
Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9029


ABSTRACT
The usage of android system is rapidly growing in mobile
devices. Android system might also incur severe different
malware dangers and security threats such as infections, root
exploit, Trojan, and worms. The malware has potential to
compromise and steal the private data, classified data, instant
messages, private business contacts, and confidential
schedule. Malware detection is needed due to the malware
continuously evolve rapidly. This research proposed
automated feature selection using Boruta algorithm to detect
the malware. The proposed method adopts machine learning
prediction and optimizes the selecting features in order to
reduce the model of machine learning complexity. Boruta
algorithm is used to select features automatically for assisting
the machine learning. The experimental results show that the
proposed method is able to reach 99.73% accuracy in machine
learning classification.

Key words: Android; static analysis; machine learning;
features.

1. INTRODUCTION

Nowadays, people utilize smartphone to communicate and
assists them in daily activities, from normal until important
tasks. There is various type of operating system (OS) built for
smartphone; for instance, Android, IOS, Window, Blackberry
and Symbian. Among all these OSes, [1] stated that android is
the largest installed platform and growing fast which placed
first among others. Consequently, there is a rapid increase in
the amount of malware targeting Android smartphones since
it is the most popular OS [2].

Malware is an acronym for malicious software - that
executes malicious activities such as, secretly accessing
private information, causes damage to the OS, or control the
system. Therefore, in order to detect malware, security
practitioners adopt two types of analyses; dynamic and
static. Dynamic analysis is an analysis that execute and
monitor the malware behavior [3]. However, dynamic
analysis is unable to discover some parts of the code that
execute outside of the monitoring range. Apart from that,
dynamic analysis is a high resource-consuming analysis,

which requires a high specification of hardware [3].
Therefore, static analysis is another alternative for the
researcher to detect malware. It is an analysis that studies the
malware without executing it. Additionally, this analysis is
able to discover the malware that would behave under unusual
conditions which is much more accurate [4]. This is due to
static analysis examine overall parts of a program including
parts that excluded in dynamic analysis, and able to detect
unknown malware with machine learning [5].

However, it is important to consider the challenges in
machine learning. One of it is the features concern. Higher
number of features will decrease the machine learning
Android malware detection system performance. This is
because by having a large number of features will increase the
dimension of search space for the problem. Consequently, this
will cause the problem to suffer from Curse of dimensionality
[6]. Therefore, there is a need to find a suitable algorithm to
select the best among many number of features. Hence, the
main contributions in this technical paper are as below:

a) applied Boruta algorithm to select the best features
automatically. In author’s knowledge, to date, only this
paper adopted this algorithm in selecting features in
detecting malware for Android platform.

b) this paper discovers the effectiveness of Boruta algorithm
in detecting malware.

c) utilized the public dataset [7] which contains hundreds of
features that consists of different categories. These
features are from 1260 malware and 2539 normal @
benign applications. By using this dataset, Boruta have a
wider choice of features to select from and decrease it.
From the features selected from the Boruta, it will
increase the machine learning detection rate.

d) evaluates the results to measure the Boruta effectiveness
to detect malware.

2. RELATED WORK

This section introduces the types of malware analysis, and
then followed by the machine learning information, types of
feature selection, Boruta algorithm and comparison with
previous studies.

Automated Feature Selection using Boruta Algorithm to

Detect Mobile Malware
Che Akmal Che Yahaya, Ahmad Firdaus, Salwana Mohamad, Ferda Ernawan, Mohd Faizal Ab Razak

Faculty of Computing, College of Computing and Applied Sciences, University Malaysia Pahang, 26600 Pekan,
Pahang Darul Makmur

pcn18003@stdmail.ump.edu.my, firdausza@ump.edu.my, salwanamohamad@ump.edu.my,
ferda@ump.edu.my, faizalrazak@ump.edu.my

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse307952020.pdf

https://doi.org/10.30534/ijatcse/2020/307952020

Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9030

2.1 Malware analysis (dynamic and static)

There are two types of analysis to detect malware; dynamic
and static. Table 1 shows the comparison between these two
analyses.

Table 1: Differences between static and dynamic analysis in
malware detection

Type of
analysis Strength Weakness

Dynamic 1) May detect anomaly in
malware

1) Extensive duration
2) High resource

utilization
Static 1) Instant detection (fast)

2) May detect malware in
anomaly in malware with
machine learning
prediction.

1) Need to update the
input data if
needed.

Dynamic approaches are convenient, yet it does have

disadvantages such as high efficiency and profitability. In
addition, it is difficult to detect malware types that able to
disguise their suspicious activities during analysis.
Conversely, static analysis is an approach which evaluates the
malicious program without running the applications.

Static (offline) training means that we basically have a big
data store and we train our model exactly once before it's used
for a long time. Offline training requires less monitoring or
monitoring of dataset training work than online training. The
downside of the static is that it still requires monitoring at the
input data at the inference time, if needed. If our distribution
of inputs changes and our model has not adapted, we may end
up with a bleak prediction. Hence, it is important to have big
data enough to support detection for a long time. However, we
able to update the input data anytime as needed as well.
Furthermore, with machine learning assist, static analysis
able to predict anomaly in malware, similar with dynamic
analysis.

2.2 Machine learning
Machine learning (ML) is a category of algorithms that

allows software applications to become more accurate in
predicting outcomes without being explicitly programmed.
The basic premise of machine learning is to build algorithms
that able to train itself according to the input data given and
then use statistical analysis to predict an output. If the new
data available, it will update he output. The machine learning
classification used in this experiment are Random forest, J48
and GLM. However, machine learning needs relevant
features to predict the output efficiently [8][9].

2.3 Types of feature selection methods
The selection of features, also known as a selection of

variables, selection of attributes, or selection of variable
subsets, is the process of selecting a subset of relevant features
(variables, predictors) for use in model construction. Feature
selection techniques are used for several reasons:
a) Simplification of models to make them easier for

researchers/users to interpret.
b) Shorter training time
c) Avoiding the curse of dimensionality
d) Enhanced generalization by reducing over-fitting

(formally, reduction of variance)
Accordingly, this paper implements Boruta algorithm to

select the best features.

2.4 Boruta Algorithm

Boruta is a feature selection algorithm that works as a
wrapper built around a random forest classification
algorithm. It captures all the important or interesting features
of the dataset concerning the output variable. The technique
performs a top-down search for important features by
comparing the significance of the original attributes with the
significant randomly attainable attributes, assessing the use of
their permuted duplicates (shadows), and gradually
eliminating unimportant features to balance the test.
Attributes or features that are significantly better than
shadows are recognized as confirmed. On each iteration,
shadows are re-created and the algorithm stops when only
confirmed features are left. In short, Boruta algorithm use
strategy a top-down search for significant features by
contrasting original attributes important and important
reachable at random, evaluated utilizing their permuted
duplicates, and dynamically wiping out irrelevant features to
stabilize that test. Therefore, this research uses the Boruta
algorithm as a feature selection [10].

2.5 Comparison of the existing methods

This section compares the features selection and classification in
previous research.

Table 2 lists that, to date, only this experiment used Boruta
algorithm in selecting the relevant features in detecting
mobile Android, which none researchers apply it previously.
In our experiment, Boruta algorithm selects the best features
automatically and investigate its effectiveness in selecting the
best features.

Table 2: Features selection and classification in previous research

Reference
s

Year Features Selection
algorithm

Classification
algorithm

[11] 2017 Simulated annealing Beta Classifier

Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9031

and
Metaclassifier

[12] 2018 Genetic algorithm Naïve bayes,
Random forest,
Multilayer
perceptron, J48
and Functional
tree

[13] 2019 Permission
ranking-based
features selection
approach

Random Forest

[14] 2017 Correlation-based
feature selection
(CFS), Chi square
(CHI), Information
gain (IG), ReliefF
(RF) and one wrapper
method with a Linear
SVM classifier (WR)

SVM Classifier

This paper Curren
t year

Boruta algorithm J48

3. METHODOLOGY

This section provides the methodology in conducting our
experiment. Figure 1 consists of three phases; 1) literature
review; 2) feature selection and machine learning
classification; and 3) result.

As Error! Reference source not found. depicts the first
phase involves all the review processes that includes
identifying the problem statement, objective, scope, existing
research, technique to select features and software involves in
the experiment. These processes is to achieve the idea and to
decide which algorithms need to use to select the best features.

The second phase is where we used R to import and read
the dataset. This paper used a public dataset from a reliable
paper entitled “Droidfusion: A Novel Multilevel Classifier

Fusion Approach for Android Malware Detection” [7]. This
dataset consists of 1260 malware and 2539 benign @ normal
samples. The 215 features in this dataset is based from 3799
Android applications (.apk). The features are form multiple
categories, namely; 1) permission; 2) API calls; 3) directory
path; and 4) string.

As machine learning need to reduce the complexity of its
model, this phase used R to execute the Boruta algorithm to
decrease the number of features automatically. This phase
runs Boruta until it reaches a state that there are no features
deemed important. Table 3 tabulates 215 features before
Boruta algorithm.

Phase 1:
Literature

review

Phase 2:
Feature

selection
(Boruta

algorithm) and
machine
learning

classification

Phase 3:
Result analysis

Study and understand about Android malware, machine
learning and Malgenome dataset

Identify the problem statement, objective and scope

Identify and analyze existing research that related

Define the technique for features selection and
classification

Analyze and choose the suitable software

Import and read
dataset into R
environment

Split the
dataset

Test

Classify train dataset
(Random forest, J48 &GLM)

Prediction using
test datasetEvaluate result

Result and analysis

Conclusion

Install Package & Run Boruta
algorithm (Features Selection)

Train

Figure 1: Methodology of Boruta algorithm

Table 3: List of 215 features before Boruta algorithm

transact Ljava.lang.Class.forName READ_SYNC_STATS DexClassLoader intent.action.RUN STATUS_BAR

bindService TelephonyManager.getSimSer
ialNumber

WRITE_HISTORY_BOOK
MARKS

WRITE_CALENDAR SecretKey Ljavax.crypto.Cipher

onServiceConnected CAMERA DISABLE_KEYGUARD PROCESS_OUTGOING_C
ALLS

CLEAR_APP_CACHE MODIFY_PHONE_STA
TE

ServiceConnection CALL_PHONE READ_LOGS BIND_DEVICE_ADMIN ACCESS_FINE_LOCATI
ON

android.intent.action.PA
CKAGE_RESTARTED

android.os.Binder android.intent.action.SEND RECORD_AUDIO CHANGE_WIFI_MULTIC
AST_STATE

SET_WALLPAPER_HIN
TS

READ_INPUT_STATE

READ_SMS onBind getCallingPid MASTER_CLEAR Context.bindService READ_EXTERNAL_S
TORAGE

attachInterface android.content.pm.Signature MODIFY_AUDIO_SETTI
NGS

android.intent.action.PACK
AGE_DATA_CLEARED

MessengerService Ljava.lang.Object.getClas
s

WRITE_SMS READ_SYNC_SETTINGS android.intent.action.PACK
AGE_REPLACED

FLASHLIGHT ACCESS_NETWORK_S
TATE

SET_ORIENTATION

TelephonyManager.getSubscri
berId

AUTHENTICATE_ACCOU
NTS

android.intent.action.TIMEZ
ONE_CHANGED

android.intent.action.BATT
ERY_LOW

android.content.pm.Packag
eInfo

DEVICE_POWER

Ljava.lang.Class.getCanonical
Name

INTERNET BROADCAST_STICKY SET_ALARM BIND_ACCESSIBILITY
_SERVICE

EXPAND_STATUS_B
AR

Ljava.lang.Class.getMethods PackageInstaller Runtime.exec RECEIVE_MMS INTERNAL_SYSTEM_
WINDOW

GET_TASKS

android.intent.action.BOOT_C
OMPLETED

ACCESS_LOCATION_EXT
RA_COMMANDS

android.intent.action.PACK
AGE_ADDED

divideMessage SET_TIME_ZONE GLOBAL_SEARCH

Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9032

Ljava.lang.Class.getField HttpUriRequest MOUNT_UNMOUNT_FIL
ESYSTEMS

WRITE_CALL_LOG Process.start GET_PACKAGE_SIZE

READ_PHONE_STATE remount android.intent.action.ACTIO
N_POWER_DISCONNEC
TED

WRITE_PROFILE MOUNT_FORMAT_FIL
ESYSTEMS

SET_PREFERRED_AP
PLICATIONS

Landroid.content.Context.unre
gisterReceiver

android.telephony.SmsManage
r

Ljava.lang.Class.getDeclared
Classes

WRITE_USER_DICTION
ARY

CLEAR_APP_USER_DA
TA

android.intent.action.PA
CKAGE_CHANGED

GET_ACCOUNTS RECEIVE_BOOT_COMPLE
TED

android.intent.action.PACK
AGE_REMOVED

BIND_INPUT_METHOD UPDATE_DEVICE_STA
TS

SEND_SMS android.intent.action.ACTION
_POWER_CONNECTED

BLUETOOTH_ADMIN READ_SOCIAL_STREAM IRemoteService

Landroid.content.Context.regis
terReceiver

findClass android.os.IBinder REORDER_TASKS android.intent.action.SET_
WALLPAPER

getBinder WRITE_CONTACTS IBinder defineClass BROADCAST_WAP_PU
SH

Ljava.lang.Class.cast .system.app WRITE_SECURE_SETTI
NGS

PERSISTENT_ACTIVITY android.intent.action.CALL
_BUTTON

chmod Ljava.lang.Class.getResource WRITE_SETTINGS ProcessBuilder INJECT_EVENTS

createSubprocess WRITE_SYNC_SETTINGS Ljavax.crypto.spec.SecretKe
ySpec

android.intent.action.SCREE
N_ON

ACCESS_SURFACE_FLI
NGER

Ljava.net.URLDecoder android.intent.action.TIME_S
ET

android.intent.action.BATT
ERY_OKAY

READ_USER_DICTIONA
RY

SET_PROCESS_LIMIT

WRITE_APN_SETTINGS android.intent.action.SEND_
MULTIPLE

READ_CONTACTS WRITE_SOCIAL_STREA
M

ADD_VOICEMAIL

TelephonyManager.getDeviceI
d

ACCESS_WIFI_STATE Binder SET_TIME INSTALL_LOCATION_P
ROVIDER

RECEIVE_SMS URLClassLoader SUBSCRIBED_FEEDS_R
EAD

mount SET_ACTIVITY_WATC
HER

Ljava.lang.Class.getDeclaredFi
eld

BLUETOOTH READ_CALL_LOG System.loadLibrary TelephonyManager.getCall
State

HttpGet.init WAKE_LOCK SUBSCRIBED_FEEDS_W
RITE

CHANGE_COMPONENT_
ENABLED_STATE

VIBRATE

Ljava.lang.Class.getPackage SYSTEM_ALERT_WINDO
W

BATTERY_STATS ACCESS_MOCK_LOCATI
ON

Runtime.getRuntime

abortBroadcast TelephonyManager.getSimCo
untryIso

RECEIVE_WAP_PUSH DUMP CHANGE_CONFIGURA
TION

ClassLoader chown PathClassLoader CALL_PRIVILEGED BROADCAST_SMS

TelephonyManager.getLine1N
umber

NFC KILL_BACKGROUND_PR
OCESSES

DELETE_PACKAGES BIND_WALLPAPER

getCallingUid READ_HISTORY_BOOKM
ARKS

ACCESS_COARSE_LOCA
TION

READ_FRAME_BUFFER BROADCAST_PACKAG
E_REMOVED

USE_CREDENTIALS HttpPost.init android.intent.action.ACTIO
N_SHUTDOWN

WRITE_GSERVICES TelephonyManager.isNetw
orkRoaming

MANAGE_ACCOUNTS TelephonyManager.getNetwor
kOperator

Runtime.load ACCOUNT_MANAGER TelephonyManager.getSim
Operator

android.telephony.gsm.SmsMa
nager

Ljava.lang.Class.getClasses android.intent.action.SEND
TO

KeySpec WRITE_EXTERNAL_ST
ORAGE

.system.bin BIND_REMOTEVIEWS SET_WALLPAPER sendDataMessage android.intent.action.CAM
ERA_BUTTON

Ljava.lang.Class.getMethod READ_PROFILE android.intent.action.NEW_
OUTGOING_CALL

android.intent.action.CALL android.intent.action.REB
OOT

RESTART_PACKAGES READ_CALENDAR CHANGE_NETWORK_ST
ATE

BIND_APPWIDGET sendMultipartTextMessage

INSTALL_PACKAGES CHANGE_WIFI_STATE REBOOT android.intent.action.SCREE
N_OFF

BIND_VPN_SERVICE

Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9033

Figure 2: 1st round of Boruta

Figure 3: 8th round of Boruta

Table 4: List of 124 features after Boruta algorithm

transact RECEIVE_SMS PackageInstaller WRITE_HISTORY_BOOKM
ARKS

DexClassLoader

bindService Ljava.lang.Class.getDeclaredF
ield

ACCESS_LOCATION_EXT
RA_COMMANDS

READ_LOGS WRITE_CALENDAR

onServiceConnected HttpGet.init HttpUriRequest RECORD_AUDIO PROCESS_OUTGOING_CA
LLS

ServiceConnection Ljava.lang.Class.getPackage remount MODIFY_AUDIO_SETTING
S

divideMessage

android.os.Binder abortBroadcast android.telephony.SmsManage
r

android.intent.action.PACKAG
E_REPLACED

ProcessBuilder

READ_SMS ClassLoader RECEIVE_BOOT_COMPLE
TED

BROADCAST_STICKY mount

attachInterface TelephonyManager.getLine1N android.intent.action.ACTION Runtime.exec System.loadLibrary

Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9034

umber _POWER_CONNECTED

WRITE_SMS getCallingUid .system.app android.intent.action.PACKAG
E_ADDED

KeySpec

TelephonyManager.getS
ubscriberId

USE_CREDENTIALS Ljava.lang.Class.getResource MOUNT_UNMOUNT_FILES
YSTEMS

SecretKey

Ljava.lang.Class.getCano
nicalName

MANAGE_ACCOUNTS WRITE_SYNC_SETTINGS android.intent.action.PACKAG
E_REMOVED

ACCESS_FINE_LOCATION

Ljava.lang.Class.getMeth
ods

android.telephony.gsm.SmsMa
nager

android.intent.action.TIME_S
ET

BLUETOOTH_ADMIN ACCESS_NETWORK_STAT
E

android.intent.action.BO
OT_COMPLETED

.system.bin android.intent.action.SEND_
MULTIPLE

android.os.IBinder android.content.pm.PackageInf
o

Ljava.lang.Class.getField Ljava.lang.Class.getMethod ACCESS_WIFI_STATE IBinder TelephonyManager.getCallSta
te

READ_PHONE_STAT
E

RESTART_PACKAGES URLClassLoader WRITE_SECURE_SETTINGS VIBRATE

Landroid.content.Context
.unregisterReceiver

INSTALL_PACKAGES BLUETOOTH WRITE_SETTINGS Runtime.getRuntime

GET_ACCOUNTS Ljava.lang.Class.forName WAKE_LOCK Ljavax.crypto.spec.SecretKeySp
ec

BROADCAST_SMS

SEND_SMS TelephonyManager.getSimSeri
alNumber

SYSTEM_ALERT_WINDO
W

READ_CONTACTS TelephonyManager.isNetwork
Roaming

Landroid.content.Context
.registerReceiver

CAMERA TelephonyManager.getSimCo
untryIso

Binder TelephonyManager.getSimOp
erator

getBinder CALL_PHONE chown BATTERY_STATS WRITE_EXTERNAL_STOR
AGE

Ljava.lang.Class.cast android.intent.action.SEND READ_HISTORY_BOOKM
ARKS

KILL_BACKGROUND_PRO
CESSES

Ljavax.crypto.Cipher

chmod onBind HttpPost.init ACCESS_COARSE_LOCATI
ON

READ_EXTERNAL_STORA
GE

createSubprocess android.content.pm.Signature TelephonyManager.getNetwor
kOperator

android.intent.action.ACTION_
SHUTDOWN

Ljava.lang.Object.getClass

Ljava.net.URLDecoder READ_SYNC_SETTINGS READ_PROFILE android.intent.action.NEW_OU
TGOING_CALL

DEVICE_POWER

WRITE_APN_SETTIN
GS

AUTHENTICATE_ACCOU
NTS

READ_CALENDAR CHANGE_NETWORK_STAT
E

GET_TASKS

TelephonyManager.getD
eviceId

INTERNET CHANGE_WIFI_STATE REBOOT

This phase runs from 1st to 8th round of Boruta features.

Figure 2 shows the result of the Boruta in 1st round, while the
following figure (Figure 3) depicts the 8th round. The number
of times to reach this state is 8th times. Once the process is
finished, the Boruta successfully reduced the features from
215 to 124. Table 4 lists those 124 features. With these 124
features, this phase trains three machine learning classifiers
(Random forest, J48 and GLM) to construct a model. Then, in
order to test the model either it able to detect unknown
malware, we test this model with the data that excluded from
the training part. In phase three, we executed the
classification process. The machine learning classifier used
are Random Forest, J48, and GLM.

4. EXPERIMENTAL RESULTS
This section discussed the results of machine learning

classification, derived from the Boruta algorithm. The
following figures depict the results of the classification.

Figure 4: Random Forest algorithm result

Random Forest algorithm is one of the methods used in this
research for the classification process. Figure 4 shows the
result of the Random Forest classifier. algorithm predicts the
class of the data. There are two classes which are ‘B’ for
Benign and ‘S’ it shows the confusion matrix and statistics for
the Random Forest algorithm using the test dataset. There are
1140 data inside the test dataset. Random Forest's accuracy is
0.9973.

Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9035

Figure 5: J48 algorithm result

Figure 5 shows the confusion matrix and statistics for the J48
algorithm using the Test dataset. There are 1140 data inside
the test dataset. J48 accuracy is 0.9784.

Figure 6: GLM algorithm result

Error! Reference source not found. shows the GLM
confusion matrix algorithm using the test dataset. There are
1140 data in the test dataset. The precision is 0.9798. The
GLM sensitivity and specificity are calculated manually based
on the confusion matrix that is generated automatically by the
system. Table below list overall accuracies with different
machine learning classifiers.

Table 5: Result accuracy each algorithm

Classifiers Accuracy
Random forest 0.9973
J48 0.9784
GLM 0.9798

Based on

Table 5 both classifier which is Random Forest and J48
decision tree, it shows that Random Forest has the higher
accuracy which is 0.99 while J48 Decision Tree is 0.97. In
conclusion, Random Forest is the best compare to J48 and
GLM.

5. CONCLUSION

Malware continuously evolve rapidly and it also
compromise and steal the private data especially in Android
system. Malware detection with high accuracy is needed to
detect its malicious activities. This paper presented automated
feature selection using boruta algorithm and machine
learning method to detect and predict mobile malware. The
proposed the optimal features selection is able to reduce the
model of machine learning complexity. The experimental
results show that the proposed Boruta algorithm provides
automatically feature selection for increasing the machine
learning detection. The result shows that random forest
successfully achieved 99.73% accuracy in machine learning
detection. The proposed scheme able to select the best and
relevant features efficiently.

ACKNOWLEDGEMENT
This work is supported by Ministry of Higher Education
(MOHE) for Fundamental Research Grant Scheme
(FRGS-RACER) with grant number RDU192607,
RACER/1/2019/ICT02/UMP//5, and Universiti Malaysia
Pahang, under the Grant IBM Centre of Excellence
(COE)(IBM2000), RDU180337.

REFERENCES
1. F. M. Gotz, S. Stieger, and U. D. Reips. Users of the

main smartphone operating systems (iOS, Android)
differ only little in personality, PLoS ONE, vol. 12, no.
5, pp. 1–18, 2017.

2. M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus.
The rise of ‘“malware”’: Bibliometric analysis of
malware study, Journal of Network and Computer
Applications, vol. 75, pp. 58–76, 2016.

3. W. Enck. Defending Users against Smartphone Apps:
Techniques and Future Directions, Proceedings of the
7th international conference on Information Systems
Security, pp. 49–70, 2011.

4. C. A. Castillo. Android Malware Past, Present, and
Future, McAfee White Paper, Mobile Security Working
Group, 2011. [Online]. Available:
http://www.mcafee.com/us/
resources/white-papers/wp-android-malware-past-prese
nt-future.pdf.

5. K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L.
Cavallaro. The Evolution of Android Malware and
Android Analysis Techniques, ACM Computing
Surveys (CSUR), vol. 49, no. 4, pp. 1–41, 2017.

6. A. Kumar, K. S. Kuppusamy, and G. Aghila. FAMOUS:
Forensic Analysis of Mobile Devices Using Scoring of

Che Akmal Che Yahaya et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5),September-October 2020, 9029 - 9036

9036

application permissions, Future Generation Computer
Systems, vol. 83, pp. 158–172, 2018.

7. S. Y. Yerima and S. Sezer. DroidFusion: A Novel
Multilevel Classifier Fusion Approach for Android
Malware Detection, IEEE Transactions on Cybernetics,
vol. 49, no. 2, pp. 453–466, 2019.

8. A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A.
Wahab. A review on feature selection in mobile
malware detection, Digital Investigation, vol. 13, pp.
22–37, 2015.

9. A. Firdaus, N. B. Anuar, M. F. A. Razak, I. A. T.
Hashem, S. Bachok, and A. K. Sangaiah. Root Exploit
Detection and Features Optimization: Mobile Device
and Blockchain Based Medical Data Management,
Journal of Medical Systems, vol. 42, no. 112, pp. 1-23,
2018.

10. M. B. Kursa, A. Jankowski, and W. R. Rudnicki.
Boruta-A system for feature selection, Fundamenta
Informaticae, vol. 101, no. 4, pp. 271–285, 2010.

11. M. Hassen and P. K. Chan. Scalable function call
graph-based malware classification, Proceedings of
the 7th ACM Conference on Data and Application
Security and Privacy, pp. 239–248, 2017.

12. A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak.
Discovering optimal features using static analysis and
a genetic search based method for Android malware
detection, Frontiers of Information Technology and
Electronic Engineering, vol. 19, no. 6, pp. 712–736, Jun.
2018.

13. R. Kumar, X. Zhang, R. U. Khan, and A. Sharif.
Research on data mining of permission-induced risk
for android IoT devices, Applied Sciences, vol. 9, no. 2,
pp. 1–22, 2019.

14. M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat,
and C. Y. Huoy. A comparative study on feature
selection method for N-gram mobile malware
detection, International Journal of Network Security,
vol. 19, no. 5, pp. 727–733, 2017.

