
Jabrane Kachaoui et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2457 –
2463

2457

MQL2SQL: A Proposal Data Transformation Algorithm

from MongoDB to RDBMS

Jabrane Kachaoui1, Abdessamad Belangour2
1Hassan II University, Morocco, jabrane2005@gmail.com

2Hassan II University, Morocco, belangour@gmail.com

ABSTRACT

As Big Data applications grow, many existing systems
expect expanding their service to cover data dramatic
increase. New software development systems are no longer
working on a single database but on current multidatabases.
These distributed data sources are under the name of
NoSQL (Not only Structured Query Language) databases.
Several companies try taking advantages from these
technologies but without leaving their traditional systems.
Especially, Data Warehouses (DW) are conceived based on
users’ feedbacks. To allow and support this integration, a
mechanism that takes data from NoSQL databases and
stores it into relational databases is needed to have great
added value without impacting organization existing
systems. This paper proposes an integration algorithm to
support hybrid database architecture, including MongoDB
and MySQL, by allowing users to query data from NoSQL
systems into relational SQL (Structured Query Language)
systems.

Key words: Big Data, NoSQL, MongoDB, Data
Warehouse.

1. INTRODUCTION

Today, DW is a necessity for any business. It allows fast and
reliable access to various important data and helps in
making decisions within the company. It permits a proper
functioning through enhanced decision analysis [1]. To
respond to market requirements and technological
developments that are continuously increasing, DW must
implies an integration in this era of massive data storage
otherwise called Big Data. Several aspects ranging from
server upgrades to adding new platforms for the extended
DW perform this combination [23]. This could initiate the
use of certain functions that were previously untapped, such
as the In-Memory database, real-time functions and
virtualization [2].
It would be absolutely absurd to keep this data storage
system identical while the evolution around it is constant.
This will reduce the efficiency and reliability of the system,
which will adversely affect decision analysis. There would
thus be several stages for DW integration according several
studies about business concern, technical performance scale,
improved analytics, new data-driven practices and real-time
operations [21].

The quality of data integration within DW is now
recognized as the main factor conditioning the success of
decision-making system. However, this essential point
should not mobilize all companies’ efforts. The whole
project is complex. It would therefore be unwise not to
devote as much attention to the tricky issue of organizing
decision-making bases. The existing system is well
established for ease of use and access to get adequate
information. Indeed, users never have the time and the
energy necessary to dig into databases of hypothetical
information. Access to information in a reasonable time
actually reflects the degree of convenience (and use) of
decision-making system. To put it simply, the easier the
information will be to access, the more the instrument will
be used and therefore, the more it will be called upon to
develop. This is no more and no less the factor defining the
overall performance of decision support system [3].
Several researches have been conducted for taking
advantage of DW from large amount of data stored in Data
Lake (DL) [4]. A first study was made by designing a
complete architecture that routes data from DL to DW [5].
This architecture focused on a data pre-processing aspect
and ontologies, for the aim of data categorization in many
clusters using K-means algorithm [6], [7], [22]. Data is
stored in structured format using MongoDB characteristics.
This paper aims to propose an automatic algorithm mapping
of MongoDB NoSQL databases to relational databases. It is
outlined as follows. Next section discusses some related
works by describing their proposal approaches in this
context. The third section, defines major concepts
contributing in research’s achievement. A proposal
algorithm, Mongo Query Language To Structured Query
Language (MQL2SQL) for automatic mapping of
MongoDB NoSQL databases to relational databases is
proposed in fourth section. Finally, the last section draws
conclusion and future works.

2. RELATED WORKS

Several researches were carried out to perform data
transformation. They focused on three categories: NoSQL
databases modelling, conversion schema and data transfer.
Gansen Zhao et al. presented a MongoDB relational model
and achieved the query operation under relational algebra
compromising single and several sharing situations even

ISSN 2278-3091
Volume 9 No.2, March -April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse234922020.pdf

https://doi.org/10.30534/ijatcse/2020/234922020

Jabrane Kachaoui et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2457 – 2463

2458

though MongoDB is a document-oriented database with no
predefined schema. Furthermore, MongoDB can handle
relational computation as relational databases. Therefore,
they concluded that data can be transferred easily and
securely from relational database to MongoDB [8]. In
MongoDB, it is able to model relationships between
documents through referenced and embedded document.
Anuradha Kanade et al, have discussed the performance
variation as well as the technique change and they have led
several experiences looking for the importance of
normalization and integration in reducing execution time of
queries in MongoDB [9]. With NoSQL databases evolution,
various tools have been emerged for data transformation
from relational databases to NoSQL databases like Apache
Sqoop [10] and Pentaho Data Integration (Kettle) [11].
Apache Sqoop is a software conceived for data transfer
between Apache Hadoop and structured data. It is employed
for data import and export from relational database such as
MySQL, Oracle to Hadoop HDFS and vice versa.
Wu-Chun Chung et al, have developed a framework entitled
JackHare including SQL query compiler, JDBC driver and a
Systematic method based on HBase and Hadoop for storing
data contained in relational database by MapReduce for
unstructured data processing. This framework aimed
handling large-scale data [12].
Tianyu Jia et al, have designed a transformation model
approach and data migration from RDBMS (Relational
Database Management System) to MongoDB. To prevent
data redundancy and optimize performance, the
transformation algorithm model optimizes only specific
database tables using action tags and descriptions to
describe relational schema limitation [13].
In summary, many approaches and algorithms focused on
schema conversion, while others on data transformation
from RDBMS to NoSQL databases and performance
improvement to complete high scalability and availability.
However, to authors’ knowledge, no study was conducted
transforming data from NoSQL databases to relation
databases.

3. PRELIMINARIES

3.1 NoSQL databases

NoSQL databases mark a rather brutal break with the way of
designing data schemas that have been designed for a few
decades. Specifically dedicated to Internet-oriented
applications, NoSQL databases overcome the difficulties of
managing relational databases that are a little too large and
spread over several machines.
The NoSQL database Type, a fortiori the "document"
oriented bases, abandon the strong point of relational bases,
which is the notion of relationships between elements, to
focus on the notion of "document". NoSQL databases are
much more flexible and much more scalable. The
organizational structure is no longer linked to a relational
pattern that is difficult to modify, database can therefore
grow without constraint.
On the other hand, "document" orientation facilitates
database deployment on multiple machines. In automatic of
course. The developer is not concerned with the location of
documents, split or not [14].

There are also NoSQL databases of type "columns" and
databases of type "graph". Column-type databases are an
excellent solution for carrying out massive analyses.
However, they are more complex to use. The graph-type
databases, which are more difficult to grasp, are, as their
denomination indicates, more suited to solving questions of
network organization (structure in arcs and nodes), which
are particularly useful for managing the notions of
belonging to social groups for example. It suffices to follow
the graph by browsing the nodes to perceive all of the links
and more easily access a specific element [15].

3.2 MongoDB

MongoDB is a DBMS(Database Management System), like
MySQL or PostgreSQL, but whose mechanism is
completely different. It does not need to create a relational
table schema and create complex SQL queries. Thanks to
MongoDB, it will be able to store data much like it would in
a JSON (JavaScript Object Notation) file. That is to say, a
sort of giant dictionary made up of keys and values. This
data can then be exploited by JavaScript, directly integrated
into MongoDB, but can also be exploited by other languages
such as Python [16].
Document manipulation is a main objective of MongoDB,
as it provides various frameworks such MapReduce and
ways of documents interaction. Documents can be iterated,
queried and sorted with cursors, aggregated by other
operations. The document changes are maintained to be
atomic. MongoDB supports several programming
languages.

3.3 RDBMS

A relational database is a type of database where data is
linked to other information within databases. Relational
databases are made up of a set of tables that can be accessed
and rebuilt in different ways, without the need to rearrange
these tables in any way. SQL is the standard interface for a
relational database. Its statements are used both to
interactively query data in relational database and to collect
data for reporting.
RDBMS makes it possible to highlight relationships
between data. This data is organized in a table in rows and
columns in order to be accessible. Tables contain all
information about relationships between different data. In
the Product table example, each row is a specific product
and columns list product attributes, such as colour, size, etc.
[17].

4. DATA TRANSFORMATION ALGORITHM

4.1 MQL2SQL proposal data model

MongoDB is a high performance scalable open source
NoSQL database. MongoDB uses document store rather
than two-dimensional table structures. 10gen Company
conceived it [16]. The differences between MongoDB and
normal relational databases is represented in the following
table.

Jabrane Kachaoui et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2457 – 2463

2459

Table 1:Differences between RDBMS and MongoDB
RDBMS MongoDB
Database Database

Table Collection
Tuple/Row Document

Column Field
Join Embedded Documents

Primary Key Primary Key (Default key _id
provided by MongoDB itself)

 Collections in MongoDB is equivalent to tables in

RDBMS.
 Documents in MongoDB is equivalent to rows in

RDBMS.
 Fields in MongoDB is equivalent to columns in

RDBMS.
Data management in MongoDB is flexible. This flexibility
gives the choice of data modelling according to its
performance requirements. MongoDB collections do not
require a document structure. Each document can have

different fields from other documents. One document with
four fields, another with seven for example.
There are two ways in MongoDB allowing linking
documents, references and embedded documents. The first
method, documents are linked by links, that means that each
document contains a reference to another document. This is
the normalized data model. Otherwise, in embedded
documents, the linked data is stored in a single document.
MongoDB treats them as subdocuments.
This denormalization of the given models allows
manipulating linked data with a single operation, that is to
say a single request.
The purpose of the proposal model in to propose a unified
data model that combines both of MongoDB data model to a
relational data model.

Figure 1:Proposal data model from MongoDB to RDBMS

4.2 Data transformation

In order to provide MongoDB functionality for SQL, it is
fundamental to implement the transformation algorithm
MQL2SQL. For MongoDB and SQL, there are
dissimilarities in concepts and terms between them, and
they are not the same in data aggregation operations. The
comparison between SQL and the
MQL is illustrated in Figure 2, these operations are
equivalent to CRUD (Create, Read, Update and Delete).

Figure 2:Comparison between SQL and MQL

Jabrane Kachaoui et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2457 – 2463

2460

As illustrated in Figure 2, the difference appears in
grammatical format. For example, the SQL syntax for
inserting a row record is INSERT INTO {Table_Name}
{Field_Name_List} VALUES (Field_Value_List), while in
MQL syntax for the same operation is "db". +
{Table_name} + “.insert ({” + ({Field_name}:
{Field_value}) [, ...] + “})”. Here, this query operation is
taken as an example to describe the MQL2SQL
transforming method.

4.3 Proposal approach

In RDBMS, MongoDB remains a database. MongoDB
collection is mapping to a relational table and documents to
tuples. Before starting defining algorithm of mapping,
Different relationship between entities must be firstly
defined. This paper focuses on the three associations
between entities 1:1, 1:M and N:M.
The 1:1 describes relationship between two entities. For
example, a Student has a single Course relationship. A
student studies a single course and a course only studied by
single student.

Figure 3: One to one RDBMS association

MongoDB can model the 1:1 association in two ways. The
first model is an embedded relationship as single
document; the second is a linked document in separate
collection [18]. The code bellow describes both methods of
the one to one association modelling:
 Student document:

{Name:”Jabrane Kachaoui”,
 Address:”Casablanca”}

 Course document:

{Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”}

The first model is to embed the Course document in
Student document. An example of Course document with
embedded course:

{Name:”Jabrane Kachaoui”,
 Address:” Casablanca”,
Course:{
Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”}
}

The second model is to link Course and Student document.

An example of Student document:

{id:1,
Name:” Jabrane Kachaoui”,
Address:” Casablanca”}

An example of Course document with Foreign Key:

{Student_id:1,
Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”}

From the two models, it is noticed that the second model of
linked documents is similar to how traditional relational
databases store data. This study is focused on this model to
project data from MongoDB to RDBMS in one to one
association [19].
Now, supposing that a student can study one or more
courses. For the moment, the case where a course is
studied by lot of students is excluded. Then, the following
two sentences are constructed:
 One course is studied by a single student.
 A student studies several courses.

Figure 4: One to many RDBMS association

The 1:M association can be modelled in several methods
using MongoDB. The first model is to embed course in
student:

{Id:1,
Name:”Jabrane Kachaoui”,
Address:” Casablanca”,
Course:[
{Course_id=20,
Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”},
{Course_id=20,
Label:”Physics”,
Nbr_hours:150,
Level:”Meduim”}]}

The second model is to link courses to student using a
foreign key. An example of Course documents with
Foreign Keys:

{id:1,
Course_id=20
 Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”}
{id:1,
 Course _id:21,
Label:”Physics”,
Nbr_hours:150,
Level:”Meduim”}

Jabrane Kachaoui et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2457 – 2463

2461

The third model is bucketing. It is a combination of the two
models described above. Mainly, it tries to balance the
embedding model rigidity with linking model flexibility.
For this example, course is divided into buckets with a
maximum of 7 courses in each bucket:

{id:1,
 Page:1,
 Count:7,
Courses:
 [{Course_id:2O,
Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”},
 { Course_id:21,
Label:”Physics”,
Nbr_hours:150,
Level:”Meduim”},…]}

The main advantage of using buckets, is to perform a
single read to return 7 courses at a time, allowing for
efficient pagination. When there is possibility of dividing
documents into discreet batches, it is better to consider
bucketing to accelerate document recovery.
A N:M association seems to be 1:M in both directions,
that means it is a many to many relationship. To manage
such relationship, an additional table called "Studies" is
created, which contains the primary keys of both Student-
Course couples, using the corresponding codes. This
procedure is illustrated in the example below.

Figure 5:Many to many RDBMS association

In MongoDB, this situation is represented in many ways.
The first is titled Two Way Embedding. In this method, the
Course foreign keys are included under the Course field in
the Student document. Mirroring Student document, for
each Course, the Student foreign keys are included under
Student field in Course document.
An example of Student documents:

{id:1,
 Name:”Jabrane Kachaoui”,
Address:”Casablanca”,

 Course:[1,2]}
{id:2,
Name:”Jean Paul”,
Address:”Paris”,
 Course:[2]}

An example of Course documents:

{Course_id:20,
Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”,
 Student:[1]}
{ Course _id:21,
Label:”Physics”,
Nbr_hours:150,
Level:”Meduim”,
 Student:[1,2]}

The second way of modeling N:M association is the One
Way Embedding. This method optimizes the read
performance of the N:M by setting references in one side
of the association. It this case, A Course can belong to few
Categories and a Category can have many Courses.
An example of Category documents:

{id_cat=1,
 name=”Theorical”}
 {id_cat=2,
 name=”Practical”}

An example of a Course document with foreign keys for
Categories:

{Course_id:20
Label:”Mathematics”,
Nbr_hours:100,
Level:”Advanced”,
Categories:[1],
 Student:[1]}
{Course_id:21
Label:”Physics”,
Nbr_hours:150,
Level:”Meduim”,
Categories:[1,2],
 Student:[1,2]}

The purpose for selecting to embed all references to
categories in the courses is due to the fact that lot more
courses in a category than categories in a course. To
choose one of the two models, user must make the
maximum size of N and M. For example if N is a
maximum of 3 categories for a course and M is a
maximum of 10000 courses in a category, One Way
Embedding is more adapted to this context. If N is a
maximum of 3 and M is a maximum of 5 then Two Way
Embedding can work well.

4.4 Algorithm Implementation

MQL2SQL is a framework implementing an algorithm of
mapping of MongoDB to relational databases. This
algorithm was developed and tested using MySQL
databases as a RDBMS and MongoDB as a NoSQL
database.
For examples, a database MQL2SQL is used that contains
four Collections: Student, Professor, Classroom and
Course. The relationships are:

Jabrane Kachaoui et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2457 – 2463

2462

 1:M between Professor and Course;
 1:M between Course and student;
 1:M between Student and Course;
 1:1 between Professor and Classroom;

Figure 6:MongoDB database

MQL2SQL implementation steps are presented next:
1. Creating the MySQL database. The user must specify
the MongoDB database that will be represented in
MySQL. The database is created with the following SQL
command:
>CREATE DATABASE DATABASE_NAME;

2. Creating tables in the new MySQL database. The
algorithm verifies for each collection in what relationships
is involved, if it is referred by other collection.
i. If the collection is not referred by other collections, it
will be represented by a new table.
ii. If a collection is referred by other collection, table is
created without foreign keys, but is referred by another
table.
iii. If a collection refers to another collection. The
framework uses the linking method and translates it to
foreign key concept. A table is created with one foreign
key and is referred by other table.
iv. If a collection is embedded into another collection from
the one side of the relationship. The framework uses one
way embedding model and translates it to foreign key
concept. A table is created with one foreign key but not
referred by any table.
v. If each collection refers to other collection, framework
uses the two way embedding model. A table is created with
two foreign keys and is not referred by any table.
vi. If a collection refers to three or more collections,
algorithm uses the linking model. A table with these three
or more foreign keys is created. It is the result of a N:M
ternary relationships.
For extracting the name of MongoDB collection, the next
command is used:

>use MQL2SQL //to switch to the desired database
>show collections //to retrieve all database collections

For metadata, MongoDB uses GridFS that relies on two
collections to manage large files: the first, called chunks,
hosts documents that make up the file while the second,
called files, and contains metadata associated with the file.
In chunks, there is particularly the sequence number of the
piece of file and its content in BSON (Binary JSON) form

and in files, information such as the date of download, the
size of each piece of file or the name of the file split into
several chunks [20].
With these data, framework can establish steps already
described (2.i-2.vi). Then, collections become relational
tables in MySQL. For the MongoDB database from figure
the mapping according to algorithm is presented next.
Professor collection is linked with Classroom Collection.
Professor and Classroom become tables with one to one
association (step 2.ii). Student collection refers Courses
collection and Courses collection refers Student collection.
Student and Courses collection becomes tables (step 2.iii).
A joined table will be created using two way embedding
model (step 2.v). Five relational tables will represent the
four MongoDB collections.

5. CONCLUSION AND FURURE WORKS

This paper proposes an effective transformation approach
from relational databases to NoSQL data-stores including
MySQL and MongoDB in this case of study, which allows
users to query data from NoSQL systems to relational SQL
systems. The study describes in detail the transformation
method between SQL and MongoDB, structures of the two
kind’s modification. Finally, transformation was evaluated
on small size database using the proposal algorithm. This is
the result of an advanced study on the related topic, which
fills the gap overlooked by relevant scholars in this field to
make a little contribution of data transformation.
Future works involve the optimization of algorithm and
supporting for NoSQL's transaction feature. In addition,
authors intend to integrate more NoSQL databases
transformation.

REFERENCES

1. H. Khazaei et al. How do I choose the right NoSQL
solution? A comprehensive theoretical and
experimental survey. AIMS' Journals,2015.

2. J. Kachaoui and A. Belangour. An Adaptive Control
Approach for Performance of Big Data Storage
Systems.In Proc. International Conference on
Advanced Intelligent Systems for Sustainable
Development, 2019, pp 89-97.
https://doi.org/10.1007/978-3-030-36674-2_9

3. P. Ripon, and A.Arif. Big Data: The V’s of the Game
Changer Paradigm, in Proc. IEEE 18th International
Conference on High Performance Computing and
Communications, 2016.

4. J. Kachaoui and A. Belangour. A Multi-criteria
Group Decision Making Method for Big Data
Storage Selection,in Proc. International Conference
on Networked Systems, 2019, pp 381-386.
https://doi.org/10.1007/978-3-030-31277-0_25

5. J. Kachaoui and A. Belangour. Challenges and
Benefits of Deploying Big Data Storage Solution,
inProc. of the New Challenges in Data Sciences: Acts
of the Second Conference of the Moroccan
Classification Societ, Article No.: 22,2019, pp 1–5.
https://doi.org/10.1145/3314074.3314097

6. J. Kachaoui and A. Belangour. Enhanced Data Lake
Clustering Design based on K-means Algorithm.

Jabrane Kachaoui et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2457 – 2463

2463

International Journal of Advanced Computer Science
and Applications, in progress.

7. J. Kachaoui, J. Larioui and A. Belangour. Towards an
Ontology Proposal Model in Data Lake for Real-
time COVID-19 Prevention Cases. International
Journal of Emerging Technologies in Learning (iJET),
unpublished.

8. Z. Gansen, L.Qiaoying, L.Libo, L.Zijing. Schema
Conversion Model of SQL Database to NoSQL.
Ninth International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 2014.

9. A. Kanade, A. Gopal, and S. Kanade. A study of
normalization and embedding in mongodb. in
Advance Computing Conference (IACC), IEEE
International. IEEE, 2014,pp. 416–421.

10. Apache Software Foundation http://sqoop.apache.org/
11. M. Casters, R. Bouman, and J. Van Dongen. Pentaho

Kettle solutions: building open source ETL
solutions with Pentaho Data Integration. John
Wiley & Sons, 2010.

12. Chung, Wu-Chun, LIN, Hung-Pin, Chen, Shih-Chang,
et al. JackHare: a framework for SQL to NoSQL
translation using MapReduce. Automated Software
Engineering. vol. 21, no 4, 2014, p. 489-508.
https://doi.org/10.1007/s10515-013-0135-x

13. T. Jia, X. Zhao, Z. Wang, D. Gong, G. Ding. Model
transformation and data migration from relational
database to mongodb. IEEE International Congress
on Big Data (BigData Congress), 2016, pp. 60-67.

14. S. H. Aboutorabia, M. Rezapourb, M. Moradic, N.
Ghadirid. Performance evaluation of SQL and
MongoDB databases for big e-commerce data.
International Symposium on Computer Science and
Software Engineering (CSSE), 2015.

15. L. Stanescu, M. Brezovan, D. D. Burdescu. An
algorithm for mapping the relational databases to
mongodb - a case study. International Journal of
Computer Science and Applications, 2017.

16. S. Pore, Swalaya B. Pawar. Comparative Study of
SQL & NoSQL Databases. International Journal of
Advanced Research in Computer Engineering &
Technology (IJARCET) Volume 4 Issue 5, 2015.

17. J. R. Lourenço et al. Choosing the right NoSQL
database for the job: a quality attribute evaluation.
Journal of Big Data,2015,pp 2-18.
https://doi.org/10.1186/s40537-015-0025-0

18. J. Celko. What Every SQL Professional Needs to
Know about Non-Relational Databases. 1st Edition.
Elsevier, USA, 2014.

19. A. Krisciunas, Benefits of NoSQL:
https://www.devbridge.com/articles/benefits-of-nosql/,
2014.

20. F. Toufik, M. Bahaj. Model Transformation from
Object Relational Database to NoSQL Document
Database.In Proc. of the second International
Conference on Networking, Information Systems &
Security, Article No.: 49, 2019, pp 1–5.

21. M.Burawis and R. J. Cabauatan. Query
Optimization: Fund Data Generation Applying
NonClustered Indexing and MapReduced Data
Cube Numerosity Reduction Method. International
Journal of Advanced Trends in Computer Science and
Engineering 9(1.1 S I),2020, pp102-109.

https://doi.org/10.30534/ijatcse/2020/1991.12020
22. J. E. Sabugaa and G. S. Lahayon. Digital Data

Classification and Extraction for Records
Management of PAPS and PACS Documents.
International Journal of Advanced Trends in Computer
Science and Engineering Volume 9, No.1.1, 2020, pp
272-277.
https://doi.org/10.30534/ijatcse/2020/4891.12020

23. J. Kachaoui and A. Belangour. From Single
Architectural Design to a Reference Conceptual
Meta-Model: An Intelligent Data Lake for New
Data Insights. International Journal of Emerging
Trends in Engineering Research, in progress.

