utilization and base
pricing rate. Profit maximization can be achieved through
this method, as clients are inclined on paying higher price
range for resources when the utilization is high, as it boosts
the demand for the sources. The opposite will happen if for
lower utilization, as providers are inclined to offer lower
prices to gain the clients’ attention.

Dynamic pricing strategies has also been discussed by
Maglaras and Meissner [24], where a fixed amount of a
resource is owned by a company, and then utilized for the
delivery of various products. The study has demonstrated
that the problem can be modified into a simpler form, which
gives the company the ability to control the aggregate rate
where resources have been used. Another study, done by
Eren and Maglaras [25] has examined the the scenario of
monopoly pricing for sellers that are equipped with market
information that is limited, by taking sellers’ various
learning capabilities demand into account. They have found
that the particular policies will perform better when the
pricing policies are not updated and re-optimized constantly.
Thus, this will be a suitable option for models that are
active, as they tend to demand assumptions that are more
rigid.

H. Chen. et al. [42] have done a comparative study between
the performance of traditional heuristic algorithms for
scheduling, which includes Opportunistic Load Balancing
(OLB), FCFS, Minimum Completion Time (MCT),
Minimum Execution Time (MET), Max-min, Min-min, and
others. Besides thats, as a solution to the makespan and
boost the utilization of resources, they have also employed
Min-min algorithm in their study. From their findings, they
have discovered that, compared to other algorithms, they are
able to achieve a better schedule that aids the makespan
minimization through Min-min algorithm.

S. Devipriya et al. [43] proposed an alternative of complete
time through simple changes in Max-min algorithm based
on expected execution time. Through these small changes,
the improved Max-min can aid the tasks within cloud in a
acquiring lower makespan, when compared with the
previous version of Max-min. Z. Zheng et al. [44] in their
study, have introduced Parallel Genetic Algorithm (PGA),
which is able to accomplish the given tasks 1.5 times faster
with two threads, and 2.7 times faster with the usage of four
threads, when compared to the performance of the original

GA. The rate of resource utilization is significantly higher
when it is compared to Round Robin algorithm and the first
fit, thus making it easily applied on numerous types of
parallel mainframes and computer networks.

K. Dasgupta et al. [45] have conducted an experiment on
using GA for the load balancing of resource while
scheduling the tasks on the cloud. Experimental outcomes
shows that GA manage to reduce 25 to 26% of the response
time. M. Shojafar et al. [46] presented a combination of
fuzzy idea and GA (FUGE) which is predicted to lower the
cost, makespan, imbalance level in cloud while conducting
the scheduling of tasks. Fuzzy hypothesis works by
analyzing the chromosomes’ fitness estimation and
crossover operation. The addition of GA helps to improve
the performance by lowering the cost of execution and
makespan. A 45% of improvement has been demonstrated
on the cost of execution, and 50% of makespan
improvement over the traditional GA.

Besides that, a study by M. A. Tawfeek et al. [47] also
concentrates on the makespan minimization through
objective function. In this study, the heuristic function is
based on two elements, which are the expected task transfer
time, and the execution time. Each ant is also constrained to
visiting each VM once. The experiment is employed on
Cloudsim simulator, with the tasks number ranging from
100 to 1000. The findings of simulations have demonstrated
that when compared with FCFS and RR algorithms, ACO
requires lesser time with the increasing number of tasks.
The findings have shown that for 1000 tasks, there is a
reduction of around 29 to 32% in makespan.

W. N. Chen et al. [48] proposed an improved workflow
scheduling algorithm that is based on Ant Colony System
(ACS) algorithm. The algorithm has been designed to lower
the cost, while still keeping to deadline. To ensure the
success of solving the problem, the study has employed two
variants of well-defined pheromone, which function as
firstly, cost minimizer, and also also makespan minimizer.
In order to control the ants in identifying the search
directions, the study has divided heuristic information into
three types. Each ant utilizes one type of pheromone and one
type of heuristics in every cycle to view the probabilities that
are controlled adaptively, and balances parameters in the
algorithm.

3. METHODOLOGY

To solve the problem an efficient VM scheduling algorithm
is needed to provide a better VM scheduling in cloud to
reduce the make-span. This work introduces novel policy
based service model, which aim at maximizing the profit of
cloud providers.
The VM scheduling problem can be defined as follows:

 Find an optimal solution to schedule a given set of
VMs  NVMVMVMVM ,,, 21  to a given set of

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

211

physical machines
 MPMPMPMPM ,,, 21  . There are

M heterogeneous physical machines for dispatching
the VM requests.

 A VM request set  rq RRRVM ,,, 21Re  is the set of

input requests. The VM request represents
 BMCRi ,, where C is the number of cores, M is

the memory and B is the Bandwidth of VM.
In order to accomplish VM scheduling process, this research
first group the physical machine (PM) based on their
characteristic. Each PM has own number of CPU, Memory
and Bandwidth. Using K-Means Clustering Algorithm,
PMs are clustered into groups. Next, the hyper task
scheduling algorithm is executed to allocate the VM to a
suitable cluster that minimize the make-span. Based on the
allocated VM, the next phase is the profit value calculation.

The existing system uses hyper heuristic algorithm [26].
This algorithm leverages strengths of heuristic algorithm
such as simulated annealing, genetic algorithm, particle
swarm optimization, and ant colony optimization by
integrating them into a single algorithm. By using this
algorithm, the make-span was reduced. But it has some
limitations; it uses random selection mechanism to select the
low level heuristic. It leads to increase in computational cost
for the resource allocation which in turn becomes a burden
for both service provider and consumer. The service
provider needs to reallocate resources again. In this work
the new hyper scheduling algorithm contains, Particle
Object Swarm (PSO), Ant Colony Optimization (ACO),
Invasive Weed Optimization (IWO) and Artificial Bee
Colony (ABC). These scheduling algorithms are selected
based on their priority. For maximizing the profit,
productive estimation (based on the scheduled VM) and
basic First in First Out policy is used to find the maximum
profit. Figure 1 shows the system architecture of the VM
Scheduling.

4. PROPOSED ALGORITHM

4.1 VM Cluster Formation
The K-means clustering algorithm is used to cluster the
available PM into K-Groups. Steps for K-means clustering:

 Let },,,{ 21 nxxxX  be the set of data point and

},,,{ 21 cvvvV  be the set of centers.
 Step1: Randomly select c cluster centers.
 Step 2: Calculate the distance between each data

point and cluster centers.
 Step 3: Assign the data point to the cluster center

whose distance from the cluster center is minimum
of all the cluster centers.

 Step 4: Recalculate the new cluster center using:





ic

j
i

i
i x

c
v

1

1

 Step 5: Recalculate the distance between each data
point and new obtained cluster centers.

 Step 6: If no data point was reassigned then stop,
otherwise repeat from step 3.

Figure 1 : System Architecture

4.2 Task Sscheduling Algorithm

After grouping the PM into number of clusters, the hyper
analytical task scheduling algorithm is applied to allocate
the task to the particular cluster that minimize the makespan
of tasks.

A hyper-heuristic is a methodology for selecting or
generating heuristics to solve hard computational search
problems [26]. The basic idea of the algorithm is to use two
operator diversity detection and improvement detection to
balance the intensity and diversification in the search of the
solutions during the process. The algorithm is below

Input: Cloudlet
Output: Makespan

 Step 1: Input Task and PM Details
 Step 2: Initialize the population Z= {z1, z2,…, zn}.

(Based on the Task)
 Step 3: Is it the First Execution?
 Step 4: If Yes =>

o Step 4.1: Randomly select a one
algorithm. (ABC, ACO, IWO and PSO)

 Step 5: If No =>
o Step 5.1: Select the algorithm with highest

priority for scheduling.
 Step 6: While the termination criterion is not met.

o Step 6.1: Update the population of
solutions Z by using the selected
algorithm.

 Step 7: Compute F1 = Improvement Detection (Z).
 Step 8: Compute F2= Diversity Detection (Z).
 Step 9: Compute F3=Pertub(Z)
 Step 10: Compute If Pertub(Z) is true

o Step 10.1: Assign “Lowest Priority” to
the current algorithm.

o Step 10.2: Select another algorithm with
the “Highest Priority”.

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

212

 Step 11: Repeat the scheduling process until the
maximum number of iteration is reached.

Output the Best Makespan as the final solution.

Improvement Detection (Z) The improvement detection
operator is used to decide whether to change algorithm or
not. This can be done by comparing the makespan obtained
using Hi with the current makespan. If the makespan
obtained in the Hi is greater than current makespan it results
“true”. This operator returns false for the following
conditions.

 If the current makespan is not improved after ϕni
iterations

 When maximum number of iteration is reached
 When stop condition is reached.

Improvement Detection function can be depicted as follows








otherwise true;

iteration after improvednot ismakespancurrent ;

1

nifalse
F

Diversity Detection (Z) This operator is used to decide when
to change new algorithm to perform scheduling. The
working of this algorithm is as follows. Initially it assigns
the solution obtained in the first iteration as the threshold
value (ω), ie ω=D(Z0). And compares values with the
current solution. If the current value is greater than ω, it
returns true, else it returns false.

Diversity Detection Function can be depicted as follows



 


otherwisefalse

ZDtrue
F

;
)(; 0

2



Perturbation Operator (Z) Perturbation operator is used to
select a new low level algorithm for the process of effective
scheduling. This operator returns false when improvement
detection operator and diversity detection operator returns
true, else it returns true. At once it returns true,

1. It assigns “Lowest Priority” to the current
algorithm

2. It selects the algorithm with the highest priority
for the next schedule.



 


 otherwise ,

 , 21
3 true

trueFandtrueFfalse
F

4.3 Profit Maximization Algorithm
Productive estimation and basic First in First Out policy is
used to find the maximum profit. Procedure:
 While (Task List is not empty)
 {

 First it takes the first task (i.e first task that
allocated to VM)

 Find the utilization of resources (i.e how
much it use the resources (cpu, memory and
bandwidth)

 Compute the price
 Remove the first task

 }
5. SIMULATION IMPLEMENTATION

This work was done using CloudSim. It is a simulator;
hence, it doesn’t run any actual software. It can be defined
as ‘running a model of an environment in a model of
hardware’, where technology-specific details are abstracted.
Figure 2 illustrated the Implementation Workflow of our
work.

Figure 2 : Implementation Workflow

 6. RESULTS AND DISCUSSION

In running the simulation, there are 54 Physical Machines
(PM) are used. Each PM has three important properties,
which are CPU, Memory and Bandwidth. After applying the
K-means Clustering Algorithm, the PMs are categorized
into 4 clusters groups, which has different number of PMs.
The Instance Type of Each cluster group are Low, Medium,
High and Very High. Table 1 shows the Clustered PM that
was created after applying K-means Clustering Algorithm.
Table 2 shows the requested VM. Each VM contains VM
ID, duration (time for accessing the resources), CPU,
Memory and Bandwidth.

Table 1 : Clustered PM

Cluster Id Instance Type No of PM

1 Low 20

2 Medium 16

3 High 9

4 Very High 9

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

213

Table 3 and Figure 4 show makespan calculated by each
algorithm for the different algorithm implemented in this
research. Hyper-heuristic algorithm showing much less
makespan than other and it is much better than other
algorithms which are PSO, ACO, ABC, and IWO. From the
result, it is clear that hyper-heuristic is the makespan
reducing high-performance algorithm than other heuristic
algorithms. (Proposed < ABC < PSO < IWO < ACO).

Table 2 : VM Request

Table 3 : Scheduling Time

Figure 3 shows the scheduled VM. In the graph, x-axis
represent VMID and y-axis represent cluster ID. Table 4
and Figure 5 show the profit comparison for the different
algorithms implemented in this research. Hyper-heuristic
algorithm showing a much better profit than other
algorithms which are PSO, ACO, ABC, and IWO. From the
result, the proposed work maximizes profit compared to
other heuristic algorithms. (Proposed > IWO > PSO > ACO
> ABC).

Figure 3 : Scheduled VM

Figure 4 : Makespan Comparison

Figure 5: Profit Comparison

Table 4 : Profit Value

7. CONCLUSION

The research provides the novel solution in order to
minimize the makespan and maximize the profit of the task
in cloud environment. This research is supported by various

VM Id Duration CPU Memory Bandwidth

v1 4 1 5 200

v2 8 2 8 300

v3 2 4 10 600

v4 10 5 12 600

v5 4 6 15 800

v6 5 8 32 800

v7 12 10 20 1000

v8 10 12 25 2500

Algorithm Makespan

ACO 20

PSO 17

ABC 16

IWO 18

Proposed 14

Algorithm Profit

ACO 0.788

PSO 1.711

ABC 0.406

IWO 1.905

Proposed 2.642

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

214

ideas that are discussed in the literature review supporting
the different views towards task scheduling in cloud
computing.

Effective scheduling plays a significant role in performance
provided by the cloud environment. This thesis analyzed
various scheduling algorithm and found the shortcomings of
the existing system. And modify the hyper scheduling
algorithm based on their priority which could overcome the
shortcomings of the existing work. This research also
proposed the policy based profit maximization. Further the
proposed algorithm to be implemented in a simulator
(Cloudsim).

REFERENCES
1. P. Mell and T. Grance. The NIST Definition of Cloud

Computing, National Institute of Standards and
Technology, Information Technology Laboratory,
Technical Report Version 15, 2009.

2. Bazarbayev, S., Hiltunen, M., Joshi, K., Sanders, W.H.,
Schlichting, R. Content-based scheduling of virtual
machines (VMs) in the cloud. In: Proceedings of 33rd
IEEE International Conference on Distributed
Computing Systems (ICDCS 2013), pp. 93–101. IEEE,
2013.
https://doi.org/10.1109/ICDCS.2013.15

3. Archana Pawar, Deepak Kapgate. A Review on Virtual
Machine Scheduling in Cloud Computing, IJCSMC,
Vol 3, Apr 2014, pg 928-933, 2014.

4. Karan D. Prajapati, Pushpak Raval, Miren Karamt and
Potdar. Comparison of Virtual Machine Scheduling
Algorithms in Cloud Computing, International
Journal of Computer Applications (0975 – 8887)
Volume 83 – No 15, December 2013, 2013.
https://doi.org/10.5120/14523-2914

5. Varma, M.K., Choi, E. Study and comparison of
virtual machine scheduling algorithms in open
source clouds. In: The 11th International Conference
on Future Information Technology, 20–22 April 2016,
2016.

6. S.Sotiriadis, N.Bessis, C.Amza, R.Buyya. Vertical and
horizontal elasticity for dynamic virtual machine
reconfiguration, IEEE Trans. Serv. Comput. PP (99)
(2016), doi: 10.1109/TSC.2016.2634024. 1–1, 2016.
https://doi.org/10.1109/TSC.2016.2634024

7. K. M. Elsayed and A. K. Khattab. Channel-aware
earliest deadline due fair scheduling for wireless
multimedia networks, Wireless Personal Commun.,
vol. 38, no. 2, pp. 233–252, 2006.
https://doi.org/10.1007/s11277-006-9013-1

8. W. H. Kohler. A preliminary evaluation of the
critical path method for scheduling tasks on
multiprocessor systems, IEEE Trans. Comput., vol. C-
24, no. 12, pp. 1235–1238, Dec. 1975, 1975.
https://doi.org/10.1109/T-C.1975.224171

9. R. Ingalls and D. Morrice. PERT scheduling with
resources using qualitative simulation graphs, in
Proc. Simul. Conf., 2000, vol. 1, pp. 362–370, 2000.

10. H.-J. Sch€utz and R. Kolisch. Approximate dynamic
programming for capacity allocation in the service
industry, Eur. J. Oper. Res., vol. 218, no. 1, pp. 239–
250, 2012.
https://doi.org/10.1016/j.ejor.2011.09.007

11. D. Shi and T. Chen. Optimal periodic scheduling of
sensor networks: A branch and bound approach,
Syst. Control Lett., vol. 62, no. 9, pp. 732–738, 2013.
https://doi.org/10.1016/j.sysconle.2013.04.012

12. S. M. Johnson. Optimal two- and three-stage
production schedules with setup times included,
Naval Res. Logistics Quart., vol. 1, no. 1, pp. 61–68,
1954.

13. M. R. Garey, D. S. Johnson, and R. Sethi. The
complexity of flowshop and jobshop scheduling,
Math. Oper. Res., vol. 1, no. 2, pp. 117–129, 1976.

14. Saeed Parsa and Reza Entezari-Maleki. RASA: A New
Task Scheduling Algorithm in Grid Environment.
World Applied Sciences Journal 7 (Special Issue of
Computer & IT): 152-160, 2009.
https://doi.org/10.4156/jdcta.vol3.issue4.10

15. Arash Ghorbannia Delavar, Mahdi Javanmard,
Mehrdad Barzegar Shabestari and Marjan Khosravi
Talebi,(2012) RSDC (Reliable Scheduling Distributed
In Cloud Computing). in International Journal of
Computer Science, Engineering and Applications
(IJCSEA) Vol.2, No.3, June 2012, 2012.
https://doi.org/10.5121/ijcsea.2012.2301

16. El-Sayed T.El-kenawy, Ali Ibraheem El-Desoky,
Mohamed F. Al-rahamawy. Extended Max-Min
Scheduling Using Petri Net and Load Balancing,
International Journal of Soft Computing
and Engineering (IJSCE) ISSN: 2231-2307,
Volume-2, Issue-4, September 2012, 2012.

17. Linlin Wu, Saurabh Kumar Greg. SLA based
Resource Provisioning for Hosted Softwareas-a-
Service Applications, IEEE Trans. Services
Computer., vol. 7, no. 3, pp. 465–485, Jul. 2014, 2014.
https://doi.org/10.1109/TSC.2013.49

18. Dario Bruneo. A Stochastic Model to Investigate Data
Center Performance and QoS, IaaS Cloud Computing
Systems Proc. 32nd IEEE Int.Conf. Comput. Commun.,
2013, pp. 2148–2156, 2013.

19. A. Shahina Banu and W. R. Helen. Self Adaptive
Learning PSO-Based Deadline Constrained Task
Scheduling for Hybrid IaaS Cloud, IEEE Trans.
Autom. Sci. Eng., vol. 12,no. 1, pp. 309–323, Jan.
2014, 2014.

20. Jianying Luo, Lei Rao, and Xue Liu. Temporal Load
Balancing with Service Delay Guarantees for Data
Center Energy Cost Optimization, IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 775–784,
March 2014, 2014.
https://doi.org/10.1109/TPDS.2013.69

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

215

21. Haitao Yuan, Jing Bi. CAWSAC: CostAware
Workload Scheduling and Admission Control for
Distributed Cloud, Data Centers vol. 2, no. 1, January-
March 2014, 2014.

22. Wenhong Tian. A Toolkit for Modeling and
Simulation of Real-time Virtual Machine Allocation
in a Cloud, Data Center Resource scheduling in
infrastructure as a service (IaaS). Future Gener. Comp.
Sy., vol. 25, no. 6, pp. 599–616, 2009.

23. Yeo, C.S.,& Buyya, R. Pricing for utility-driven
resource management and allocation in clusters,
Proceedings of the ADCOM(pp.32–41). Ahmedabad,
India, 2004.

24. Maglaras, C.,& Meissner, J. Dynamic pricing
strategies for multiproduct revenue management
problems, Manufacturing & Service Operations
Management,8(2),136–148.10.1287/msom.1060.0105,
2009.
https://doi.org/10.1287/msom.1060.0105

25. Eren,S.S.,& Maglaras, C. Monopoly pricing with
limited demand information, Journal of Revenue and
Pricing Management, 9(1-2), 23–48, 2009.
https://doi.org/10.1057/rpm.2009.41

26. C. Tsai et al. A hyper-heuristic scheduling algorithm
for cloud, IEEE Trans. Cloud Comput., vol. 2, no. 2,
pp. 236–250, Feb. 2014.
https://doi.org/10.1109/TCC.2014.2315797

27. Selvarani S, Sadhasivam G. Improved cost-based
algorithm for task scheduling in cloud computing,
Proceedings of the IEEE international conference on
computational intelligence and computing research, pp
1–5, 2010.
https://doi.org/10.1109/ICCIC.2010.5705847

28. Lin C, Lu S. Scheduling scientific workflows
elastically for cloud computing, Proceedings of the
IEEE international conference on cloud computing, pp
746–747, 2011.

29. Blum C, Roli A. Metaheuristics in combinatorial
optimization: overview and conceptual comparison,
ACM Comput Surv35(3):268–308, 2003.

30. Ferrandi F, Lanzi PL, Pilato C, Sciuto D, Tumeo A.
Ant colony heuristic for mapping and scheduling
tasks and communications on heterogeneous
embedded systems, IEEE Trans Comput Aided Des
Integr Circuits Syst 29(6):911–924, 2010.

31. Lu W, Zhiliang W, Siquan H, Lei L. Ant colony
optimization for task allocation in multi-agent
systems, China Commun 10(3):125–132, 2013.

32. Bai L, Hu YL, Lao S, Zhang WM (2010). Task
scheduling with load balancing using multiple ant
colonies optimization in grid computing. In:
Proceedings of the international conference on natural
computation, pp 2715–2719, 2010.

33. Lu X, Gu Z. A load-adapative cloud resource
scheduling model based on ant colony algorithm. In:
Proceedings of the IEEE international conference on

cloud computing and intelligence systems, pp 296–300,
2010.
https://doi.org/10.1109/CCIS.2011.6045078

34. Zuo X, Zhang G, Tan W. Self-adaptive learning PSO
based deadline constrained task scheduling for
hybrid IaaS cloud, IEEE Trans Autom Sci Eng
11(2):564–573, 2014.

35. Garcia-Nieto J, Olivera A, Alba E. Optimal cycle
program of traffic lights with particle swarm
optimization. IEEE Trans Evol Comput 17(6):823–
839, 2013.

36. Wen X, Huang M, Shi J. Study on resources
scheduling based on ACO allgorithm and PSO
algorithm in cloud computing. In: Proceedings of the
international symposium on distributed computing and
applications to business, engineering science, pp 219–
222, 2012.

37. Xie X, Wu P. Research on the optimal combination of
ACO parameters based on PSO. In: Proceedings of
the international conference on networking and digital
Society, vol 1, pp 94–97, 2010.

38. Kruekaew B, Kimpan W. Virtual machine scheduling
management on cloud computing using artificial bee
colony, Proceedings of the International
MultiConference of engineers and computer scientists,
vol 1, pp 12–14, 2014.

39. Kimpan, W., & Kruekaew, B. Heuristic Task
Scheduling with Artificial Bee Colony Algorithm for
Virtual Machines. In Soft Computing and Intelligent
Systems (SCIS) and 17th International Symposium
on Advanced Intelligent Systems, 2016 Joint 8th
International Conference on (pp. 281-286). IEEE,
2016.
https://doi.org/10.1109/SCIS-ISIS.2016.0067

40. L.D. Dhinesh Babu,P.Venkata Krishna. Honey bee
behavior inspired load balancing of tasks in
cloud computing environments, Applied Soft
Computing, Vol. 13,2013;pp.2292-2303, 2013.

41. R. Jena. Task scheduling in cloud environment: A
multi-objective ABC framework, Journal of
Information and Optimization Sciences, vol. 38, no. 1,
pp. 1-19, 2017, 2017.

42. Chen, H., Wang, F., Helian, N., & Akanmu, G. User-
priority guided min-min scheduling algorithm for
load balancing in cloud computing, 2013 National
Conference on Parallel Computing Technologies,
PARCOMPTECH 2013, 2013.

43. Devipriya, S., & Ramesh, C. Improved max-min
heuristic model for task scheduling in cloud,
Proceedings of the 2013 International Conference on
Green Computing, Communication and Conservation of
Energy, ICGCE 2013, 883–888, 2013.

44. Zheng, Z., Wang, R., Zhong, H., & Zhang, X. An
approach for cloud resource scheduling based on
parallel genetic algorithm. ICCRD2011 - 2011 3rd
International Conference on Computer Research and
Development, 2, 444–447, 2011.

Ahmad Alauddin Ariffin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 206- 216

216

45. Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., &
Dam, S. A Genetic Algorithm (GA) based Load
Balancing Strategy for Cloud Computing. Procedia
Technology, 10, 340–347, 2013.
https://doi.org/10.1016/j.protcy.2013.12.369

46. Shojafar, M., Javanmardi, S., Abolfazli, S., &
Cordeschi, N. FUGE: A joint meta heuristic
approach to cloud job scheduling algorithm using
fuzzy theory and a genetic method. Cluster
Computing, 18(2), 829–844, 2015.

47. Tawfeek, M., El-Sisi, A., Keshk, A., & Torkey, F.
Cloud task scheduling based on ant colony
optimization. International Arab Journal of
Information Technology, 12(2), 129–137, 2015

48. Wkh, P., Ri, E., Vr, D., Lqihulru, W., Zloo, F.,
Ljqruhg, E. H., … Wkh, R. (n.d.). * , ,1752’8&7,21.

49. Wei, L., Zhang, X., Li, Y. Y., & Li, Y. Y. An
Improved Ant Algorithm for Grid Task Scheduling
Strategy. Physics Procedia, 24, Part C(0), 1974–1981,
2012.
https://doi.org/10.1016/j.phpro.2012.02.290

