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 
ABSTRACT 
The usage of android system is rapidly growing in mobile 
devices. Android system might also incur severe different 
malware dangers and security threats such as infections, root 
exploit, Trojan, and worms. The malware has potential to 
compromise and steal the private data, classified data, instant 
messages, private business contacts, and confidential 
schedule. Malware detection is needed due to the malware 
continuously evolve rapidly. This research proposed 
automated feature selection using Boruta algorithm to detect 
the malware. The proposed method adopts machine learning 
prediction and optimizes the selecting features in order to 
reduce the model of machine learning complexity. Boruta 
algorithm is used to select features automatically for assisting 
the machine learning. The experimental results show that the 
proposed method is able to reach 99.73% accuracy in machine 
learning classification.  
 
Key words: Android; static analysis; machine learning; 
features. 
 
1. INTRODUCTION 
 

Nowadays, people utilize smartphone to communicate and 
assists them in daily activities, from normal until important 
tasks. There is various type of operating system (OS) built for 
smartphone; for instance, Android, IOS, Window, Blackberry 
and Symbian. Among all these OSes, [1] stated that android is 
the largest installed platform and growing fast which placed 
first among others. Consequently, there is a rapid increase in 
the amount of malware targeting Android smartphones since 
it is the most popular OS [2].  

Malware is an acronym for malicious software - that 
executes malicious activities such as, secretly accessing 
private information, causes damage to the OS, or control the 
system. Therefore, in order to detect malware, security 
practitioners adopt two types of analyses; dynamic and 
static. Dynamic analysis is an analysis that execute and 
monitor the malware behavior [3]. However, dynamic 
analysis is unable to discover some parts of the code that 
execute outside of the monitoring range. Apart from that, 
dynamic analysis is a high resource-consuming analysis, 
 

 

which requires a high specification of hardware [3]. 
Therefore, static analysis is another alternative for the 
researcher to detect malware. It is an analysis that studies the 
malware without executing it. Additionally, this analysis is 
able to discover the malware that would behave under unusual 
conditions which is much more accurate [4]. This is due to 
static analysis examine overall parts of a program including 
parts that excluded in dynamic analysis, and able to detect 
unknown malware with machine learning [5].  

However, it is important to consider the challenges in 
machine learning. One of it is the features concern. Higher 
number of features will decrease the machine learning 
Android malware detection system performance. This is 
because by having a large number of features will increase the 
dimension of search space for the problem. Consequently, this 
will cause the problem to suffer from Curse of dimensionality 
[6]. Therefore, there is a need to find a suitable algorithm to 
select the best among many number of features. Hence, the 
main contributions in this technical paper are as below: 

a) applied Boruta algorithm to select the best features 
automatically. In author’s knowledge, to date, only this 
paper adopted this algorithm in selecting features in 
detecting malware for Android platform.  

b) this paper discovers the effectiveness of Boruta algorithm 
in detecting malware.  

c) utilized the public dataset [7] which contains hundreds of 
features that consists of different categories. These 
features are from 1260 malware and 2539 normal @ 
benign applications. By using this dataset, Boruta have a 
wider choice of features to select from and decrease it. 
From the features selected from the Boruta, it will 
increase the machine learning detection rate.  

d) evaluates the results to measure the Boruta effectiveness 
to detect malware. 

2. RELATED WORK 
 
This section introduces the types of malware analysis, and 
then followed by the machine learning information, types of 
feature selection, Boruta algorithm and comparison with 
previous studies. 
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2.1 Malware analysis (dynamic and static) 
 

There are two types of analysis to detect malware; dynamic 
and static. Table 1 shows the comparison between these two 
analyses. 

 
Table 1: Differences between static and dynamic analysis in 
malware detection 

Type of 
analysis Strength Weakness 

Dynamic 1) May detect anomaly in 
malware 

1) Extensive duration 
2) High resource 

utilization 
Static 1) Instant detection (fast) 

2) May detect malware in 
anomaly in malware with 
machine learning 
prediction. 

1) Need to update the 
input data if 
needed.  

 
Dynamic approaches are convenient, yet it does have 

disadvantages such as high efficiency and profitability. In 
addition, it is difficult to detect malware types that able to 
disguise their suspicious activities during analysis. 
Conversely, static analysis is an approach which evaluates the 
malicious program without running the applications.  

Static (offline) training means that we basically have a big 
data store and we train our model exactly once before it's used 
for a long time. Offline training requires less monitoring or 
monitoring of dataset training work than online training. The 
downside of the static is that it still requires monitoring at the 
input data at the inference time, if needed. If our distribution 
of inputs changes and our model has not adapted, we may end 
up with a bleak prediction. Hence, it is important to have big 
data enough to support detection for a long time. However, we 
able to update the input data anytime as needed as well. 
Furthermore, with machine learning assist, static analysis 
able to predict anomaly in malware, similar with dynamic 
analysis. 
 

2.2 Machine learning 
Machine learning (ML) is a category of algorithms that 

allows software applications to become more accurate in 
predicting outcomes without being explicitly programmed. 
The basic premise of machine learning is to build algorithms 
that able to train itself according to the input data given and 
then use statistical analysis to predict an output. If the new 
data available, it will update he output. The machine learning 
classification used in this experiment are Random forest, J48 
and GLM.  However, machine learning needs relevant 
features to predict the output efficiently [8][9].  

 

2.3 Types of feature selection methods 
The selection of features, also known as a selection of 

variables, selection of attributes, or selection of variable 
subsets, is the process of selecting a subset of relevant features 
(variables, predictors) for use in model construction. Feature 
selection techniques are used for several reasons: 
a) Simplification of models to make them easier for 

researchers/users to interpret. 
b) Shorter training time 
c) Avoiding the curse of dimensionality 
d) Enhanced generalization by reducing over-fitting 

(formally, reduction of variance) 
Accordingly, this paper implements Boruta algorithm to 

select the best features. 
 

2.4 Boruta Algorithm 
 

Boruta is a feature selection algorithm that works as a 
wrapper built around a random forest classification 
algorithm. It captures all the important or interesting features 
of the dataset concerning the output variable. The technique 
performs a top-down search for important features by 
comparing the significance of the original attributes with the 
significant randomly attainable attributes, assessing the use of 
their permuted duplicates (shadows), and gradually 
eliminating unimportant features to balance the test. 
Attributes or features that are significantly better than 
shadows are recognized as confirmed. On each iteration, 
shadows are re-created and the algorithm stops when only 
confirmed features are left. In short, Boruta algorithm use 
strategy a top-down search for significant features by 
contrasting original attributes important and important 
reachable at random, evaluated utilizing their permuted 
duplicates, and dynamically wiping out irrelevant features to 
stabilize that test. Therefore, this research uses the Boruta 
algorithm as a feature selection [10]. 

 
2.5 Comparison of the existing methods 
 
This section compares the features selection and classification in 
previous research.  

Table 2 lists that, to date, only this experiment used Boruta 
algorithm in selecting the relevant features in detecting 
mobile Android, which none researchers apply it previously. 
In our experiment, Boruta algorithm selects the best features 
automatically and investigate its effectiveness in selecting the 
best features. 
 

Table 2: Features selection and classification in previous research 

Reference
s 

Year Features Selection 
algorithm 

Classification 
algorithm 

[11] 2017 Simulated annealing Beta Classifier 
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and 
Metaclassifier 

[12] 2018 Genetic algorithm Naïve bayes, 
Random forest, 
Multilayer 
perceptron, J48 
and Functional 
tree 

[13] 2019 Permission 
ranking-based 
features selection 
approach 

Random Forest 

[14] 2017 Correlation-based 
feature selection 
(CFS), Chi square 
(CHI), Information 
gain (IG), ReliefF 
(RF) and one wrapper 
method with a Linear 
SVM classifier (WR) 

SVM Classifier 

This paper Curren
t year 

Boruta algorithm J48 

 
3.  METHODOLOGY 
 

This section provides the methodology in conducting our 
experiment. Figure 1 consists of three phases; 1) literature 
review; 2) feature selection and machine learning 
classification; and 3) result.  

As Error! Reference source not found. depicts the first 
phase involves all the review processes that includes 
identifying the problem statement, objective, scope, existing 
research, technique to select features and software involves in 
the experiment. These processes is to achieve the idea and to 
decide which algorithms need to use to select the best features. 

The second phase is where we used R to import and read 
the dataset. This paper used a public dataset from a reliable 
paper entitled “Droidfusion: A Novel Multilevel Classifier 

Fusion Approach for Android Malware Detection” [7]. This 
dataset consists of 1260 malware and 2539 benign @ normal 
samples. The 215 features in this dataset is based from 3799 
Android applications (.apk). The features are form multiple 
categories, namely; 1) permission; 2) API calls; 3) directory 
path; and 4) string. 

As machine learning need to reduce the complexity of its 
model, this phase used R to execute the Boruta algorithm to 
decrease the number of features automatically. This phase 
runs Boruta until it reaches a state that there are no features 
deemed important. Table 3 tabulates 215 features before 
Boruta algorithm. 

 

Phase 1: 
Literature 

review

Phase 2: 
Feature 

selection 
(Boruta 

algorithm) and 
machine 
learning 

classification

Phase 3: 
Result analysis

Study and understand about Android malware, machine 
learning and Malgenome dataset

Identify the problem statement, objective and scope

Identify and analyze existing research that related

Define the technique for features selection and 
classification

Analyze and choose the suitable software

Import and read 
dataset into R 
environment

Split the 
dataset 

Test

Classify train dataset 
(Random forest, J48 &GLM) 

Prediction using 
test datasetEvaluate result

Result and analysis

Conclusion

Install Package & Run Boruta 
algorithm (Features Selection)

Train

 
Figure 1: Methodology of Boruta algorithm

 
Table 3: List of 215 features before Boruta algorithm 

transact Ljava.lang.Class.forName READ_SYNC_STATS DexClassLoader intent.action.RUN STATUS_BAR 

bindService TelephonyManager.getSimSer
ialNumber 

WRITE_HISTORY_BOOK
MARKS 

WRITE_CALENDAR SecretKey Ljavax.crypto.Cipher 

onServiceConnected CAMERA DISABLE_KEYGUARD PROCESS_OUTGOING_C
ALLS 

CLEAR_APP_CACHE MODIFY_PHONE_STA
TE 

ServiceConnection CALL_PHONE READ_LOGS BIND_DEVICE_ADMIN ACCESS_FINE_LOCATI
ON 

android.intent.action.PA
CKAGE_RESTARTED 

android.os.Binder android.intent.action.SEND RECORD_AUDIO CHANGE_WIFI_MULTIC
AST_STATE 

SET_WALLPAPER_HIN
TS 

READ_INPUT_STATE 

READ_SMS onBind getCallingPid MASTER_CLEAR Context.bindService READ_EXTERNAL_S
TORAGE 

attachInterface android.content.pm.Signature MODIFY_AUDIO_SETTI
NGS 

android.intent.action.PACK
AGE_DATA_CLEARED 

MessengerService Ljava.lang.Object.getClas
s 

WRITE_SMS READ_SYNC_SETTINGS android.intent.action.PACK
AGE_REPLACED 

FLASHLIGHT ACCESS_NETWORK_S
TATE 

SET_ORIENTATION 

TelephonyManager.getSubscri
berId 

AUTHENTICATE_ACCOU
NTS 

android.intent.action.TIMEZ
ONE_CHANGED 

android.intent.action.BATT
ERY_LOW 

android.content.pm.Packag
eInfo 

DEVICE_POWER 

Ljava.lang.Class.getCanonical
Name 

INTERNET BROADCAST_STICKY SET_ALARM BIND_ACCESSIBILITY
_SERVICE 

EXPAND_STATUS_B
AR 

Ljava.lang.Class.getMethods PackageInstaller Runtime.exec RECEIVE_MMS INTERNAL_SYSTEM_
WINDOW 

GET_TASKS 

android.intent.action.BOOT_C
OMPLETED 

ACCESS_LOCATION_EXT
RA_COMMANDS 

android.intent.action.PACK
AGE_ADDED 

divideMessage SET_TIME_ZONE GLOBAL_SEARCH 
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Ljava.lang.Class.getField HttpUriRequest MOUNT_UNMOUNT_FIL
ESYSTEMS 

WRITE_CALL_LOG Process.start GET_PACKAGE_SIZE 

READ_PHONE_STATE remount android.intent.action.ACTIO
N_POWER_DISCONNEC
TED 

WRITE_PROFILE MOUNT_FORMAT_FIL
ESYSTEMS 

SET_PREFERRED_AP
PLICATIONS 

Landroid.content.Context.unre
gisterReceiver 

android.telephony.SmsManage
r 

Ljava.lang.Class.getDeclared
Classes 

WRITE_USER_DICTION
ARY 

CLEAR_APP_USER_DA
TA 

android.intent.action.PA
CKAGE_CHANGED 

GET_ACCOUNTS RECEIVE_BOOT_COMPLE
TED 

android.intent.action.PACK
AGE_REMOVED 

BIND_INPUT_METHOD UPDATE_DEVICE_STA
TS 

 

SEND_SMS android.intent.action.ACTION
_POWER_CONNECTED 

BLUETOOTH_ADMIN READ_SOCIAL_STREAM IRemoteService  

Landroid.content.Context.regis
terReceiver 

findClass android.os.IBinder REORDER_TASKS android.intent.action.SET_
WALLPAPER 

 

getBinder WRITE_CONTACTS IBinder defineClass BROADCAST_WAP_PU
SH 

 

Ljava.lang.Class.cast .system.app WRITE_SECURE_SETTI
NGS 

PERSISTENT_ACTIVITY android.intent.action.CALL
_BUTTON 

 

chmod Ljava.lang.Class.getResource WRITE_SETTINGS ProcessBuilder INJECT_EVENTS  

createSubprocess WRITE_SYNC_SETTINGS Ljavax.crypto.spec.SecretKe
ySpec 

android.intent.action.SCREE
N_ON 

ACCESS_SURFACE_FLI
NGER 

 

Ljava.net.URLDecoder android.intent.action.TIME_S
ET 

android.intent.action.BATT
ERY_OKAY 

READ_USER_DICTIONA
RY 

SET_PROCESS_LIMIT  

WRITE_APN_SETTINGS android.intent.action.SEND_
MULTIPLE 

READ_CONTACTS WRITE_SOCIAL_STREA
M 

ADD_VOICEMAIL  

TelephonyManager.getDeviceI
d 

ACCESS_WIFI_STATE Binder SET_TIME INSTALL_LOCATION_P
ROVIDER 

 

RECEIVE_SMS URLClassLoader SUBSCRIBED_FEEDS_R
EAD 

mount SET_ACTIVITY_WATC
HER 

 

Ljava.lang.Class.getDeclaredFi
eld 

BLUETOOTH READ_CALL_LOG System.loadLibrary TelephonyManager.getCall
State 

 

HttpGet.init WAKE_LOCK SUBSCRIBED_FEEDS_W
RITE 

CHANGE_COMPONENT_
ENABLED_STATE 

VIBRATE  

Ljava.lang.Class.getPackage SYSTEM_ALERT_WINDO
W 

BATTERY_STATS ACCESS_MOCK_LOCATI
ON 

Runtime.getRuntime  

abortBroadcast TelephonyManager.getSimCo
untryIso 

RECEIVE_WAP_PUSH DUMP CHANGE_CONFIGURA
TION 

 

ClassLoader chown PathClassLoader CALL_PRIVILEGED BROADCAST_SMS  

TelephonyManager.getLine1N
umber 

NFC KILL_BACKGROUND_PR
OCESSES 

DELETE_PACKAGES BIND_WALLPAPER  

getCallingUid READ_HISTORY_BOOKM
ARKS 

ACCESS_COARSE_LOCA
TION 

READ_FRAME_BUFFER BROADCAST_PACKAG
E_REMOVED 

 

USE_CREDENTIALS HttpPost.init android.intent.action.ACTIO
N_SHUTDOWN 

WRITE_GSERVICES TelephonyManager.isNetw
orkRoaming 

 

MANAGE_ACCOUNTS TelephonyManager.getNetwor
kOperator 

Runtime.load ACCOUNT_MANAGER TelephonyManager.getSim
Operator 

 

android.telephony.gsm.SmsMa
nager 

Ljava.lang.Class.getClasses android.intent.action.SEND
TO 

KeySpec WRITE_EXTERNAL_ST
ORAGE 

 

.system.bin BIND_REMOTEVIEWS SET_WALLPAPER sendDataMessage android.intent.action.CAM
ERA_BUTTON 

 

Ljava.lang.Class.getMethod READ_PROFILE android.intent.action.NEW_
OUTGOING_CALL 

android.intent.action.CALL android.intent.action.REB
OOT 

 

RESTART_PACKAGES READ_CALENDAR CHANGE_NETWORK_ST
ATE 

BIND_APPWIDGET sendMultipartTextMessage  

INSTALL_PACKAGES CHANGE_WIFI_STATE REBOOT android.intent.action.SCREE
N_OFF 

BIND_VPN_SERVICE  
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Figure 2: 1st round of Boruta 

 

 
Figure 3: 8th round of Boruta 

Table 4: List of 124 features after Boruta algorithm 

transact RECEIVE_SMS PackageInstaller WRITE_HISTORY_BOOKM
ARKS 

DexClassLoader 

bindService Ljava.lang.Class.getDeclaredF
ield 

ACCESS_LOCATION_EXT
RA_COMMANDS 

READ_LOGS WRITE_CALENDAR 

onServiceConnected HttpGet.init HttpUriRequest RECORD_AUDIO PROCESS_OUTGOING_CA
LLS 

ServiceConnection Ljava.lang.Class.getPackage remount MODIFY_AUDIO_SETTING
S 

divideMessage 

android.os.Binder abortBroadcast android.telephony.SmsManage
r 

android.intent.action.PACKAG
E_REPLACED 

ProcessBuilder 

READ_SMS ClassLoader RECEIVE_BOOT_COMPLE
TED 

BROADCAST_STICKY mount 

attachInterface TelephonyManager.getLine1N android.intent.action.ACTION Runtime.exec System.loadLibrary 
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umber _POWER_CONNECTED 

WRITE_SMS getCallingUid .system.app android.intent.action.PACKAG
E_ADDED 

KeySpec 

TelephonyManager.getS
ubscriberId 

USE_CREDENTIALS Ljava.lang.Class.getResource MOUNT_UNMOUNT_FILES
YSTEMS 

SecretKey 

Ljava.lang.Class.getCano
nicalName 

MANAGE_ACCOUNTS WRITE_SYNC_SETTINGS android.intent.action.PACKAG
E_REMOVED 

ACCESS_FINE_LOCATION 

Ljava.lang.Class.getMeth
ods 

android.telephony.gsm.SmsMa
nager 

android.intent.action.TIME_S
ET 

BLUETOOTH_ADMIN ACCESS_NETWORK_STAT
E 

android.intent.action.BO
OT_COMPLETED 

.system.bin android.intent.action.SEND_
MULTIPLE 

android.os.IBinder android.content.pm.PackageInf
o 

Ljava.lang.Class.getField Ljava.lang.Class.getMethod ACCESS_WIFI_STATE IBinder TelephonyManager.getCallSta
te 

READ_PHONE_STAT
E 

RESTART_PACKAGES URLClassLoader WRITE_SECURE_SETTINGS VIBRATE 

Landroid.content.Context
.unregisterReceiver 

INSTALL_PACKAGES BLUETOOTH WRITE_SETTINGS Runtime.getRuntime 

GET_ACCOUNTS Ljava.lang.Class.forName WAKE_LOCK Ljavax.crypto.spec.SecretKeySp
ec 

BROADCAST_SMS 

SEND_SMS TelephonyManager.getSimSeri
alNumber 

SYSTEM_ALERT_WINDO
W 

READ_CONTACTS TelephonyManager.isNetwork
Roaming 

Landroid.content.Context
.registerReceiver 

CAMERA TelephonyManager.getSimCo
untryIso 

Binder TelephonyManager.getSimOp
erator 

getBinder CALL_PHONE chown BATTERY_STATS WRITE_EXTERNAL_STOR
AGE 

Ljava.lang.Class.cast android.intent.action.SEND READ_HISTORY_BOOKM
ARKS 

KILL_BACKGROUND_PRO
CESSES 

Ljavax.crypto.Cipher 

chmod onBind HttpPost.init ACCESS_COARSE_LOCATI
ON 

READ_EXTERNAL_STORA
GE 

createSubprocess android.content.pm.Signature TelephonyManager.getNetwor
kOperator 

android.intent.action.ACTION_
SHUTDOWN 

Ljava.lang.Object.getClass 

Ljava.net.URLDecoder READ_SYNC_SETTINGS READ_PROFILE android.intent.action.NEW_OU
TGOING_CALL 

DEVICE_POWER 

WRITE_APN_SETTIN
GS 

AUTHENTICATE_ACCOU
NTS 

READ_CALENDAR CHANGE_NETWORK_STAT
E 

GET_TASKS 

TelephonyManager.getD
eviceId 

INTERNET CHANGE_WIFI_STATE REBOOT   

 
 
This phase runs from 1st to 8th round of Boruta features. 

Figure 2 shows the result of the Boruta in 1st round, while the 
following figure (Figure 3) depicts the 8th round. The number 
of times to reach this state is 8th times. Once the process is 
finished, the Boruta successfully reduced the features from 
215 to 124. Table 4 lists those 124 features. With these 124 
features, this phase trains three machine learning classifiers 
(Random forest, J48 and GLM) to construct a model. Then, in 
order to test the model either it able to detect unknown 
malware, we test this model with the data that excluded from 
the training part. In phase three, we executed the 
classification process. The machine learning classifier used 
are Random Forest, J48, and GLM.  

4. EXPERIMENTAL RESULTS  
This section discussed the results of machine learning 

classification, derived from the Boruta algorithm. The 
following figures depict the results of the classification. 

 
Figure 4: Random Forest algorithm result 

Random Forest algorithm is one of the methods used in this 
research for the classification process. Figure 4 shows the 
result of the Random Forest classifier. algorithm predicts the 
class of the data. There are two classes which are ‘B’ for 
Benign and ‘S’ it shows the confusion matrix and statistics for 
the Random Forest algorithm using the test dataset. There are 
1140 data inside the test dataset. Random Forest's accuracy is 
0.9973. 
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Figure 5: J48 algorithm result 

 
Figure 5 shows the confusion matrix and statistics for the J48 
algorithm using the Test dataset. There are 1140 data inside 
the test dataset. J48 accuracy is 0.9784. 
 

 
Figure 6: GLM algorithm result 

 
Error! Reference source not found. shows the GLM 
confusion matrix algorithm using the test dataset. There are 
1140 data in the test dataset. The precision is 0.9798. The 
GLM sensitivity and specificity are calculated manually based 
on the confusion matrix that is generated automatically by the 
system. Table below list overall accuracies with different 
machine learning classifiers. 
 

Table 5: Result accuracy each algorithm 

Classifiers Accuracy 
Random forest 0.9973 
J48 0.9784 
GLM 0.9798 

 
Based on  

Table 5 both classifier which is Random Forest and J48 
decision tree, it shows that Random Forest has the higher 
accuracy which is 0.99 while J48 Decision Tree is 0.97. In 
conclusion, Random Forest is the best compare to J48 and 
GLM.  

5. CONCLUSION 

Malware continuously evolve rapidly and it also 
compromise and steal the private data especially in Android 
system. Malware detection with high accuracy is needed to 
detect its malicious activities. This paper presented automated 
feature selection using boruta algorithm and machine 
learning method to detect and predict mobile malware. The 
proposed the optimal features selection is able to reduce the 
model of machine learning complexity. The experimental 
results show that the proposed Boruta algorithm provides 
automatically feature selection for increasing the machine 
learning detection. The result shows that random forest 
successfully achieved 99.73% accuracy in machine learning 
detection. The proposed scheme able to select the best and 
relevant features efficiently. 
 
ACKNOWLEDGEMENT 
This work is supported by Ministry of Higher Education 
(MOHE) for Fundamental Research Grant Scheme 
(FRGS-RACER) with grant number RDU192607, 
RACER/1/2019/ICT02/UMP//5, and Universiti Malaysia 
Pahang, under the Grant IBM Centre of Excellence 
(COE)(IBM2000), RDU180337. 

REFERENCES 
1. F. M. Gotz, S. Stieger, and U. D. Reips. Users of the 

main smartphone operating systems (iOS, Android) 
differ only little in personality, PLoS ONE, vol. 12, no. 
5, pp. 1–18, 2017. 

2. M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus. 
The rise of ‘“malware”’: Bibliometric analysis of 
malware study, Journal of Network and Computer 
Applications, vol. 75, pp. 58–76, 2016. 

3. W. Enck. Defending Users against Smartphone Apps: 
Techniques and Future Directions, Proceedings of the 
7th international conference on Information Systems 
Security, pp. 49–70, 2011. 

4. C. A. Castillo. Android Malware Past, Present, and 
Future, McAfee White Paper, Mobile Security Working 
Group, 2011. [Online]. Available: 
http://www.mcafee.com/us/ 
resources/white-papers/wp-android-malware-past-prese
nt-future.pdf. 

5. K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. 
Cavallaro. The Evolution of Android Malware and 
Android Analysis Techniques, ACM Computing 
Surveys (CSUR), vol. 49, no. 4, pp. 1–41, 2017. 

6. A. Kumar, K. S. Kuppusamy, and G. Aghila. FAMOUS: 
Forensic Analysis of Mobile Devices Using Scoring of 



Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and  Engineering, 9(5),September-October 2020, 9029  - 9036 

9036 
 

 

application permissions, Future Generation Computer 
Systems, vol. 83, pp. 158–172, 2018. 

7. S. Y. Yerima and S. Sezer. DroidFusion: A Novel 
Multilevel Classifier Fusion Approach for Android 
Malware Detection, IEEE Transactions on Cybernetics, 
vol. 49, no. 2, pp. 453–466, 2019. 

8. A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. 
Wahab. A review on feature selection in mobile 
malware detection, Digital Investigation, vol. 13, pp. 
22–37, 2015. 

9. A. Firdaus, N. B. Anuar, M. F. A. Razak, I. A. T. 
Hashem, S. Bachok, and A. K. Sangaiah. Root Exploit 
Detection and Features Optimization: Mobile Device 
and Blockchain Based Medical Data Management, 
Journal of Medical Systems, vol. 42, no. 112, pp. 1-23, 
2018. 

10. M. B. Kursa, A. Jankowski, and W. R. Rudnicki. 
Boruta-A system for feature selection, Fundamenta 
Informaticae, vol. 101, no. 4, pp. 271–285, 2010. 

11. M. Hassen and P. K. Chan. Scalable function call 
graph-based malware classification, Proceedings of 
the 7th ACM Conference on Data and Application 
Security and Privacy, pp. 239–248, 2017. 

12. A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak. 
Discovering optimal features using static analysis and 
a genetic search based method for Android malware 
detection, Frontiers of Information Technology and 
Electronic Engineering, vol. 19, no. 6, pp. 712–736, Jun. 
2018. 

13. R. Kumar, X. Zhang, R. U. Khan, and A. Sharif. 
Research on data mining of permission-induced risk 
for android IoT devices, Applied Sciences, vol. 9, no. 2, 
pp. 1–22, 2019. 

14. M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat, 
and C. Y. Huoy. A comparative study on feature 
selection method for N-gram mobile malware 
detection, International Journal of Network Security, 
vol. 19, no. 5, pp. 727–733, 2017. 


