
K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1194

ABSTRACT

Distributed embedded systems frequently employed for
implementing many of the applications such as home
automation, Automobile systems, Air surveillance, and quite
recently as subnets forming an IoT (Internet of things).
Distributed Embedded systems are quite complex due to the
existence of heterogeneity among hardware and software and
due to the existence of variance between the message flows
that should happen from the protocol uses and flow
requirements of the application concerned. The distributed
embedded systems must be tested considering hardware,
software, and the system used for networking the individual
embedded systems. For undertaking testing the distributed
embedded systems, many gadgets, tools, methods, and
mechanisms required. Testing communication that happens
among the individual embedded systems is complex.
Continuous availability of the entire distributed embedded
system along with the testing system is a critical requirement
for undertaking comprehensive testing, which as such cannot
be guaranteed. In this paper, a framework proposed for
undertaking the testing of the distributed embedded system.

Key words: Distributed Embedded System, Testing
embedded systems, scaffolding, Heterogeneous embedded
systems, Instruction set simulator, in-circuit emulator, logic
Analyzer, assert macros, Comprehensive testing

1. INTRODUCTION

Testing Distributed embedded systems comprehensively is
required for developing a fail free software. An embedded
system is developed using specific purpose hardware and
software. Both hardware and software need to be tested,
individually, and also in conjunction with each other.
Testing the proper functioning of the embedded systems that
are networked is also required. Testing an embedded system
involves testing hardware-dependent code, independent
hardware code, and testing environment required for a
specific code segment.

In a distributed embedded system, several embedded systems
are developed using different microcontroller-based systems
which are generally heterogeneously requiring the use of
middleware for doing data marshaling. Different kinds of
interfaces such as RS232C, RS485, CAN, I2C, etc. are
provided on the Microcontroller board, for effecting
communication between the Microcontroller based systems.
In a distributed embedded system network, individual
embedded systems must communicate with others for
implementing an application.

Each of the Microcontroller based systems is a location and
as many such locations exist within a distributed embedded
system. Testing must be carried at each of the locations to
test the proper functioning of the local functionality and also
concerning the functions running at other locations. Different
kinds of methods which include scaffolding, assert macros.
Instruction set simulator, logic analyzers, in-circuit
emulation, etc. required for undertaking different kinds of
testing such as testing for device functioning, response time,
throughput, etc.,

The proper Testing environment required for undertaking
testing of an embedded system. Establishing the required
test environment is complex. The test environments set at
each of the locations must be in working condition in
conjunction with each other. Testing of embedded systems
requires that the communication interfaces be working
properly. Testing of embedded systems is also complex due
to the existence of heterogeneity among the microcontroller-
based systems used for building the individual embedded
systems that act as nodes within the distributed embedded
system

Scaffolding method used for testing hardware-independent
code, assert macros used for testing the existence of the
required environment for proper processing within the
embedded system, instruction set simulator for testing the
hardware in simulation mode. Logic analyzers used for

A Framework for Testing Distributed Embedded Systems

K Chaitanya1, Dr. K Rajasekhra Rao2, Dr. JKR Sastry3

1 Scholar, Department of CSE, JNTU Hyderabad, Kilaru@gmail.com
2Director, Usha Rama College of Engineering, Vijayawada,

3Professor, ,Koneru Lakshmaiah Education foundation University, Vaddeswaram, AP, India

 ISSN 2278-3091

Volume 8, No.4, July – August 2019
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse30842019.pdf
https://doi.org/10.30534/ijatcse/2019/30842019

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1195

testing hardware, and in-circuit emulators, are used for
testing the Target in communication with the HOST.

Different types of testing methods required for undertaking
the testing of the embedded systems. Logic Analysers used
for testing the hardware. Hardware independent code tested
using scaffolding, assert macros used for testing hardware-
independent code. Instructions set simulators are used for
testing hardware-independent code and testing the devices in
a simulated manner and testing the hardware-dependent code
undertaken through the use of in-circuit emulators. Test
cases initiated from PC transmitted to target board or the
Logic analyzer for undertaking the testing and the test results
are transmitted back by the Target or the Logic Analyzer
back to the PC for storing and analyzing the test results.

In a distributed embedded system, both hardware and
software distributed into different processing nodes
connected through a network. The information
communicated among the processing nodes using the
network to which the nodes are connected. The kind of
networking system used is the key to affect communication
among the individual embedded systems. The individual
embedded systems are heterogeneous that they differ in
many ways, which include coding systems, parity, endian,
number systems, and the interfaces. The heterogeneity
among the computing nodes is also due to the existence of
different interfaces requiring conversion to a specific
communication standard. The issues of heterogeneity are
primarily due to variances existing among different
networking standards that include CAN, USB, I2C, RS485,
etc. Most of the times serial, bus-based communication
systems used for networking distributed embedded systems.

Use of a specific networking standard dictates the kind of
testing done. The kind of testing to be done largely varies as
the communication protocol changes. The interfaces
available on each of the microcontroller-based system may
not be suitable for communicating using a specific standard.
Most of the times, there is a need to convert the native
interface to the required interface so that a Microcontroller-
based system participates in the network as a computing
node.

Many methods presented in the literature for testing
standalone embedded systems which can be investigated
further to see how best these methods can be used for
undertaking testing of the distributed embedded systems.
The issue of setting the environment required for undertaking
the testing of the distributed system needs investigation since
it is one the most complex issue. Availability of the entire
distributed system in working condition is another important
issue that needs consideration. It is not possible to test any

system unless the entire system is in working condition.
Simultaneous testing at different locations in an isolated
manner and an integrated manner is complex and challenging

Many processes, methods, techniques used for undertaking
testing of the distributed systems in a most standard manner.
A framework which encompasses all elements of testing will
help to undertake to test a distributed embedded system
formally. The existing methods used for a testing stand-alone
embedded system must be modified, extended and included
into the framework so that the framework used for
undertaking the testing of distributed embedded system,

The test cases defined at system level must be broken into
elementary test cases so that the elementary test cases used
for undertaking testing at the individual location and the
results obtained at each location are merged to arrive at over
test results. One can customize the framework for suiting to
the requirements of specific distributed embedded systems.

The entire distributed embedded system must be in working
condition for testing a system-level test case. It is not
possible to meet this kind of requirement due to the existence
of many subnets within a distributed embedded network. A
strategy thus is required for carrying testing without the need
for an entire distributed embedded system in working
condition. The strategy leads to a model which help testing
carried at individual locations and the test results merged to
get the overall status of the entire distributed embedded
system

The system-level test cases are decomposed to elementary
test cases to arrive at test cases tested at a specific location.
The elementary test cases are such that they can be tested
using a specific method at a specific location. The test results
obtained at each location when merged will project the
overall test status of the entire system. System-level test
cases derived from the requirement specification of the
distributed embedded system.

Many aspects considered when a distributed, embedded
system tested. The aspects include interfaces, process flow,
heterogeneity protocols, response time, throughput, device
status, the existence of proper environment, etc. the methods
required for undertaking the testing must be identified
considering every element of testing carried.

A testing framework useful for testing any distributed
embedded system presented in this paper. The framework, as
such is extendable. To meet the testing requirements of
individual distributed embedded systems

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1196

2. PROBLEM DEFINITION

Thus the problem is to create a framework that is useful for
undertaking the testing of distributed embedded systems
without the need to have the entire system in working
condition along with the test environment system. The
setting should be undertaken considering different segments
of the system and the method used for testing the system.

3. RELATED WORK

In literature, many authors have presented the use of standard
methods of testing either stand-alone systems or distributed
embedded systems. The analysis of the methods proposed in
the literature survey reveals that no specific standard
methods have been in existence for testing a distributed
embedded system using different methods. No
comprehensive framework presented in the literature that
helps in testing distributed embedded systems.

[Chen-Huan Chiang, et al., 2004] [1] Test architecture aims
to transmit JTAG signals over a serial channel. The
architecture has been developed to facilitate system testing
and automatic field updating of distributed base stations
situated in a wireless network. The test architectures assume
that the distributed bases stations are on the same back pane
and the same chassis. The architecture considers the use of
boundary SCAN software, which is run by the processor
situated within a wireless sensor node. The nodes configured
by the SCAN software receiving instructions from a remote
location. The SCAN software will also be able to conduct a
system test and find if any system errors exist.

[Dae-Hyun Kum et al., 2006] [2] have presented a model-
based system used for the development of an embedded
system. The model-based systems are useful as it improves
quality, and the development done is the least possible time.
Simulating a system is an essay when model-based
development undertaken. The system, as such, can be
validated in the early stages of the development. Test cases
automatically generated when systems are developed using
the models. All the test cases required for validating the
models and the functions can be generated using the models.
Virtual prototypes o the models developed for undertaking
the testing.

An electronic communication system is presented by [Eric
Armengaud et al., 2005] [3] that connects all the individual
embedded systems fitted into an automobile system. Testing
of the embedded systems fitted into an automobile system
required as the failure of any system may lead to disasters.
Test cases are required to test the automobile system under
stringent conditions. A method is presented to generate test
cases based on the stimulus-response model under tough
conditions. They have developed a method that is accurate
and flexible, which generates test data for testing the
communication within the data link layer. They have used

the method for testing robustness and interoperability
between the distributed systems.

Changes to the existing applications are needed due to new
requirements or due to the introduction of new and
sophisticated technologies. The changes made to the
software may affect the code area where no changes caused,
Regression testing is to be accrued to find whether the
changes made to the software affected other areas of the
code. Specialized hardware and software are required some
times to conduct regression kind of testing. The type of
testing tool selected depends on the strategy of the
organization concerned. A regression testing tool is needed
can be configured by the organizations as per their needs.
Manual test processes are complex and time-consuming and
therefore needs avoidance. Tool based testing is robust, and
the process of undertaking testing rather becomes simple —
[G. Walters et al., 1998] [4] have proposed an automated
regression test tool that can be configured by the users as per
their requirements.

[H. Thane et al., 1999] [5] have presented the testing method
used for testing sequential programs by controlling the
sequence of inputs fed to the application as input. Sequential
test inputs are to be presented in a specific order and during
specified time intervals and the time duration during which
the concurrent tasks executed. One should not use sequential
test techniques as they do not figure out the significance of
the occurrence of the tasks.

An efficient architecture helps to develop decentralized,
reliable, collaborative, and rapid applications, which need to
be highly responsive real-time and distributed embedded
systems. These systems have inbuilt processes for
undertaking the testing. J. Russell Noseworthy, 2008] [6]
have named the architecture as TENA (Testing and Training
enablement architecture). A middleware built into TENA
helps in code generation that is understandable through easy
to understand abstractions. An excellent API included in
TENA is capable of detecting programming errors at
compilation time. TENA includes software components that
can be used to undertake different kinds of testing.

Environment setting becomes very important for undertaking
testing of any embedded system [Pei Tian et al., 2009]. [7]
The basics of the environment setting must be analyzed
considering the basic structure, functionalities, and
characteristics of distributed software. A three-layer
development pattern proposed that facilitates the setting
appropriate test environment. This kind of proposal is quite
difficult to implement as it is not possible to dictate a
structure for the development of individual applications
within distributed embedded systems.

Distributed and networked embedded systems are being used
heavily in automobile, space, and many other such
applications. Testing distributed applications are complex.
The distributed applications are generally component-based
and exhibit dynamic behavior. Dynamic interaction,
structural behavior, run-time configurations, etc. makes the

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1197

testing of distributed systems complicated. It has been
proved time and again that any amount of testing carried on
the developed product; some unknown errors noticed during
the production time. Therefore, it is necessary to undertake
to test, while distributed embedded systems are in the
production phase. [Peter H. Deussen et al., 2002] [8].
Therefore, there is a need to develop concepts and methods
using which a distributed system tested while the system is in
running mode. Online testing of distributed embedded
systems is, therefore, necessary. Online testing will help to
undertake the testing of functionality under limited time,
resources available, complex transactions that performed
between the components.

Most of the distributed embedded systems are built using
fault tolerance concepts. One of the main challenges is to
find the errors occurring while the distributed embedded
systems are in run-state. Faults can occur at any level. The
faults occurring at the PIN level normally affect the network
interfaces and the communication that is built to facilitate
communication between various distributed nodes which are
networked. Architecture is proposed [Sara Blanc et al., 2003]
[9] which consider the use of a monitor that keeps
monitoring the faults occurring at the PIN level. The monitor
observes the system behavior and also detects whether any
failure has occurred at any of the PIN.

Interconnecting the distributed embedded systems are error-
prone due to the presence of many intricate issues. Individual
embedded systems as such may be error-free and become
error-prone as they get connected to a network. Many
methods used for undertaking the automated testing to trace
out the bugs existing in the working of distributed embedded
systems. [Silvie Jovalekic et al., 2008][10] have proposed
cause and effect graphs which are time-dependent to describe
the test cases considering the distribution and real-time
properties. Tests object structure used for undertaking the
testing in-depth. They have proposed a simple language
describing test objects consisting of modules and
connections. The language enables graphical documentation
and context-sensitive protocol analysis. Symbolic
representation of received messages facilitates better
comprehension of system behavior.

Simulators also are used for Testing distributed embedded
systems, [Steven A. Walters 1994][11] has presented a
methodology for developing a simulator meant for testing a
real-time distributed embedded system. The architecture
deals with the various issue that includes reuse,
expandability, reconfigurability, and modularity. However,
the simulations model found to be inadequate for testing
distributed embedded systems as the model as such is not
suitable to handle inter-process communication and the
requirement for proper scheduling the tasks and the need for
establishing communication between concurrent tasks.

It is quite a difficult test distributed system, especially
considering the issues that include synchronization,
collaboration, concurrency, timing, and interoperability
among the concurrent tasks. Lots of time needed for

developing code required for testing a distributed embedded
system. To address this issue, T. Tsai et al., 2003] [[12] have
proposed a method that helps testing a distributed system
quite rapidly. They have used methods for modeling test
scenarios, state transitions, design, and verification patterns
ripple effect analysis, regression testing, executing the test
cases automatically.

Testing an embedded system can be carried by finding thin
threads which represent END-TO-END testing. END-TO-
END testing is an integration testing approach starting from
sensing to actuating and development of a historical
database. [Tsai W.T et al., 2003] [[13] have presented a
method that helps to carry END-TO-END testing. They have
used the concept of verification patterns used for undertaking
testing. But this approach has not been applied for testing
distributed embedded systems.

A massive number of individual embedded systems were
tested together for reducing the time required for testing.
[Yanfang Wang et al., 2010] [14] has used a master-slave
system in which a PC used as a HOST for undertaking the
testing. RS485 networking used for undertaking mass device
testing. The arrangement used for undertaking individual
device testing and not used testing of distributed embedded
systems itself.

One can use a logic analyzer for testing proper working of
the hardware of an embedded system by connecting probes
to the junction points exposed from embedded systems.
Commands are sent to a Logic analyzer so that the LA does
the testing required and forward the test results back to the
PC. [David E. Simon, 1999] [15] presented a method using
which testing of an embedded system carried with the help of
a Logic Analyzer. The testing using logic analyzers carried
either is static or timing mode. The way the testing of an
FPGA based board, signal integrity and memory devices
using Logic analyzers has been presented by [Tektronix,
2006] [16] in their white paper,

Kyeongjoo Kim et al., [17] have presented, an analysis of
streaming the data flowing across the systems presented,
which viewed as the basis for proper data flow across the
network. Sasi et al., [18] has presented a gaming system
which used for testing an embedded system

A novel method has been presented by [J.K.R Sastry et al.,
2015] [19] for networking different heterogeneous
embedded systems through RS485 and bus-based serial
communication system. One of the computing node
connected to the network behaves like a master having full
access and control of the bus.

[J.K.R Sastry et al., 2015] [20] have proposed an efficient
method of networking heterogeneous systems using I2C
communication system. All issues related to networking,
including synchronization, timing, arbitration, design of data
packets, etc. presented in this paper. [Sastry et al., 2015]
have addressed the design of USB based network for
connecting heterogeneous Microcontroller based system,

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1198

design of specific communication system as required by the
distributed embedded application, address allocation to the
salves and configuring the slaves through descriptors for
making them adaptable for the implementation of distributed
embedded application. The designing of the messages and
controlling the flow of messages across the distributed
Microcontroller based system has been presented considering
a distributed embedded system that monitors and controls
temperatures within a Nuclear reactor system.

Networking of a distributed embedded system is achieved
through networking using the CAN-based communication
system, which is a BUS based serial communication system.
Every communication system requires that messages
communicated in a specific sequence. The application
requires the transmission of messages in a specific sequence.
Both message systems must be combined to arrive at a
composite communication system. [Sastry et al., 2015] have
presented a novel method using which an arbitration method
that takes message flows into account has been presented,
leading to efficient communication using CAN-based
communication system.

Protocols specify the way the messages must flow using the
data packets of different types. Applications require the flow
of messages in a proper sequence and order. A mapping
method is requited that ensure the movement of application-
specific messages while following the way a protocol
dictates the flow of messages.[Sastry et al., 2017] [23] have
proposed a method of organizing the movement of
application-specific messages without

[K. Chaitanya et al., 2018] [24] have presented the way
testing of a distributed system carried when networked using
CAN protocol and using the scaffolding method for testing.
They have also presented a method [25] of testing a
distributed embedded system using networked through an
RS485 network and using the scaffolding method for
undertaking testing of the distributed embedded system.

[Chaitanya et al., 2017] [26] have proposed a method using
which testing of a distributed system can be undertaken
using assert macros to find the existence of the required
environment for undertaking specific embedded processing.
Assert Macros are inserted into the code dynamically either
through the established pointers or through an interactive
process. Macros are generated based on test scripts, and the
same inserted into the embedded application as in-line code.
Instruction set simulators used by [Chaitanya et al.,
2017][27] for testing embedded systems, especially testing
for throughput and response time while simulating the
hardware devices which meant for carrying Input/output.
[Chaitanya et al., 2017][28] have used instruction set
emulator for undertaking the testing the functioning of the
Hardware and software considering the Target with the test
cases initiated from HOST. Logical analyzers have been used
by [Chaitanya et al., 2018] [29] for testing the proper
functioning of the hardware. The testing of the proper
functioning of the hardware is undertaken by Logic
analyzers, which fed with the test cases initiated from HOST.

[K. Chaitanya et al., 2018] [30] have presented the way
testing of a distributed system carried through the different
testing method by using a repository of master test cases and
integrating them. [Chaitanya, 2013] [31] have explained the
complications of Embedded Systems that can occur in
Agriculture Technology by using a Customized Software.

4 COMPARATIVE ANALYSIS OF THE RESEARCH

FINDINGS

A Comparative sample analysis of the research carried
presented in Table 1. From the table, one can see that no
method presented in the literature is suitable for undertaking
testing of the functioning of the entire system. The methods
presented as such address some part of the testing of the
distributed system. None have covered the issue of testing
the flow of proper order.

5.PROTOTYPE DESCRIPTION - DISTRIBUTED
EMBEDDED SYSTEM

A distributed embedded system developed through 5
embedded systems which are heterogeneous with different
native support for communication. The Microcontroller
based systems used for establishing a distributed embedded
system include 89c51, AT89S52, PIC18F4550, ATmega328,
and LPC2148, used as a central server/master. These
embedded systems are interconnected using either of the
communication protocols that include CAN, I2C, USB, and
RS485 using the native communication ports or through a
port, conversion using hardware converters.

89c51 Microcontroller used for sensing temperature-1 and
transmitting it to the central server, which is LPC2148.
AT89S52 used for sensing temperature-2 and transmitting it
to the central server, which is LPC2148. The central server
interfaced with a PC for feeding the reference temperatures
and also to maintain a database of sensed data. The operation
of PUMP-1 controlled through PIC18F4550 and ATmega328
used for controlling the operation of PUMP-2. The central
server sends message to PIC18F4550 for controlling the
running of the PUMP-1 so is the case with PUMP-2, the
controller of which is ATmega328 is sent a message for
controlling the operation of the PUMP-2.

The Embedded system that acts like a master coded with a
component that computes the temperature gradients and
asserts the buzzer or otherwise based on the absolute
difference of the temperatures. The master coded with all the
communication components for communication with the rest
of the embedded systems connected on the same network.

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1199

6. INVESTIGATIONS AND FINDINGS

6.1 Synchronizing application-specific messages with
protocol-specific messages

One of the main issues addressed is related to message flow
required for implementing the requirements of an
application. For every application, messages must flow
according to the design to meet the functional requirements.

6.1.1 Architectural design for implementing message flow
system

A distributed embedded system realized through
interconnecting a set of embedded systems using one of the
bus-based serial communication systems that include CAN,
I2C, RS485, USB, etc. Figure 1 shows a typical networking
diagram using any of the communication systems. Every
embedded system is connected to the BUS directly using its
native port or through trough a converter that converts the
native interface to the actual bus-related interface.

Master
LPC2148

Converter

Slave-4
ATmega328

Slave-2
AT89S52

Slave-3
PIC18F4550

Slave-1
89C51

Converter

Bus

Figure 1: Typical distributed embedded system

Every embedded system will have firmware through which
transmission or reception of the data undertaken by
implementing specific communication software.
Communication is undertaken using this communication
software. The typical architecture followed for implementing
the communication system within a distributed embedded
system is shown in Figure 2 — the heterogeneous issues
handled within the software components implemented on the
transmitting side.

The communication should take place as defined in the
protocols. Messages must flow in a specific sequence while
at the same time following the sequence of message flow as
defined in a specific protocol. The flow of messages,
however, vary greatly varies from protocol to protocol. The

architectural diagrams are showing the software components
and the way the component interacts.

Master initiates the communication by the master by using
RTR (Remote transmission request) for want of
Temperature-1 and Temperature-2 which are transmitted by
89C51 and AT89S52 in that sequence and for transmitting a
pump control message to PIC18F4550, and ATmega328.

6.1.2 Addressing the devices on the Network

For effective communication, every device that participates
in the network addressed so that the master and the device
will be made known of the address assigned. The addresses
related to each of the device stored in the internal registers.
Addresses assigned to the devices in many ways

1. Statically setting the addresses to the devices
through toggle switches and programing the same
within the master

2. Each device manufactured with a specific address
and the address is transmitted to the master by the
device when the device interfaced with the bus.

3. Master assigns the address to the slave at the time
the device interfaced with the bus

M
A
S
T
E
R
A
P
P
L
I
C
A
T
I

O
N

PC Application
RS232C Trans_Ref1,Ref2

RS232C Recv_T1,T2

RS232C Recv_Ref1,Ref2 RS232C Trans_T1,T2

USB
 Trans_T1

USB
 Trans_T2

USB
 Recv_T1

USB
 Recv_T2

RS232C
 Trans_T1

RS232C
 Recv_T1

RS232C
 Trans_T2

RS232C
 Recv_T2

T1_Application T2_Application

USB
 Recv_P1

USB
 Recv_P1

USB
 Trans_P1

USB
 Trans_P1USB

 Trans_P2

USB
 Trans_P2 USB

 Recv_P2

USB
 Recv_P2

P2_Application

P1_Application

Figure 2: System Architecture for effecting communication among

distributed embedded systems

The addresses of the devices stored in the master by
following one of the methods mentioned above so that the
master will be able to address the devices.

6.1.3 Arbitrating the bus

The BUS is always under the control of the master so that the
master can initiate any communication. A slave must get
hold of the bus for responding to the master. Some of the
initiatives include the transmission of the device address

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1200

along with the message on the bus. Every slave will read the
bus, but only the device that has the address will respond.
The second method is arbitration. The devices will arbitrate
using its arbitration string to gain control of the bus before
transmitting. Master will always be the recipient of the
response from the slaves. An arbitration string is required to
be attached to each of the devices.

6.2 Message flow and priority setting

6.2.1 Message Flow Sequence

Messages must flow in a sequence as per an application
requirement; for example, the master must request for temp-
1 input before the embedded system responsible for sensing
Temp-1 can transmit. A typical message flow sequence, as
shown in Table 2.

Table 2: Message flow sequence
Message
sequence
Number

Message Description

1. Master to request for Temp-1
2. ES-1 to send temp-1
3. Master to send the request to PUMP-1 for

operational control of the PUMP-1
4. PUMP-1 to send the pump status to the

master
5. Master to request for Temp-2
6. ES-2 to send temp-2
7. Master to send a request to PUMP-2 for

operational control of the PUMP-2
8. PUMP-2 to send the pump status to the

master
9. Master to activate the buzzer as per the

temp-1 and temp-2 difference

These messages generated through different tasks run
concurrently within the master system. Therefore, there is a
need to sequence the messages even though the messages are
generated randomly by concurrent tasks running within the
master. Besides, the number of packets is to be transmitted
based on the protocol used for affecting the messages to be
transmitted from the master side — priorities assigned to the
messages. Messages communicated as per priorities pre-
assigned to achieve transmission of the messages in the
proper sequence.

6.2.2 Setting dynamic allocation table

A dynamic Table 3 built within the memory of the master
system and the processes running within the master use the
master table for effecting the communication.

6.2.3 Affecting the message Flow system

Generally, the master has control of the bus. It is the master
which initiates the communication by releasing the request
message, and the related salve must be able to access the bus
and respond to the master. There must be protocol
implemented to access the bus. Slaves have to arbitrate to
gain access to the bus. The application-specific messages
prioritized such that messages flow as per the protocol
sequence. The message which flow on the bus is attached
with the priorities and written to a queue as the messages
generated concurrently. The messages are pulled from the
queue and sent on the bus. The arbitration strings of the
slaves set according to the sequences in which the slaves
must receive the messages. Figure 3 shows the working
priority-based message system that implements the
application-specific message flow system implemented for
distributed embedded system.

Figure 3 :Priority-based message dispatching method.

6.3 Testing Framework

The functional requirements of the distributed system traced
first. To ensure functional requirements are met fully by the
distributed embedded system, testing requirements have to be
specified. The testing requirements as such achieved through
undertaking appropriate tests considering the entire
distributed system as a whole. Carrying testing across all the
embedded systems connected in a network as such is quite
complicated and most of the times become infeasible. A
framework as such required for undertaking testing of a
distributed embedded system using an analogy.

Different kinds of methods required for undertaking testing
of a test case and also may lead to undertaking testing at
different locations. Each testing requirements can be broken
down to sub-test cases such that sub-test cases tested at a
specified location. The results obtained out of testing
different sub-test cases can be merged to find the testing
outcome obtained when testing is done considering the entire
distributed embedded system as a whole.

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1201

A single test method would be sufficient for undertaking
testing using a sub-test, and that too needs to be carried at a
single location. This framework captured in Table 4.A single
test case tested across the distributed system can be broken
into multiple sub-test cases, each one tested at a single
location. A test number is attached to each sub-test case,
which is the extended number of its master test case number.
The sub-test cases executed at a suitable location. The test
results achieved through testing of sub-test cases are merged
to get the overall test results obtained across the entire
distributed embedded system.

6.3.1 Setting Environment for testing distributed

embedded systems

For undertaking testing at any of the location for undertaking
any test using a specific method, the testing environment
tested. The process used for setting the environment required
shown in Figure 4.

Figure 4: Environment setup for undertaking testing using
Scaffolding method

Every embedded system that participates in a distributed
embedded network is a standalone system by itself having
required interfaces for connecting it into a network. The test
cases used for undertaking testing of a Distributed embedded
system can be pre-identified based on the functional
requirements of a distributed embedded system. These test
cases split into sub-test cases tested at a specific location.
One can also set a method used for testing at each location
can also be selected by the tester. The tester should have full
knowledge of the methods to be used for undertaking a
specific type of test. One can determine a test case for
undertaking a test at a location using a specific method, test
data, however, needs to be generated.

Repositories of commands maintained that indicates a kind
of testing conducted at a location. Each of the test cases can
be associated with a command, and the commands are
associated with certain arguments. Some of the commands
may involve many locations, especially when the testing of
communication between the distributed elements undertaken.
Commands can define with an argument that is a kind of test
input passed for undertaking the testing. Table 5 shows
some of the commands and their related command-line
arguments. Command-line repositories are developed and
maintained as one of the initial steps to be undertaken as a
part of an environment setting.

Test commands are associated with the test cases numbered
for remembrance and recall. This kind of mapping of test
serials to the commands in the command repository provides
a simple environment required for undertaking testing at
different locations. A sample elementary test cases
decomposed from master test cases. Details of a sample test
environment shown in Table 6.

When a command is issued, or a test case through test script
is issued functions of the firmware must be called in a
sequence so that testing carried. The test data stored in
memory variables functions called and the output stored in
the memory variable reported as test results. The functions
contained in the code traced, and a repository of the
functions created, as shown in Table 7. The mapping of the
test script to the function calling sequence shown in Table. 8.
Using these tables testing is carried by calling the functions
in the sequence required

6.3.2 Testing through Scaffolding

80% of the ES code is independent hardware code and
therefore can be tested on HOST, the computer on which ES
code is developed, cross-compiled, linked and code
relocated. The remaining code is Hardware dependent code.
The hardware-dependent code could be scaffolded to
simulate the behavior of the hardware, thereby making it be
independent hardware code. The entire code thus can be
made to be independent hardware code so that the code
compiled, linked, and executed on the HOST. A separate
software component added to the ES application that will
facilitate the testing of the code using the test scripts
generated by following a different process.

Interrupt service routine called when a device interrupts the
CPU for handling the I/O. Since Scaffolding software
comments all the code related to the device, Interrupt
routines called by the scaffolding software for simulating the
behavior of the device. Similarly, time management is done
through the timer initiating the interrupt to CPU. Since the
functioning of the timer is to be scaffolded, the scaffolding

Select Test Cases
for a Location

Arguments

Maintain
Arguments

Arguments

Commands

Maintain
Commands

Commands

Map Commands to
Arguments

System level
Test

Requirements
DES

Selected Test
Cases

Mapped Test
Commands

Map Test cases to
Test Commands

Split Mapped Test
Cases

Individual
Test

Requirements

MAP System level
Test Requirements

with Individual
Requirements

Individual testing
requirements

mapped to System
requirements

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1202

software must call the timer function on its own when time
management is required. When a certain type of testing
undertaken, the related functions connected with the test case
must be called in a specific sequence so that the required
testing carried.

Testing using the scaffolding method is complicated,
especially when the test results generated by scaffolding
software fed as a test case for some other scaffolding
software run on a different PC. In this case, communication
established between two units of scaffolding software run on
different HOST based machines. Scaffolding generally
employed for undertaking event-based and time-based
testing and when the unit and integration testing is needed
especially when the functionality distributed among several
embedded systems connected on the same network. The
process involved in undertaking testing through scaffolding
software shown in figure 5. The hardware-dependent code is
made hardware-independent either by simulating the
Hardware or simply generating the inputs to be received
from HW or outputs to be directed to HW by randomly
generating them for either inputting or outputting.

Figure 5 shows the process involved in undertaking testing at
a Location using scaffolding method. Test scripts generated
for undertaking Testing at a distributed location. The test
scripts are generated using the mapping of test cases with the
commands mapped with different types of arguments. The
generated test cases stored to a disk as OS file called Test
Script file. The following algorithm used for generating test
scripts

Algorithm for test script generation:

Do the following process for each test case to which the
commands mapped.

a. Select a Test case
b. Select commands related to the test case
c. Select the arguments related to the command

i. For each of the argument, select argument
type and value range used for selecting a
value for the argument

ii. Select value for the argument by using a
process of randomization

d. Generate the script
e. Test commands are mapped to test cases using

which test scripts generated. Code elements are
mapped to commands to indicate the way code
executed. Original code is read through to include a
parser into it and comment all those code lines that
are related to Hardware and the code replaced with
the code that assigns some test data into the registers
that are related to hardware devices. The parser
reads the test scripts, interpret the same, find the
functions and the calling sequence, and call the
functions in the sequence required by passing on the
test data. Each script generated on a common
syntax. The string built with a command followed

by its arguments; Table 9 shows the scripts that are
generated by the Script generator

Parser

Script Generator

Test SCript

Mapped Test cases
to commnds

Sooffolded Software

Source Code

Scaffolding Test Commands

Code, Commands
Mapping

Mapped code with
Commands

Test Results –
 Audit Trail

Comm

Test cases Commands

Map test cases to
Commnds Code elements

Figure 5. Process flow for testing at a Location using the method

scaffolding

Undertaking testing through a parser

A parser added to the scaffolded code which is capable of
reading the script file. A parser reads a test script from the
script file, parses the command and its related arguments.
Parser fetches the list of functions and the sequence of
functions to be executed. The parsers create pointers to the
function and enter the functions in a priority queue. Another
process fetches the pointer from the queue and keeps
executing the functions and writes the output along with the
test case to the audit trail. The working of parsing and queue
processing shown in figure 6.

Figure 6: Testing embedded systems through parsing and queue

processing

The ES application is a set of functions which called in a
sequence at any of the distributed locations for undertaking
testing of a particular test case. Testing is carried by finding
the functions and the sequence in which the functions

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1203

executed and then calling the functions in that sequence. The
arguments assigned to the respective memory variables and
then the functions called in a specific sequence. The test
result stored in a memory variable reported as a test result.
The test results generated through scaffolding shown in
Table 10.

6.3.3 Testing through Assert macros

An Assert macro is one good technique to test the existence
of a particular Hardware environment required for executing
some software segments. If the required hardware
environment is not in existence, the software executed shall
fail, making the entire embedded system non-functional and
in-operational. A macro takes a single parameter and
evaluates to find whether it is TRUE or FALSE. If the
evaluation is TRUE, the assert macro does nothing, and the
program execution done in a normal way. If the parameter
evaluates to FALSE, assert causes the program to crash,
usually printing some useful message along the way perhaps
something like “ASSERT FAILS at line 411”. Assert
macros are used to enable a program to check for finding the
existence of the environment required for executing a
specific program. Assert Macros can be used to check the
status of radio, whether any of the control variables set to
NULL, the existence of a frame or otherwise, etc.
Programming languages support different kinds of assertions
to verify the existence of a proper environment.

In the cases of the embedded system, a proper environment
must exist for a piece of code executed properly. It is better
to know about the bugs before the same happens. Assert
macros will report if any error exists before a Piece of
application code is executed. Testing of code done on the
HOST with the assert macros inserted at strategic points
where proper existence of the environment is to verified.
When an assert macro returns an error, the program
execution suspended as proper execution of the code is not
possible after the error occurs. If no error found, the code
execution continues as usual. The execution of the assert
macros controlled through compilation of the code with
NDEBUG option. The assert macros should not crash the
system while in execution or should not degrade the
performance of the system. Assert macros must be simple
and very small in code size. Assert macros server many
purposes which include documentation when commented,
undertake to test of the existence of a suitable environment
and to make debugging easier,

Figure 7 shows the process involved in undertaking testing at
a particular location using assert macros. Test macros are
generated using the details stored in Table 11. A separate
process merges into the source code by way of recognizing
the variables that are processed by the instructions contained
in the code. The updated source code is then compiled and
executed to obtain the test results.

Merge Assert
Macros

Source Code

Assert macros
Table

Develop Assert
Macros

Developed Assert
Macros

Updated Source
code

Run Updated Source
code

Test results

Figure 7: Process flow for undertaking testing using Assert macros

Generation of assert macros

Test macros generated considering parameters used and the
kind of testing that must be undertaken using the assert
macros. Table 11 shows the generated assert macros.

Testing is done using the test macros inserted into the source
code and then running the program after compilation and
building the object code. The test results obtained shown in
Table 12.

6.3.4 Testing through Instruction set Simulator

Firmware always developed on the host as the target will not
have any development support. The code developed on the
HOST initially tested on the HOST, and then the tested code
is moved to the target for storing in RAM or ROM
whichever is the case. Firmware as such recognized in terms
of two components which include hardware-independent
code and hardware-dependent code.

Instruction set simulators will be handy to test the response
time, throughput, and portability issues. A simulator is a
software that runs on the host and simulates the behavior of
Micro Processor and the memory on the target machine. The
simulator has the knowledge of Locator output, architecture
and instruction set of the target Micro Processor

Simulators used for testing using memory for registers,
program counters, and address registers and data buffers. The
instructions are read from memory and converted to
instructions equivalent to the target machine. Simulators also
support a Macro Language using which testing scenarios
submitted as input to the simulators. The simulator can report
response time in terms of the number of Target Machine
instructions executed, the count of instructions executed, or
the number of bus cycles used and the average response time
computed by multiplying with average instruction execution
time. Simulators can also execute the start-up code and
interrupt service routines written in assembly language.
Simulators also help in testing the built-in peripherals such

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1204

as a timer, DMA, UART, etc. as the simulation of such built-
in simulators is quite possible. Simulators have prior
knowledge of the target Processors and related Built-ins.

At the HOST, several types of testing can be conducted
considering the quality of the Embedded Applications,
especially when bugs investigated whenever the errors traced
while running the application on the HOST. The test cases
submitted to a third-party tool, and the third-party tool
conducts the testing using the image of Embedded
Application and produces the test results back to test process
which maintains the test results in the second stage using
which the Audit Trail conducted.

Test cases presented as commands to instruction set
simulator and the arguments that are associated with the
commands assigned with range values. The process flow for
undertaking testing using instruction set simulator shown in
Figure 8. Test scripts generated for undertaking Testing at
distributed locations for undertaking comprehensive testing
of a distributed embedded system. The test scripts are
generated using the mapping of test cases with the
commands mapped with different types of arguments. The
generated test cases stored in an OS file called Test Script
file. The following algorithm used for generating test scripts.

Script Generator

Test SCript

Selected Test Cases

Test Commands

Map Commands to
the Arguments

Mapped Commands
with Argumnets

Test Results –
 Audit Trail

Comm

Source Code
Run

Instruction Set
Simulator

Read the source
code into the

simulatot

Function codes

MAP Function code
to test script

Mapped Function
codes to test cases

Arguments

Figure 8: Process flow for undertaking testing at an Individual

Location

Algorithm

Step-1

Read the source code into the simulator
Step-2

Reading a test case into the simulator
Do the following process for each test case to which
the commands mapped.

a. Select a Test case for testing through an

instruction set simulator

b. Select Script commands related the test
cases

c. Select the arguments related to the
command

i. For each of the argument, select

argument type and value range
used for selecting a value for the
argument

ii. Select value for the argument by
using a process of randomization

d. Generate the script
e. Read the test script into the simulator

Step-3

Run the instruction set simulator and record the test
results into a test results file

The test scripts generated shown in Table 13

Testing carried at each of the locations using the process
mentioned above flows using the testing cases that converted
into test scripts. The test results obtained shown in Table 14.

6.3.5 Testing through In-circuit Emulator

In-circuit emulators help in testing hardware-software
embedded into the target through test instructions
/commands passed through the HOST. The emulators help to
undertake to test for throughput, response, portability, etc.
undertaken within the target. The Microprocessor situated in
microcontroller replaced with in-circuit emulator which
provides for processing, testing and debugging. The
Emulator connected with all the rest of the components
exactly in the same way connected to the Microprocessor.
Debugging can be done using the emulator exactly the way
debugging of the code done on the HOST, The functions
required for debugging such as examine the memory and
register contents, setting the breakpoints, executing the code
situated within the breakpoints, writing the trace of
execution, etc., can be carried by the in-circuit emulator.
Emulators allow single step of execution, and one can see the
contents of the memory even when the Microprocessor fails
for any reason. When a program fails for any reason,
emulator provides the dump of execution taken place toll the
time the program halted. The testing and debugging
software, the dump and the trace stored in a separate memory
called overly memory, which contained with the in-circuit
memory. The program situated in HOST communicates with
the testing and debugging software stored in the overlay
memory. The HOST as such is connected to the TARGET
using either RS232C interface or any other technique for
interfacing. Test commands are sent to the emulator using
the program resident on the HOST.

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1205

One can see the content of the memory and registers when
the processors or the built-in peripherals crashes. The trace
of the program obtained when a program crashes using the
emulator. The reasons for the failures investigated using the
dump of the emulator tracing back to the source code.

The architecture of the Microprocessor and the locator output
built into the in-circuit emulator. Every emulator is designed
using a macro language used for submission of the test cases
to the emulators. The emulator can carry testing to report
response time in terms of instructions executed or the
number of bus cycles used. Emulators are also designed to
execute start-up code and interrupt service routines written in
assembly language. The testing for portability of the code
can only be tested using the in-circuit emulators. It is also
possible to test the built-in peripherals such as DMA, UART,
etc., using emulators as the emulator have been built having
prior knowledge of the built-in peripherals. The process flow
followed for testing using in-circuit emulator is shown in
Figure 9.

In- Circuit Emulator
(target)

Script Generator

Test SCript

Mapped Test cases
to commnds

Application
Functions

Test Results

MAP Application
Functions to Test

Cases

Test
Commands

Map
Commands,
Arguments

Mapped
Commands

Mapped Functions
and sequences

Test cases

Map test cases to
Commnds

Argument

HOST side
Emulator Interface

HOST

Figure 9: Process flow for undertaking to test at an Individual

Location using the in-circuit emulator

Test cases that must be tested using the in-circuit emulator
are first selected and classified location wise so that location-
specific test cases can be selected. The test cases converted
into test scripts that contain mapping test cases to commands
and the related arguments, which represents the test cases
used for undertaking testing. Test scripts stored in a file
stored at HOST. The test scripts generated for the sample test
cases shown in table 15.

Test Scripts are generated using the algorithm below:

Algorithm

Step-1

Reading test cases from test case repository that have been
identified to be tested at a location using in-circuit Emulator

Step-2

Do the following process for each test case to be executed at
a location.

a. Select a Test case
b. Select Script commands related to the test

case
c. Select the arguments related to the

command

i. For each of the argument, select
argument type and value range to
be used for selecting a value for
the argument

ii. Select value for the argument by
using a process of randomization

d. Generate the script
e. Read the test script into the Emulator

Step-3

The Emulator on the HOST will read the script string and
then transmit the same to the target

Step-4

The emulator program on the target shall receive the script
string from the HOST and find the sequence of functions
executed

Step-5

Call the functions in the sequence required and at the end of
completing execution of the entire functions store the test
results

Step-6

Transmit the test results to the HOST

Step-7

Receive the test results (Table 16) and write the results to the
Audit trail.

6.3.6 Testing through Logic Analyser

Different kinds of testing can be done using logic analyzers
that include Testing proper working of hardware, validity,

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1206

and timing of the signals, the sequence of occurrence of the
signals, timing of the signal received at a specific projection,
the throughput of a signal, etc. Logic analyzers are used for
testing, the proper working of the hardware. Testing
connecting several logic analyzers at different locations is
rather difficult. The hardware at different locations
connected with a logic analyzer must be working for
undertaking testing of the harder distributed to different
locations. A test case may require proper working of the
hardware at different locations.

Testing must be done to check other the individual
embedded systems are communication properly as designed,
especially when connected on networks using one serial,
bus-based communication protocols. It is necessary to test
whether the interfaces through which interconnection with
the network achieved. The hardware interface provided at the
individual embedded systems must be working properly for
effecting the communication required. It is necessary to test
whether the networking interfaces are in proper working
condition while a communication request initiated.
Undertaking such testing using logic analyzers is
complicated.

Logic analyzers generally used for testing the hardware. The
test case fed to Logic analyzers through commands and the
test data fed as arguments to the commands both initiated
from a PC. The logic analyzers after receiving the commands
and the test data executes the test and send back the results to
the PC where the results are stored, and audit trails are
connected.

Hardware testing is done using test cases drawn from the
database. The test cases converted into commands and
command-line arguments which fed to the Logic Analyzers.
The commands and command-line arguments transmitted to
Logic Analyzer from a PC interfaced through, one of the
existing communication interfaces. Logic Analyzer, transmit
back the test results to PC after executing the commands
using the command-line data. Figure 10 shows the way
testing is done using the Logic Analyzers.

The test cases used for testing using logic Analyzer
represented as test scripts. The process on the HOST side
reads the test scripts one by one, and issues command along
with the arguments to a logic analyzer. The commands
executed by the logic analyzer, and the test results are
netback to the Host. The test scripts generated shown in
Table 17. Testing is carried as per the process flow using test
scripts and the test results captured are shown in Table 18

6.3.7 Integrating the Test results

Testing hardware and software undertaken at each of the
locations using the test cases designated to a particular
location. Testing at each location is done using different
kinds of methods such as scaffolding, assert macros,
instruction set simulators, and instruction set emulators, and
logic analyzers. The test results obtained at each of the
locations are combined and Grouped such that test results
related to a specific master test cases collated and merged to
form overall test result that one will get if tested considering
the entire distributed embedded system as a whole. Table 19
shows the integrated test results

Generate Test
Script for
CDLogic

Test cases

Extract Test
cases

(hardware
Testing

Extracted Test
Cases

Commands Arguments

Map Arguments
to Commands

Mapped Commands
with Arguments

Map Test cases
to Commands +

Argumnets

Mapped Test cases

Test Scripts

Split Test
Scripts

Test Scripts
Location wise

Undertake
testing

Test Results
Location wsie

Merge Test
Results

Merged test
Results

Audit Trail

Test Analysis
Reports

Figure 10: Testing through Logic Analyzer

Merging test results

The test results produced due to testing a group of test cases
that relate to same master test case are merged to find the
overall test result containing a master case that should have
been tested considering the entire distributed embedded
system as a whole.

The Merged test results will reveal buggy areas either in
hardware or software are both — the test results used for
assessing the overall reliability of the entire distributed
embedded system. Table 20 shows the overall test results
obtained for the pilot distributed embedded system. The
overall reliability of the system with the test cases used
appears to be nearing 100%.

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1207

7. CONCLUSION

Many application that ranges from health to space
management implemented using distributed embedded
systems. Some distributed embedded system might have sub-
nets within a distributed embedded network. A distributed
embedded system can be achieved either through a wired or
wireless network. Several embedded systems which are
heterogenous are connected using a communication system
to achieve a distributed embedded system considering the
requirements of distributing hardware and software. The way
a distributed system functions is dependent on the kind of
communication system used, which include I2C, CAN, USB,
RS485, etc.

Testing of a distributed embedded system is complicated as
the environment required for undertaking testing varies
largely. The testing environment is very much dependent on
the method used for undertaking testing at each of the
distributed locations. The testing of a distributed embedded
system as such is complicated as it requires proper
functioning of the communication system, and there is a need
to set up the proper environment at each of the locations.
Testing distributed embedded system considering the entire
system is quite complicated.

No specific method has been in vogue for testing the
distributed embedded system making it necessary to
investigate the processes, tools, techniques that cater for
testing a distributed embedded system achieved through
wired communication of a specific type.

A prototype project is developed, which is meant for
monitoring and controlling temperatures within a nuclear
reactor system. The prototype model used as an experimental
setup for proving the investigations and findings. A stand-
alone embedded system converted into a distributed system
through the distribution of hardware and firmware. The
distributed embedded system has been designed using the
communication systems that include I2C, CAN, USB, and
RS485. Testing of a distributed embedded system involves
testing at the HOST, on Target and considering both HOST
and the TARGET. Several methods that include scaffolding
assert macros, instruction set simulators, in-circuit emulators,
and Logic analyzers used for the undertaking of testing of
distributed embedded systems. The hardware-independent
code can be tested on the HOST using the methods
scaffolding, assert macros and instruction set simulators. The
testing of the hardware can be conducted using Logic
Analysers. The Hardware dependent code can be tested using
both HOST and the TARGET and In-circuit emulation
method.

These days, most of the Microcontrollers provided with the
RS232C communication interface. Sometimes, the controller
boards provided with CAN, I2C, RS485 communication
interface also, programmed for effecting communication. If
the native communication interface does not exist, then the
converters are used for converting RS232C to the expected
communication interface — many methods used for
allocating addresses to the computing nodes connected into a
network. Communication is done using the addresses.

The standard methods such as scaffolding, Assert Macros,
etc. that are in existence as on today using which the testing
of standalone embedded systems carried needs to be
modified, and new methods invented for undertaking the
testing of distributed embedded systems. A single test case
tested across the entire distributed embedded system divided
into many test cases such that each of the test cases generated
tested at a specific individual embedded system Location.
The test results obtained at each location can be integrated
through mapping and merging to get the overall status of
testing the entire distributed embedded system. The testing
of a distributed embedded system through Scaffolding
method and networking of embedded system through the
RS485 interface have has been presented. 80% of the testing
can be carried using the scaffolding method as 80% of
firmware is hardware-independent and therefore can be
tested on a HOST.

The USB protocol system provides for an enumeration stage
at which time the information related to the devices sent to a
master for its complete understanding of the device. A new
descriptor has been added using which the priority of messy
messages fed to the slave and to make the slave store the
same within it and use the same for checking the correctness
of the message flow so that slave can inform the master if
wrong message flow for any reason initiated.

Proper Hardware environment must be in existence carrying
any function by the embedded system. The existence of an
environment includes the existence of proper signals, the
occurrence of the signals in a proper sequence, valid data,
and data to be in a specific range, etc. In the absence of
proper hardware environment, the embedded system shall
certainly produce wrong results. The standard methods such
as scaffolding, Assert Macros, etc., that are in existence as on
today using which the testing of standalone embedded
systems carried must be modified and new methods invented
for undertaking the testing of distributed embedded systems.
A single test case that tested across the entire distributed
embedded system broken into several test cases that each of
the test cases generated tested at a specific individual

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1208

embedded system. The test results obtained at each location
integrated through mapping and merging get the overall
status of testing the entire distributed embedded system.

Assert macros effectively employed for testing the existence
of the environment required for a specific function carried
further. Assert Macros help to test the existence of the
required environment before moving with the execution with
further real-time processing. The absence of the environment
may lead to suspending the program or to the handling of an
exceptional condition.

Every application requires, the flow of messages in a specific
sequence so that coordinated processing takes place. For
effecting communication as per a protocol, a certain type of
packets must flow in sequence. The communication system
must adhere to both flows of messages as per the application
requirement and the movement of data packets as per the
protocol requirements.

The standard methods such as instruction set simulators,
scaffolding, Assert Macros, etc. that are in existence as on
today can be used for testing standalone embedded systems.
However, the same methods can be extended and used for
testing distributed embedded systems. The test cases used for
testing entire embedded systems broken into test cases can
be tested at different locations and merge the results obtained
out of testing at individual locations and merge the test
results to get the overall picture of the testing entire
distributed embedded system.

Some kinds of testing can be undertaken on the HOST
simulating the way the code executed on the TARGET. Test
cases related to testing throughput, response time, code and
data conversion considering coding standards, parity, endian,
world length, addressing modes, etc. can be undertaken
through instruction set simulator. Instruction set simulator
can be used for testing through simulation of the functioning
of the hardware while at the same considering the
heterogeneous issues. The testing through instruction set
simulators is achieved through breaking and merging
process, which is used as the basis for the testing an entire
distributed embedded system.

The I2C communication system is the most frequently used
system for networking heterogeneous embedded systems —
reasonable speeds of communication achieved through I2C
protocol. The communication system must be designed
specifically suiting I2C protocol taking into considering
addressing, arbitration, synchronizing, timing, etc.

I2C system does not prescribe any standard flow of the
messages. However, the messages must flow as per the

application requirements. The addresses assigned to the
devices does not dictate the message flow. The data
structures used for effecting communication are also
different. A standard system of messaging designed and
developed; the system used every time communication is to
be done using I2C.

For achieving testing of entire testing, Hardware tested in
addition to testing firmware. Test gadgets such as Logic
Analyzers required for undertaking testing hardware. Many
types of testing carried when it comes to hardware. The test
cases include testing for device status, validity, sequencing,
and timing of the signals. Testing is done to measure whether
the desired response time and throughput achieved. It is
necessary to mix the results at different locations and merge
the results such way that the results so obtained reflect
overall testing results considering the entire as a whole.

Considering the entire system and carrying the testing as a
whole is complex and complicated due to several reasons,
especially the complication involved in setting the
environment required for undertaking testing. It is not
possible to guarantee the proper working of the entire
distributed system as a whole. Testing becomes complicated
if hardware or communication interfaces fails.

Decomposing test cases into elementary test cases such that
the test cases can be executed locally and then combining the
test results will provide a basis and framework for
undertaking testing of an embedded system as a whole. The
Test results obtained at a different location can be ordered
based on master test case wise, and in the order of subtest,
case tested at one location. An algorithm developed for
merging the test results which are obtained through testing at
different locations and produce a unique representation of the
same, reflecting the overall effect of undertaking the testing
of the entire distributed embedded system.

REFERENCES
1. Chen-Huan Chiang, Paul J. Wheatley, Kenneth Y.

Ho, Ken L. Cheung, Testing and Remote Field
Update of Distributed Base Stations in a Wireless
Network, IEEE Conference Publications, 2004, page
no.711-718

2. Dae-Hyun Kum, Joonwoo Son, Seon-bong Lee and
Ivan Wilson, Automated Testing for Automotive
Embedded Systems. IEEE Conference
Publications, 2006, page no. 4414-4418

3. Eric Armengaud, Andreas Steininger, Efficient
Stimulus Generation for Testing Embedded
Distributed Systems -The Flex Ray Example, IEEE,
2005, page no.763-770

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1209

4. G. Walters, E. King, R. Kessinger, R. Fryer.
Processor design and implementation for Real-Time
Testing of embedded systems. IEEE Conference
Publications, vol.1, 1998

5. H. Thane, Real-Time Res. Center, Malardalen Univ.,
Vasteras, Sweden, H. Hansson, Towards systematic
testing of distributed real-time systems, Real-Time
Systems Symposium. Proceedings. The 20th IEEE,
1999, page no.360-369

6. J. Russell Noseworthy. The Test and Training
Enabling Architecture (TENA) —Supporting the
Decentralized Development of Distributed
Applications and LVC Simulation. IEEE Conference
Publications, 2008, page no. 259-268
https://doi.org/10.1109/DS-RT.2008.35

7. Pei Tian, JianchengWang, HuaijingLeng, Kai Qiang.
Construction of Distributed Embedded Software
Testing Environment. IEEE Conference Publications,
vol.1,2009, page no. 470-473
https://doi.org/10.1109/IHMSC.2009.125

8. Peter H. Deussen, George Din, Ina Schieferdecker,
An online Test platform for component-based
systems. IEEE Conference Publications, 2002, page
no.96-103

9. Sara Blanc, Pedro. J. Gil. Improving the multiple
errors detection coverages in distributed embedded
systems. IEEE Conference Publications, 2003, page
no. 303-312

10. Silvie Jovalekic, Bernd Rist, Test Automation of
Distributed Embedded Systems based on Test Object
Structure Information, IEEE Conference Publications,
2008, page no. 343-347
https://doi.org/10.1109/EEEI.2008.4736543

11. Steven A. Walters, Practical Techniques for
Distributed Real-time Simulation. IEEE Conference
Publications, vol.2,1994, page no. 890-896

12. Tsai W. T., R Mojdehbakhsh and F. Zhu, Ensuring
Systems and Software Reliability in the Safety-
Critical Systems, IEEE ASET 98, Dallas, Texas,
March 1998, page no.48-53

13. W. T. Tsai, L. Yu, A. Saimi. Scenario-Based Object-
Oriented Test Frameworks for Testing Distributed
Systems. IEEE Conference Publications,2003, page
no.288-294

14. Yanfang Wang, Wandui Mao, Jinying Li, Peng
Zhang, Xiaoping Wang, A Distributed Rectifier
Testing System Based on RS-485. IEEE Conference
Publications, 2010, page no. 779-781
https://doi.org/10.1109/ICIEA.2010.5515241

15. David E. Simon, An Embedded Software Premier,
Pearson Publications, 1999, page no.313-319

16. The XYZs of Logic Analyzers Primer, Tektronix, A
Logic Analyzer Tutorial part1,
http://nutsvolts.texterity.com/,
nutsvolts/200709/?folio=71&pg=71#pg71

17. Kyeongjoo Kim, Jihyun Song, Minsoo Lee, Real-
time Streaming Data Analysis using Spark,
International Journal of Emerging Trends in
Engineering Research, Volume 6, No.1, 2018, pp. 1-5
https://doi.org/10.30534/ijeter/2018/01612018

18. Dr. J. Sasi Bhanu, Dr. JKR Sastry, B. Sunitha Devi,
and Dr. V Chandra Prakash, Career Guidance through
TIC-TAC-TOE Game, International Journal of
Emerging Trends in Engineering Research, Volume 7,
No.6, 2019, pp. 25-31
https://doi.org/10.30534/ijeter/2019/01762019

19. J. K. R. Sastry, A. Suresh, and Smt J. Sasi Bhanu,
Building Heterogeneous Distributed Embedded
Systems through RS485 Communication Protocol,
ARPN Journal of Engineering and Applied Sciences,
issue. 16, vol.10, 2015

20. Sastry JKR, J Viswanath Ganesh, Sasi Bhanu J, "I2C
based Networking for Implementing Heterogeneous
Microcontroller, based Distributed Embedded
Systems", Indian Journal of Science and Technology,
Vol. 8, Vol. 15, pp. 1-10, 2015-1
https://doi.org/10.17485/ijst/2015/v8i15/68739

21. Sastry JKR, Sai Kumar Reddy, Sasi Bhanu J,
"Networking Heterogeneous Microcontroller based
Systems through Universal serial bus," International
Journal of Electrical and Computer Engineering, Vol
5, Iss. 5, 2015-2

22. Sastry JKR, Vijaya Lakshmi Machineni, Sasi Bhanu
J, "Optimizing Communication between
heterogeneous distributed Embedded Systems using
CAN protocol," ARPN Journal of engineering and
applied sciences, Vol. 10, Iss. 18, Pg. 7900-7911,
2015-

23. JKR Sastry, T. Naga Sai Tejasvi and J. Aparna,
Dynamic scheduling of message flow within a
distributed embedded system connected through
RS485 network, ARPN Journal of Engineering and
Applied Sciences, VOL. 12, NO. 9, MAY 2017

24. K. Chaitanya, Dr. K. Raja Sekhara Rao, Testing
Distributed Embedded Systems Built over CAN using
Scaffolding Method, International Journal of
Emerging Technology and Advanced Engineering,
issue.12, vol. 8 December 2018, page no. 28-42.

25. J.K.R. Sastry, K. Chaitanya, K. Rajasekhara Rao,
D.B.K. Kamesh, An Effective Model for Testing
Distributed Embedded Systems using Scaffolding
Method, PONTE International Journal of Sciences
and Research, issue.8, vol.73, 2017
https://doi.org/10.21506/j.ponte.2017.8.1

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1210

26. K. Chaitanya, Sastry JKR, K. N. Sravani, D. Pavani
Ramya and K. Rajasekhara Rao, Testing
Distributed Embedded Systems Using Assert Macros,
ARPN Journal of Engineering and Applied Sciences,
2017, page no.3011-3021

27. Sastry JKR, K. Chaitanya, K. Rajasekhara Rao, DBK
Kamesh, Testing Distributed Embedded Systems
Through Instruction Set Simulators, PONTE,
International Journal of Sciences and Research,
issue.7, vol.73, July 2017, page no.353-382

28. JKR Sastry, K. Chaitanya, K. Rajasekhara Rao, DBK
Kamesh, An Efficient Method for Testing Distributed
Embedded Systems using In-circuit Emulators,
PONTE, International Journal of Sciences and
Research, issue.7, vol.73, 2017, page no.390-422

29. K. Chaitanya, JKR Sastry, K. Rajasekhara Rao,
Testing Distributed Embedded Systems Using Logic

Analyzer, International Journal of Engineering and
Technology, March 2018, page no. 297-302.

30. Chaitanya Kilaru, K. Rajasekhara Rao,
Comprehending Testing of distributed embedded
systems, International Journal of Engineering and
Technology, issue. 2.7, vol. 7 March 2018, page no.
303-307

31. K. Chaitanya, K. Rajasekhara Rao, Complication of
Embedded Systems in Agriculture Technology using
Customized Software, International Journal of
Emerging Technology and Advanced Engineering,
issue. 7, vol. 3, July 2013, page no. 368-373

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1211

Table 1: Comparison of existing methods
s.n

o

Author

Y
ea

r
pu

bl
is

he
d

U
se

 o
f m

id
dl

ew
ar

e

E
xi

st
en

ce
 o

f m
es

sa
ge

flo

w
 sy

st
em

W
he

th
er

 te
st

in
g

is
au

to
m

at
ed

 /m
an

ua
l

Is
 te

st
in

g
do

ne

co
ns

id
er

in
g

th
e

w
ho

le
 sy

st
em

Is
 c

om
m

un
ic

at
io

n
sy

st
em

 te
st

ed

W
ha

t
el

em
en

t i
s

te
st

ed

T
yp

e
of

 te
st

in
g

1

Yanfang Wang,
Wandui Mao, Jinying
Li, Peng Zhang,
Xiaoping Wang

2010 √ × Manual Whole No Communication
devices Device Status

2
Pei Tian, Jiancheng
Wang, Huaijing
Leng, Kai Qiang

2009 √ × Manual Whole
No

Environment Environmental

3 Silvije Jovalekic,
Bernd Rist 2008 √ × Manual Whole No Functional

Interface
Integration
testing

4 J. Russell
Noseworthy 2008 √ × Manual Whole No Environment Simulation

5

Dae-Hyun Kum,
Joonwoo Son, Seon-
bong Lee, and Ivan
Wilson

2006 √ × Manual Whole No Functional Manual

6

Chen-Huan Chiang,
Paul J. Wheatley,
Kenneth Y. Ho, Ken
L. Cheung

2004 √ × Manual Whole No Functions System

7 Sara Blanc, Pedro
L.Gil

2003 × × Manual Whole No Functions Functional

8 W. T. Tsai, L. Yu, A.
Saimi

2003 √ × Manual Whole No System Regression

9
Peter H. Deussen,
George Din, Ina
Schieferdecker

2003 √ ×
Manual Whole

No System Conformance

10
G. Walters, E. King,
R. Kessinger, R.
Fryer

1998 √ ×
Manual Whole

No Functions Behavior

11 Steven A. Walters 1994 √ × Manual Whole No Functions Functional

12 K. Chaitanya 2017 √ √ Automa
tic

Individ
ual Yes

Hardware
Independent
Functional
testing,
Environment

Functional

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1212

Table 3: Repository for the message flow system
Se

ri
al

 N
um

be
r

of
 d

ev
ic

e

Type of
device

Device model
number

Device
Address

Po
rt

 N
um

be
r

Arbitration
number Message

M
es

sa
ge

Pr

io
ri

ty

1. Master LPC2148 50 1 11010101000 Master has the priority over the salves 1
2. Slave-1 89C51 60 2 11010101001 Temp-1 flow before other messages 2

3. Slave-2 AT89S52 70 3 11010101011 Temp-2 must follow temp-1 in a fraction
of 10µsec

3

4. Slave-3 PIC18F4550 40 4 11010100001

Message to pump-1 must follow temp-2
within 20µsec 4

5. Slave-4 ATmega328 30 5 11010100011 Message to pump-2 must follow the
message to pump-1 within 10µsec

5

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1213

Table 4 :Framework for the generation of test cases – Testing distributed embedded systems
Fu

nc
tio

na
l

re
qu

ir
em

en
t N

um
be

r

Functional Requirement Test Requirements

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t
ca

se
 se

ri
al

Split test cases Testing Method

T
es

tin
g

L
oc

at
io

n

1 Read Temp-1 and write to
LCD

Test Temp-1 read is written to
LCD 1

Scaffolding
ES-1

Test for proper sensing of Temp-1
signal at the output of the
temperature sensor

2
Assert Macros

ES-1

2

Test the Communication
based communication between
the 89C51 (ES-1) and the
central ES-5)

Test for the equivalence of output
data sent (output Register)
through ES-1 resident
communication interface and
received at the communication
port of ES-5 (Comm. Input
register)

3

3A
Test for proper outputting data on
the output communication port of
ES-1 Scaffolding

ES-1

3B
Test for proper data read at the
input communication on output
communication port of ES-5 Scaffolding

ES-5

3 Read-Temp-1 and send to
Central Micro Controller

Test for the equivalence of output
data sent through the ES-1
resident communication interface
and received at the
communication port of ES-5

4
4A Test for Reading of a particular

Temperature-1 @ES-1 Scaffolding
ES-1

4B Test for Reading of a particular
Temperature-1 @ ES-5 Scaffolding ES-5

4 Read Temp-1 and measure
throughput

Test for several times the
temperature read in one minute

5 Test for throughput Instruction set
Simulator ES-1

6 Test for throughput Scaffolding ES-1

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1214

Table 5: Environment setting for undertaking Testing of a distributed Embedded System through Scaffolding

C
om

m
an

d
Se

ri
al

C
om

m
an

d

A
rg

1

A
rg

2

A
rg

3

A
rg

4

1. COMM-1
2. COMM-2
3. COMM-3
4. COMM-4
5. THRU-1
6. THRU-2
7. RESP-TEMP-1
8. RESP-TEMP-2
9. RESP-PUMP-1-ON
10. RESP-PUMP-1-OFF
11. RESP-PUMP-2-ON
12. RESP-PUMP-2-OFF
13. BZR-ON TEMP-1 35 TEMP-2 30
14. BZR-OFF TEMP-1 35 TEMP-2 34
15. PUMP-1-ON TEMP-1 30 REFTEMP-1 25
16. PUMP-1-OFF TEMP-1 30 REFTEMP-1 32
17. PUMP-2-ON TEMP-2 30 REFTEMP-2 25
18. PUMP-2-OFF TEMP-2 30 REFTEMP-2 32
19. WLCD-1 TEMP-1 30
20. WLCD-2 TEMP-2 35
21. RANGE-1
22. RANGE-2
23. RESP-BUZZER-ON
24. RESP-BUZZER-OFF
25. PUMP1-ON-RESPONSE
26. PUMP1-OFF-RESPONSE
27. PUMP2-ON-RESPONSE
28. PUMP2-OFF-RESPONSE

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1215

Table 6 :A sample Test environment
Fu

nc
tio

na
l

re
qu

ir
em

en
t

N
um

be
r

Test Requirements

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

C
om

m
an

d
to

 b
e

us
ed

Testing
Method

T
es

tin
g

L
oc

at
io

n

1 Test Temp-1 read is written to LCD 1 1 WLCD-1 Scaffolding ES-1

2

Test for the equivalence of output data sent
(output Register) through ES-1 resident
communication interface and received at the
communication port of ES-5 (Comm. Input
register)

3 3A COMM-1 Scaffolding ES-1

3

Test for the equivalence of output data sent
through the ES-1 resident communication
interface and received at the communication port
of ES-5

4 4A COMM-1 Scaffolding ES-1

4 Test number of times temperature read in one
minute 6 6 THRU-1 Scaffolding ES-1

6 Test whether PUMP-1 is ON when Temp-1 >
Reference Temperature-1 8 8A RANGE-1 Scaffolding ES-1

7 Test whether PUMP-1 is off when Temp-1 <=
reference Temperature-1 9 9A RANGE-1 Scaffolding ES-1

8 Test whether BUZZER is ON when ABS(Temp-
1 -Temp-2)>2 10 10A RANGE-1 Scaffolding ES-1

9 Test whether BUZZER is OFF when ABS(Temp-
1 -Temp-2)<=2 11 11A RANGE-1 Scaffolding ES-1

10
Test response time considering reading of Temp-
1 and starting the pump-1 when Temp-1 >
Reference Temp-1

12 12A
RESP-TEMP-
1 Scaffolding ES-1

11
Test response time considering reading of Temp-
1 and stopping the pump-1 when Temp-1 <=
Reference Temp-1

16 16A
RESP-TEMP-
1 Scaffolding ES-1

12

Test response time considering the reading of
Temp-1 and Temp-2 and starting the buzzer
when the difference between Temp-1 and Temp-
2 >2

20 20A RESP-TEMP-
1 Scaffolding ES-1

13

Test response time considering the reading of
Temp-1 and Temp-2 and stopping the buzzer
when the difference between Temp-1 and Temp-
2 <=2

24 24A RESP-TEMP-
1 Scaffolding ES-1

21 Test whether BUZZER is ON when Temp-2 >
Temp-1 37 37B RANGE-1 Scaffolding ES-1

22 Test whether BUZZER is OFF when Temp-2 <=
Temp-1 38 38B RANGE-1 Scaffolding ES-1

8 Test whether BUZZER is ON when ABS(Temp-
1 -Temp-2)>2 10 10B RANGE-2 Scaffolding ES-2

9 Test whether BUZZER is OFF when ABS(Temp-
1 -Temp-2)<=2 11 11B RANGE-2 Scaffolding ES-2

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1216

Table 7: List of functions implemented on all Distributed Embedded Systems

Functions for the Application at Location 1
Function

Code Name of the Function Function Description

F01 init-LCD () Initialization of LCD
F02 cmdtoLCD () To send command to LCD
F03 dispdataLCD () To display data on to LCD
F04 delay () To make a task to go to wait for the state for some defined time
F05 dispstrLCD () Display a string on LCD
F06 read1ADC () Read data from sensor through ADC
F07 RS232C_read () Read data from PC to ES1
F08 RS232C_write () Write data from ES1 to PC
F09 timer0 () Timer function
Functions for the Application at Location 2
F10 init-LCD () Initialization of LCD
F11 cmdtoLCD () To send command to LCD
F12 dispdataLCD () To display data on to LCD
F13 delay () To make a task to go to wait for the state for some defined time
F14 dispstrLCD () Display a string on LCD
F15 read2ADC () Read data form temperature sensor from ADC
F16 RS232C_read () Read data from PC to ES2
F17 RS232C_write () Write data from ES2 to PC
F18 timer0 () Timer function

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1217

Table 8: Function calling sequence
T

es
t C

as
e

se
ri

al

Su
b-

T
es

t c
as

e
se

ri
al

Split Test Requirements Script Function calls

1 1 Test Temp-1 read is written to LCD 1,1,WLCD-1, TEMP-1 , 30, , read1ADC()

7 7A Test for proper outputting data on output
communication port of ES-3 5,7A,COMM-3, , , , txstrES5ES3 ()

txstrES3ES5 ()

8 8C Test whether the PUMP-1 is ON 6,8C,PUMP-1-ON, TEMP-1, 30,
REFTEMP-1,25

setpump1on ()

16 16C Test for Response time of Pump-1 when
off

11,16C,RESP-PUMP-1-OFF,
TEMP-1=30

txstrES5ES3 ()
setpump1off ()

34 34A Test for proper outputting data on output
communication port of ES-4 18,34A,COMM-4, , , , TxchrES4ES5()

RcvchrES5ES4()

10 10C Test whether the BUZZER status is on
when ABS(Temp-1 -Temp-2)>2

8,10C,BZR-1-ON, TEMP-1, 30,
TEMP-2,33

recvDataFromES1 ()
recvDataFromES2()
compareTemp1WithTemp2 (
)

11 11C Test whether the BUZZER status is off
when ABS(Temp-1 -Temp-2)>2

9,11C,BZR-2-OFF, TEMP-1, 33,
TEMP-2,30

recvDataFromES1 ()
recvDataFromES2()
compareTemp1WithTemp2 (
)

12 12B Test if temp-1 > reference temp-1 10,12B,PUMP-1-ON, TEMP-1,
30, ,

rcvchrPCES1
read1ADC()
setpump1on ()

16 16B Test if temp-1 <= reference temp-1 11,16B,PUMP-1-OFF, TEMP-
1,30, ,

rcvchrPCES1
read1ADC ()
setpump1off ()

20 20C Test if absolute of Temp1 - Temp-2 > 2 12,20C,BZR-1-ON, TEMP-1, 33,
TEMP-2,28

recvDataFromES1 ()
recvDataFromES2()
compareTemp1WithTemp2 (
)

20 20D Test for Response time of BUZZER
when ON

12,20D,BUZZERONRESPONSE
, , , ,

recvDataFromES2 ()
compareTemp1WithTemp2 ()

24 24C Test if absolute of Temp1 - Temp-2 > 2 13,24C,BZR-1-OFF, TEMP-
1,30,TEMP-2,28

recvDataFromES1 ()
recvDataFromES2()
compareTemp1WithTemp2 (
)

24 24D Test for Response time of BUZZER
when OFF

13,24D,BUZZEROFFRESPONS
E, , , ,

recvDataFromES2 ()
compareTemp1WithTemp2 ()

36 36B
Test whether the PUMP-2 status is off
when TEMP-2 <= Reference
Temperature-2

20,36B,PUMP2OFFRESPONSE,
, , ,

recvDataFromES2 ()
compareRef2WithTemp2()

37 37C Test whether the BUZZER status is on
when ABS(TEMP-1-TEMP-2) > 2

21,37C,BZR-1-ON, TEMP-1,28,
TEMP-2,30

recvDataFromES1 ()
recvDataFromES2()
compareTemp1WithTemp2 (
)

38 38C Test whether the BUZZER status is off
when ABS (TEMP-1 - TEMP-2) <= 2

22,38C,BZR-2-OFF, TEMP-1,33,
TEMP-2,28

recvDataFromES1 ()
recvDataFromES2()
compareTemp1WithTemp2 ()

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1218

Table 9: Generated test Scripts
Fu

nc
tio

na
l

re
qu

ir
em

en
t

N
um

be
r

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t
ca

se
 se

ri
al

Split Test Requirements Script

1 1 1 Test Temp-1 read is written to LCD 1,1,WLCD-1, TEMP-1 , 30, ,

2 3 3A Test for proper outputting data on output
communication port of ES-1 2,3A,COMM-1, , , ,

4 6 6 Test for through put 4,6,THRU-1,TEMP-1, , ,

10 12 12A Test for Response time of temp-1 10,12A,RESP-TEMP-1, , , ,

11 16 16A Test for Response time of temp-1 11,16A,RESP-TEMP-1, , , ,
14 29 29 Test for through put 14,29,THRU-2, , , ,

6 8 8C Test whether the PUMP-1 is ON 6,8C,PUMP-1-ON, TEMP-1, 30, REFTEMP-1,25

7 9 9C Test whether the PUMP-1 is OFF 7,9C,PUMP-1-OFF,TEMP-1, 30, REFTEMP-1,32

19 35 35C Test whether the PUMP-2 is ON 19,35C,PUMP-2-ON,TEMP-2,30, REFTEMP-2,25

20 36 36C Test whether the PUMP-2 is OFF 20,36C,PUMP-2-OFF, TEMP-2, 30, REFTEMP-2,
32

6 8 8B Test whether the PUMP-1 status is on
when TEMP-1 > Reference Temperature-1 6,8B,PUMP-1-ON, TEMP-1, 30, REFTEMP-1,25

7 9 9B
Test whether the PUMP-1 status is off
when TEMP-1 <= Reference Temperature-
1

7,9B,PUMP-1-OFF, TEMP-1,30,REFTEMP-1,32

8 10 10C Test whether the BUZZER status is on
when ABS(Temp-1 -Temp-2)>2 8,10C,BZR-1-ON, TEMP-1,30, TEMP-2,33

9 11 11C Test whether the BUZZER status is off
when ABS(Temp-1 -Temp-2)>2 9,11C,BZR-2-OFF, TEMP-1,33, TEMP-2,30

10 12 12B Test if temp-1 > reference temp-1 10,2B,PUMP-1-ON, TEMP-1,30, PUMP-1-ON,1

11 16 16B Test if temp-1 <= reference temp-1 11,16B,PUMP-1-OFF,TEMP-1,30, PUMP-1-OFF,0

12 20 20C Test if absolute of Temp1 - Temp-2 > 2 12,20C,BZR-1-ON, TEMP-1,33, TEMP-2,28

12 20 20D Test for Response time of BUZZER when
ON 12,20D,BUZZERONRESPONSE, , , ,

13 24 24C Test if absolute of Temp1 - Temp-2 > 2 13,24C,BZR-1-OFF, TEMP-1,30,TEMP-2,28

13 24 24D Test for Response time of BUZZER when
OFF 13,24D,BUZZEROFFRESPONSE, , , ,

19 35 35B Test whether the PUMP-2 status is on
when TEMP-2 > Reference Temperature-2 19,35B,PUMP2ONRESPONSE, , , ,

20 36 36B
Test whether the PUMP-2 status is off
when TEMP-2 <= Reference Temperature-
2

20,36B,PUMP2OFFRESPONSE, , , ,

21 37 37C Test whether the BUZZER status is on
when ABS(TEMP-1-TEMP-2) > 2 21,37C,BZR-1-ON, TEMP-1,28, TEMP-2,30

22 38 38C Test whether the BUZZER status is off
when ABS (TEMP-1 - TEMP-2) <= 2 22,38C,BZR-2-OFF, TEMP-1,33, TEMP-2,28

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1219

Table 10 : Sample Test results - Testing through Scaffolding

Fu
nc

tio
na

l
re

qu
ir

em
en

t
N

um
be

r

Split Test Requirements

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

C
om

m
an

d

In
pu

t V
ar

ia
bl

e-
1

In
pu

t V
ar

ia
bl

e
V

al
ue

 1

In
pu

t V
ar

ia
bl

e-
2

In
pu

t V
ar

ia
bl

e
V

al
ue

 2

T
es

t O
ut

pu
t

V
ar

ia
bl

e

T
es

t O
ut

pu
t

V
al

ue
s

E
xp

ec
te

d
O

ut
pu

t
V

al
ue

s

T
es

t P
as

s/
fa

il

1
Test Temp-1 read is written to
LCD

1 1 WLCD-1 TEMP-1 30
TEMP1-
LCD-DATA

30 30 P

2
Test for proper outputting of data
on communication port of ES-1

3 3A COMM1 TEMP-1 30 temp1ToES5 30 30 P

3
Test for Reading of a particular
Temperature-1 @ES-1

4 4A COMM1 TEMP-1 30 temp1ToES5 30 30 P

4 Test for throughput 6 6 THRU-1
TEMP1
Thruput

12 12 P

6
Test whether the temp-1 read is
within the Range

8 8A RANGE-1
TEMP1
Range

1 1 P

7
Test whether the temp-1 read is
within the Range

9 9A RANGE-1
TEMP1
Range

1 1 P

8
Test whether the temp-1 read is
within the Range

10 10A RANGE-1
TEMP1
Range

1 1 P

9
Test whether the temp-1 read is
within the Range

11 11A RANGE-1
TEMP1
Range

0 0 F

10 Test for Response time of temp-1 12 12A
RESP-
TEMP-1

RESP-TEMP-
1

10

10 P

11
Test for the Response time of
temp-1

16 16A
RESP-
TEMP-1

RESP-TEMP-
1

12 10 F

12 Test for Response time of temp-1 20 20A
RESP-
TEMP-1

RESP-TEMP-
1

10 10 P

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1220

Table 11: Generating Assert Macros

Assert
Macro Test to be carried Parameter List Assert Macro

MACRO-1 Test for proper sensing
of Temp-1 signal at the
output of the Temp-1
sensor

TEMP-1

#define assert (TEMP1)
if (TEMP1 == 0)
bad_assertion (“Improper Temperatue-1 value”,
TEMP1);

MACRO-2 Test for proper sensing
of temp-1 and Pump-1 to
be on PORT-1-ON

#define assert (PORT-1-ON)

If (PORT-1-ON == 0) bad-assertion (“improper
pump1 status”);

MACRO-3 Test for proper sensing
of Temp-1 and Pump-1
to be off PORT-1-OFF

#define assert (PORT-1-OFF)

If (PORT-1-OFF == 1) bad-assertion (“improper
pump1 status”);

MACRO-4 Test for sensing Temp-1,
Temp-2 and Buzzer On
condition TEMP-1, TEMP-2,

BUZZER-
STATUS-ON

#define assert (TEMP1, TEMP2, BUZZER-
STATUS-ON)
if (ABS (TEMP1- TEMP2) > 2 AND BUZZER-
STATUS-ON == “ON”)
bad_assertion (“Improper Buzzer Status,” TEMP1,

TEMP2, BUZZER-STATUS-
ON);

MACRO-5 Test for sensing Temp-1,
Temp-2, and Buzzer off
condition TEMP-1, TEMP-2,

BUZZER-
STATUS-OFF

#define assert (TEMP1, TEMP2, BUZZER-
STATUS-OFF)
if (ABS (TEMP1- TEMP2) <= 2 AND BUZZER-
STATUS-OFF == “OFF”)
bad_assertion (“Improper Buzzer Status,” TEMP1,
TEMP2, BUZZER-STATUS-OFF);

MACRO-6 Test for proper sensing
of Temp-2 signal at the
output of the Temp-2
sensor

TEMP-2

#define assert (TEMP2)
if (TEMP2 == 0)
bad_assertion (“Improper Temperatue-2 value”,
TEMP2);

MACRO-7 Test for Temp-2 and
proper asserting of
Pump-2 signal to be on PORT-2-ON

#define assert (PORT-2-ON)

if (PORT-2-ON == 0) bad-assertion (“improper
pump2 status”);

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1221

Table 12: Sample Test results at different Locations by using Assert Macros

Fu
nc

tio
na

l
re

qu
ir

em
en

t
N

um
be

r

Split Test Requirement

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

M
ac

ro
 u

nu
se

d/

C
om

m
an

d

In
pu

tV
ar

ia
bl

e1

In
pu

t V
ar

ia
bl

e
V

al
ue

1

In
pu

tV
ar

ia
bl

e2

In
pu

t V
ar

ia
bl

e
V

al
ue

2

T
es

t O
ut

pu
t

V
ar

ia
bl

e

T
es

t O
ut

pu
t V

al
ue

E
xp

ec
te

d
O

ut
pu

t
V

al
ue

T
es

t P
as

s/
 F

ai
l

1

Test for proper sensing
of Temp-1 signal at the
output of the temperature
sensor

2 2 MACRO-1 TEMP-1 30 TEMP-1 TRUE TRUE P

6
Test whether proper
Temperature-1 sensor
signal is being active

8 8D MACRO-1 TEMP-1 30 TEMP-1 TRUE TRUE P

7
Test whether proper
Temperature-1 sensor
signal is being active

9 9D MACRO-1 TEMP-1 30 TEMP-1 TRUE TRUE P

8
Test whether proper
Temperature-1 sensor
signal is being active

10 10D MACRO-1 TEMP-1 30 TEMP-1 TRUE TRUE P

9
Test whether proper
Temperature-1 sensor
signal is being active

11 11D MACRO-1 TEMP-1 30 TEMP-1 TRUE TRUE P

21
Test whether proper
Temperature-1sensor
signal is being active

37 37E MACRO-4 TEMP-1 30 TEMP-1 TRUE TRUE P

22
Test whether proper
Temperature-1 sensor
signal is being active

38 38E MACRO-5 TEMP-1 30 TEMP-1 TRUE TRUE P

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1222

Table 13: Generated Test Scripts – Instruction set Simulator
Fu

nc
tio

na
l

R
eq

ui
re

m
en

t
N

um
be

r

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

Test Requirements Split test cases

T
es

tin
g

L
oc

at
io

n

Test Script

4 5 5 Test for number of times
temperature-1 is read in one minute

Test for throughput
of TEMP1 ES-1 4,5,THRUTEMP1, , , ,

10 15 15A

Test response time considering
reading of Temp-1 and starting the
pump-1 when Temp-1 > Reference
Temp-1

Test for Response
for Temp1 ES-1 10,15A,RESTEMP1, , , ,

11 19 19A

Test response time considering
reading of Temp-1 and stopping the
pump-1 when Temp-1 <= Reference
Temp-1

Test for Response
time for TEMP1 ES-1 11,19A,RESTEMP1, , , ,

12 23 23A

Test response time considering
reading of Temp-1 and Temp-2 and
starting the buzzer when difference
between Temp-1 and Temp-2 >2

Test for Response
for Temp1 ES-1 12,23A,RESTEMP1, , , ,

13 27 27A

Test response time considering
reading of Temp-1 and Temp-2 and
stopping the buzzer when difference
between Temp-1 and Temp-2 <= 2

Test for Response
for Temp1 ES-1 13,27A,RESTEMP1, , , ,

12 23 23B

Test response time considering
reading of Temp-1 and Temp-2 and
starting the buzzer when difference
between Temp-1 and Temp-2 >2

Test for Response
for Temp2 ES2 12,23B,RESTEMP2, , , ,

13 27 27B

Test response time considering
reading of Temp-1 and Temp-2 and
stopping the buzzer when difference
between Temp-1 and Temp-2 <= 2

Test for Response
for Temp2 ES2 13,27B,RESTEMP2, , , ,

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1223

Table 14: Sample Test, results at different Locations using Instruction set simulators with commands and arguments

Fu
nc

tio
na

l
re

qu
ir

em
en

t
N

um
be

r

Split Test Case

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

C
om

m
an

d

T
es

t O
ut

pu
t

V
ar

ia
bl

e

T
es

t O
ut

pu
t

V
al

ue
s

E
xp

ec
te

d
ou

tp
ut

 v
al

ue

T
es

t P
as

s/
fa

il

4 Test for throughput 5 5 THRUTEMP1 THRUTEMP1 10 10 P
10 Test for Response time of temp-1 15 15A RESTEMP1 RESTEMP1 10 10 P

11 Test for Response time of temp-1 19 19A RESTEMP1 RESTEMP1 10 10 P

12 Test for response time of temp-1 23 23A RESTEMP1 RESTEMP1 10 10 P

13 Test for response time of temp-1 27 27A RESTEMP1 RESTEMP1 10 10 P

Table 15: Test Scripts at Location-1 using In-circuit Emulator

Fu
nc

tio
na

l
re

qu
ir

em
en

t
N

um
be

r

Test Requirements

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

Split test cases

T
es

tin
g

L
oc

at
io

n

Test Script

10

Test response time considering
reading of Temp-1 and starting
the pump-1 when Temp-1 >
Reference Temp-1

14 14A Test for Response
time of temp-1 ES-1 10,14A,RESP-TEMP-1, , , ,

,

11

Test response time considering
reading of Temp-1 and stopping
the pump-1 when Temp-1 <=
Reference Temp-1

18 18A Test for Response
time of temp-1 ES-1 11,18A, RESP-TEMP-1, , , ,

,

12

Test response time considering
reading of Temp-1 and Temp-2
and starting the buzzer when
difference between Temp-1 and
Temp-2 >2

22 22A Test for response
time of temp-1 ES-1 12,22A, RESP-TEMP-1, , , ,

,

13

Test response time considering
reading of Temp-1 and Temp-2
and stopping the buzzer when
difference between Temp-1 and
Temp-2 <=2

26 26A Test for Response
time of temp-1 ES-1 13,26A, RESP-TEMP-1, , , ,

,

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1224

Table 16 :Sample Test results at different Locations using In-Circuit Emulator
Fu

nc
tio

na
l

R
eq

ui
re

m
en

t
N

um
be

r

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

Sp
lit

 T
es

t C
as

e

C
om

m
an

d

In
pu

t

V
ar

ia
bl

e-
1

In
pu

t V
ar

ia
bl

e-
1

V
al

ue

In
pu

t V
ar

ia
bl

e-
2

In
pu

t V
ar

ia
bl

e-
2

V
al

ue

T
es

t o
ut

pu
t

V
ar

ia
bl

e

T
es

t o
ut

pu
t

E
xp

ec
te

d
ou

tp
ut

T
es

t F
ai

l/P
as

s

10 14 14A Test for a Response
time of temp-1

RESP-TEMP-1 RESP-TEMP-1 10 10 P

11 18 18A Test for a Response
time of temp-1

RESP-TEMP-1 RESP-TEMP-1 10 10 P

12 22 22A Test for a response
time of temp-1

RESP-TEMP-1 RESP-TEMP-1 10 10 P

13 26 26A Test for a Response
time of temp-1

RESP-TEMP-1 RESP-TEMP-1 10 10 P

Table 17 :Generated Test Scripts

Fu
nc

tio
na

l
re

qu
ir

em
en

t
N

um
be

r

Test Requirements

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

Split test cases

T
es

tin
g

L
oc

at
io

n

Test Script

10
Test response time considering the
reading of Temp-1 and starting the pump-
1 when Temp-1 > Reference Temp-1

13 13A
Test for the
Response time
of temp-1

ES-1 10.13A,RESPONSE-P1,
, , ,

11

Test response time considering the
reading of Temp-1 and stopping the
pump-1 when Temp-1 <= Reference
Temp-1

17 17A
Test for the
Response time
of temp-1

ES-1 11,17A,RESPONSE-P1,
, , ,

12

Test response time considering the
reading of Temp-1 and Temp-2 and
starting the buzzer when the difference
between Temp-1 and Temp-2 >2

21 21A
Test for the
response time of
temp-1

ES-1 12,21A,RESPONSE-P1,
, , ,

13

Test response time considering the
reading of Temp-1 and Temp-2 and
stopping the buzzer when the difference
between Temp-1 and Temp-2 <= 2

25 25A
Test for the
Response time
of temp-1

ES-1 12,25A,RESPONSE-P1,
, , ,

12

Test response time considering the
reading of Temp-1 and Temp-2 and
starting the buzzer when the difference
between Temp-1 and Temp-2 >2

21 21B
Test for the
response time of
Temp-2

ES-2 12,21B,RESPONSE-P2,
, , ,

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1225

Table 18 : Sample Test results at different Locations using Logic Analyzer
Fu

nc
tio

na
l

R
eq

ui
re

m
en

t N
um

be
r

Test Case

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

Split test cases

C
om

m
an

d

In
pu

t V
ar

ia
bl

e
1

In
pu

t V
ar

ia
bl

e
V

al
ue

1

In
pu

t V
ar

ia
bl

e
2

In
pu

t V
ar

ia
bl

e
 V

al
ue

2

T
es

t O
ut

pu
t V

ar
ia

bl
e

T
es

t o
ut

pu
t

E
xp

ec
te

d
ou

tp
ut

T
es

t F
ai

l/P
as

s

10

Test response time
considering reading
of Temp-1 and
starting the pump-1
when Temp-1 >
Reference Temp-1

13 13A
Test for
Response time
of temp-1

RESPOSNE
-T1

10 10 P

11

Test response time
considering reading
of Temp-1 and
stopping the pump-1
when Temp-1 <=
Reference Temp-1

17 17A
Test for
Response time
of temp-1

RESPOSNE
-T1

10 10 P

12

Test response time
considering the
reading of Temp-1
and Temp-2 and
starting the buzzer
when the difference
between Temp-1 and
Temp-2 >2

21 21A
Test for the
response time
of temp-1

RESPONSE
-T1

10 10 P

13

Test response time
considering the
reading of Temp-1
and Temp-2 and
stopping the buzzer
when the difference
between Temp-1 and
Temp-2 <= 2

25 25A
Test for the
Response time
of temp-1

RESPONSE
-T1

10 10 P

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1226

Table 19 :Combining and grouping-sample test results
Fu

nc
tio

na
l

re
qu

ir
em

en
t N

um
be

r

Fu
nc

tio
na

l
R

eq
ui

re
m

en
t

T
es

t R
eq

ui
re

m
en

ts

T
es

t C
as

e
se

ri
al

Su
b-

T
es

t c
as

e
se

ri
al

Split test cases

C
om

m
an

d
/ M

ac
ro

s
us

ed

In
pu

t V
ar

ia
bl

e-
1

In
pu

t V
ar

ia
bl

e
V

al
ue

 1

In
pu

t V
ar

ia
bl

e-
2

In
pu

t V
ar

ia
bl

e
V

al
ue

 2

T
es

t O
ut

pu
t V

ar
ia

bl
e

T
es

t O
ut

pu
t V

al
ue

s

E
xp

ec
te

d
ou

tp
ut

T
es

t P
as

s/
fa

il

L
oc

at
io

n

T
es

t T
yp

e

1

Read
Temp-1
and write to
LCD

Test Temp-1 read is
written to LCD 1 1

Test Temp-1 read is
written to LCD WLCD

-1
TEM
P-1 30

TEMP1-
LCD-DATA 30 30 P ES-1 Scaffolding

Test for proper sensing
of Temp-1 signal at
the output of the
temperature sensor

2 2

Test for proper sensing of
Temp-1 signal at the output
of the temperature sensor MACR

O-1
TEM
P-1 30 TEMP-1

TR
U

E

TR
U

E

P ES-1 Assert Macro

2

Test the
Communic
ation based
communica
tion
between the
89C51 (ES-
1) and the
central ES-
5)

Test for the
equivalence of output
data sent (output
Register) through ES-1
resident
communication
interface and received
at the communication
port of ES-5 (Comm.
Input register)

3

3A

Test for proper outputting
data on the output
communication port of ES-
1

COM
M1

TEM
P-1 30 temp1ToES5 30 30 P ES-1 Scaffolding

3B

Test for proper data read at
the input communication
on output communication
port of ES-5

COM
M1

TEM
P-1 30 temp1ToES5 30 30 P ES-5 Scaffolding

4

Read
Temp-1
and
measure
throughput

Test for throughput
temperature read in
one minute

5 5
Test for throughput THRU

TEMP
1

 THRUTEMP
1

10 10 P ES-1 Instruction Set
Simulator

6 6
Test for through put THRU-

1
 TEMP1

Thruput
12 12 P ES-1 Scaffolding

K Chaitanya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1194 - 1227

1227

Table 20: Sample Merged Test results
Fu

nc
tio

na
l

re
qu

ir
em

en
t

N
um

be
r

Functional
Requirement Split test cases

C
om

m
an

d

In
pu

t V
ar

ia
bl

e-
1

In
pu

t V
ar

ia
bl

e
1

V
al

ue

In
pu

t V
ar

ia
bl

e-
2

In
pu

t V
ar

ia
bl

e
2

V
al

ue

T
es

t O
ut

pu
t

V
ar

ia
bl

e

T
es

t O
ut

pu
t

V
al

ue
s

E
xp

ec
te

d
ou

tp
ut

T
es

t P
as

s/
fa

il

O
ve

ra
ll

te
st

 st
at

us

1 Read Temp-1 and write
to LCD

Test Temp-1 read is written to
LCD

WLCD-1 TEMP-1 30 TEMP1-LCD-
DATA 30 30 P

PASS Test for proper sensing of
Temp-1 signal at the output of
the temperature sensor

MACRO
-1 TEMP-1 30 TEMP-1

TR
U

E

TR
U

E P

2

Test the Communication
based communication
between the 89C51 (ES-
1) and the central ES-5)

Test for proper outputting data
on the output communication
port of ES-1

COMM1 TEMP-1 30 temp1ToES5
30 30 P

PASS Test for proper data read at the
input communication on output
communication port of ES-5

COMM1 TEMP-1 30 temp1ToES5
30 30 P

4 Read Temp-1 and
measure throughput

Test for throughput
THRUTE
MP1

 THRUTEMP1 10 10
P

PASS
Test for throughput THRU-1 TEMP1

Thruput 12 12 P

