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ABSTRACT

In this paper the authors seek to propose a mechanism for
conducting text summarization and visualisation with respect
to long-text political speeches so as to simply their outcomes.
To this end artificial intelligence approach are considered
using sentiment analysis based on sentiment lexicon
(SentiWordNet 3.0). Sentiment analysis and visualization
approaches and supporting techniques is conducted by
predicting the sentiment polarity of individual speech in
political speeches (discussion paper) using transcripts taken
from King Abdullah 11 Official Website. The resulted text
visualizations indicate that the attitude of each speech can be
effectively predicted and summarized using sentiment analysis
and text visualization techniques. The authors then go on to
consider the differences between the attitudes of consecutive
speeches and to highlight the evolution of the sentiment
polarity among the speeches using statistical linguistic
analysis for political jargon that is a feature of the political
speeches under the study.

Key words: Artificial Intelligence, Text Mining, Sentiment
Analysis, Text Summarization, Text visualization.

1. INTRODUCTION

Text Summarization and Visualization is an approach to
convert text to simplified images that make long-texts simpler
to understand and to save time for researchers to search for
specific work-related tasks more easily and efficiently.
Sentiment analysis is an application of natural language
processing for tracking the mood of the public about a
particular product or topic or trend. Sentiment analysis, which
is also called opinion mining, involves building a system to
collect and examine opinions concerning some object of
interest like products made in blog posts, comments, reviews,
or tweets [1, 24, 25].

This paper presents a framework combines the sentiment and
lexical contents in the context of long-text visualization for the
seven discussion papers of His Majesty King Abdullah Il Ibn
Al Hussein. The seven discussion paper are long-text political
speeches discussing various related topics, it also discusses the
general challenges in the country. The research work described
in this paper proposes a framework for visualizing long-text
speech as a graph that summarizes transcripts of political
speeches. The objective was to deploy sentiment analysis
techniques for the extraction of speech graphs that will in turn
allow for the graphical visualisation of the high level structure
of this kind of long-text speeches showing the evolution and
the distribution of sentiment intensity and polarity of the
subjective text (positive and negative feelings) embedded
within that individual speeches in order to automatically
identify the subjectivity and orientation of text segments and
to extract political attitudes or viewpoints from that transcripts.
The operation of the framework was illustrated and evaluated
using the seven long-text political speeches published on the
King Abdullah Il Official Website https://kingabdullah.jo/ (in a
flat text form) [2].

2. LITERATURE REVIEW

We start by providing some relevant background for our study.
We first introduce text visualization and then discuss some
related work that has applied text summarizing and visualizing
techniques, including sentiment analysis, to the analysis of
political text.

Text Visualization is an approach to analyze a text in a clear
image. Wang et al., Tunggawan et al., Young et al., Chatfield
et al. focused on analysis of Tweets about U.S. presidential
election campaign [3][4[5] in different manners. Wang et al.
focused on the analysis of Tweets (15411 Tweets processed)
about the 2012 U.S. presidential election campaign. Figure 1
and 2 represent different visualizations for trending words and
for most positive, negative and frequent tweets. Figure 1
displays volume and sentiment by a candidate as well as
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trending words and a statistical summary. The top-left bar
graph shows the number of positive and negative tweets about
each candidate in the last five minutes as an indicator of
sentiment towards the candidates. The top-right chart displays
the number of tweets for each candidate every minute over the
previous two hours. The bottom left shows system statistics,
including the total number of tweets, the number of seconds
since the system start, and the average data rate. The bottom
right table shows trending words for the last five minutes.

Tunggawan et al.[4] focused on the analysis of Tweets about
2016 U.S. presidential election campaign. The following figure
(Figure 3) shows how the authors used and visualized twitter
data.The distribution of tweet labels, most tweets related to
Bernie Sanders, Donald Trump, and Hillary Clinton from a
specific number of tweets. Figure 4 shows how the model
accuracy is affected by several training data, where they trained
more models for each candidate using first tweets and used
them to predict the next 4000 tweets’ sentiment.

Figure 2 displays the most positive, negative and frequent
tweets, as well as some random neutral tweets. It also shows
thetotal volume over time and a tag cloud of the most frequent
words in the last five minutes across all candidates.
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Figure 1: Dashboard for volume, sentiment and trending words
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Figure 2: Dashed for most positive, negative and frequent tweets.
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Figure 4: Model Test using n First Tweets as Training and 4000 Next Tweets as Test Data

YoungnyoJoa [5] collected data from different sources like  collection data. YoungnyoJoa [5] then used the results to draw
social Twitter, print media, television networks, news  two directed graphs of positive and negative word as shown in
magazines, online partisan media, online non-partisan media, figure 7 and 8.

and political commentators. Figures 5 and 6 show the

visualization image in the context of negative and positive
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Figure 5: Aggregated Time Series of Negative Sentiment Words by Media Type.

In Figure 7, the edges represent significant relationships found  concept of causality used to investigate causality between two
in Granger causal tests for each media Twitter account-media  variables in a time series. The arrows denote the direction of
group pair comparison. Granger causality is a statistical
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Granger causality relationship. The size of nodes was adjusted Granger causality relationship. The size of nodes was adjusted
to represent the out-degree centrality calculated in the network. to reflect the out-degree centrality calculated in the network.

In figure 8, the edges represent significant relationships found
in Granger causal tests for each media Twitter account-media
group pair comparison. The arrows denote the direction of
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Figure 6: Aggregated Time Series of Positive Sentiment Words by Media Type.
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Figure 7: Directed Granger Causality Graph: Negative Sentiment.
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Figure 8: Directed Granger Causality Graph: Positive Sentiment.
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Figure 9: U.S. presidential speeches visualization system interface.

Mun et al.[6] developed an interface of a text visualization Presidential speeches were analyzed through word occurrence
system dedicated for a corpus data of 957 political speeches for  of specific ultimate terms revealing similarities and differences
43 U.S. presidents from George Washington to Barack Obama. in Trump’s efficient method and those before him. Figure 10
Figure 9 shows that developed text visualization interface for ~ shows representative Chart Images of Word Occurrence for six
the presidential speech. different RNC speeches.

Michaela Edwards [7] conducted interesting analysis on Gonzélez et al. [9] used a natural language processing based
Twitter data speeches, where six statements to Trump other  approach employing the latent Dirichlet allocation (LDA)
American presidents and compare between them with respect  algorithm, which is a generative statistical model, to conduct
to their RNC (Republican National Convention) speeches. text mining techniques on almost 900 presidential “state-of-
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the-union”—type speeches from 10 Latin American countries
from 1819 to 2016. Recently, the abundant amount of
documents reference to poverty and inequality shows that how
poverty and inequality are discussed differently. Figure 11
plots the relationship between average poverty and inequality
and relative frequency of usage of poverty and inequality in
presidential speeches. For each country, they calculate the
average poverty rate and Gini coefficient for the period 2000-
2015, using all years for which data are available.

Sim et al. [10] measured political candidates’ ideological
positioning from their speeches. Ideological cues were inferred

using a domain-informed Bayesian HMM from a labelled
corpus of political texts annotated with predefined ideologies.
Figure 12 represents visualizations of the speeches for Obama,
Romney, and McCine. The proportion of time spent in each
ideology by McCain, Romney, and Obama in the 2008 and
2012 presidential election seasons are highlighted and
represented visually.
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Figure 10:Pie Chart Images of Word Occurrence. Wordcount analysis in six different RNC speeches.
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Figure 11: The relationship between average poverty and inequality and relative frequency of the usage of poverty and inequality in
presidential speeches.
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Figure 12: Proportion of time spent in each ideology by McCain, Romney, and Obama during the 2008 and 2012 Presidential election seasons.

Santos et al. [11] conducted a sentiment based visualization
approach using tweets about the World Cup in 2014. User’s
sentiments about Brazil vs. Germany game and hashtags
mostly used online by Brazilians. Figures 13 and 14 discuss the
visualization approach used.Cui et al. [23] used the word cloud

to analyze and visualize documents. The top center of Figure
15 presents a significance trend chart viewer, which shows a
curve extracted from a collection of papers with different time
stamps. The x-axis represents the time, and the y-axis
represents the significance of the word clouds. The green curve
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in the chart represents the measured significance of the word
clouds at different time stamps. Five-word clouds ((a)-(e) in
the figure) are created using their algorithm for five selected
time points where high significance values are observed.

Tweets about the game “Germany 7 x 1 Brazil"
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Figure 13:Percentage of tweets with the three hashtags that suggest whether there will or will not be World Cup.
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Figure 15: Two word cloud layouts (a) and (b) generated by the importance criterion and the co-occurrence criterion, respectively.

3.DATASET Majesty has established a clear vision for comprehensive
reform and the future of democracy in Jordan. King Abdullah
To act as a focus for the work described in this paper the seven 1l has sought to inspire a national dialogue on the reform

long-text political speeches published online were used. The  endeavor and the democratic transformation process that
authors extracted the speeches associated with the seven  Jordan is undergoing, intending to reach a consensus,
discussion papers from the King Abdullah 11 Official Website ~ encouraging public participation in decision-making, and
https://kingabdullah.jo/. Figure 16 shows the seven discussion ~ sustaining the constructive momentum around the on-going
papers and their titles. King Abdullah of the Hashemite reform process.

Kingdom of Jordan, since ascending the Throne in 1999, His
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Discussion Papers

Since ascending the Throne in 1999, His Majesty King Abdullah Il ibn Al Hussein has established a clear vision for
comprehensive reform and the future of democracy in Jordan. In a series of discussion papers, King Abdullah Il has sought to
inspire a national dialogue on the reform endeavour and the democratic transformation process that Jordan is undergoing,
with the aim of reaching a consensus, encouraging public participation in decision-making and sustaining the constructive
momentum around the on-going reform process.

First Discussion Paper: Our Journey to Forge Qur Path Towards Democracy

Second Discussion Paper: IMaking Cur Democratic System Work for All Jordanians

Third Discussion Paper: Each Playing Our Part in a New Democracy

Fourth Discussion Paper: Towards Democratic Empowerment and Active Citizenship

Fifth Discussion Paper: Goals, Achievements and Conventions: Pillars for Deepening Our Democratic Transition
Sixth Discussion Paper: Rule of Law and Civil State

Seventh Discussion Paper: Developing Human Resources and Education Imperative for Jordan's Progress

Figure 16: The Seven Discussion Papers published on the King Abdullah 11 Official Website https://kingabdullah.jo/.

Our Journey to Forge Our Path Towards Democracy

By Abdullah Il ibn Al Hussein
29 December 2012

The Coming Campaign

National lists and candidates across the country have begun their election
campaigns for the next Parliament, launching an intense, short election period, in
which every day matters, and every citizen matters, because it is your active
participation, as citizens, that will breathe life into our democracy.

Candidates are not running for the right to sit in Parliament in Amman and eamn
personal benefits. They are running to be given a responsibility and a privilege:
the national duty of making key choices on some of the most important decisions
facing our country, decisions that will impact the future of every Jordanian.

My goal and responsibility within this national course is to encourage debate about
our progress as a nation in democratic development. This paper” is part of efforts
towards that goal. Today, and in a series of other discussion papers in the next
few months, | seek to stimulate debate among citizens about the most important
issues we face as a country. A few weeks ago, in an interview with Al-Rai and The
Jordan Times newspapers, | outlined in detail my vision for Jordan’s democratic
future and the roadmap to get there. Today, | dedicate this paper to share my
vision for the principles and values needed to help us progress in our
democratisation journey, under our constitutional monarchy.

hlowy e the time for i tn move actively towards key nractical milactnnee in that

Figure 17: Fragment First Discussion Paper: “Our Journey to Forge Our Path Towards Democracy” as published on the King Abdullah I1
Official Website https://kingabdullah.jo/.

2402



Zaher Salah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 2393 — 2407

4. TEXT VISUALIZATION FOR KING ABDULLAH
SEVEN DISCUSSION PAPERS

In this work, we have used SentiWordNet 3.0 (sentiment
lexicon) for purpose of sentiment analysis. Given a text, the
goal is to classify subjective words, expressed as bag-of-words
(BOW), into two distinct sentiment labels; positive or negative.
The core step to predict the sentiment label for a given word is
the lookup process, where each word included in each

discussion paper is looked up in the sentiment lexicon. If a
word is not included in the lexicon it will be considered as a
neutral word as described in following Algorithm 1. The
Sentiment Label of a word is categorized according to its
sentiment score found in the sentiment lexicon. Accordingly,
the Sentiment Label Set S is categorized as positive or
negative; where: positive indicates a positive polarity and
negative indicates negative polarity.

Algorithm 1: Words Sentiment Identification Using Sentiment Lexicon

1: INPUT: SentiWordNet Lexicon
{T, BOW}
2: OUTPUT: Set of Sentiment Labels S = {Positive, Negative}
3: PosCount=Number of words having Positive Sentiment Polarity
4: NegCount= Number of words having Negative Sentiment Polarity
5: PosScore = The accumulated Positive Sentiment Intensities for each discussion paper
6: NegScore = The accumulated Positive Sentiment Intensities for each discussion paper
7: for all tieT do
8: retrieve sentiment intensity for Term ti
9: if intensity >0

10: then ti= Positive
11: else if intensity < 0

12: then ti = Negative
13: else [i.e intensity = 0]

14: then i = Neutral
15: end if

16: end for

Discussion |
papers Text

Phase (1): Data Pre-processing

Tokenization &
Normalization

Case folding

Phase (2): Feature Extraction

A

4

Phase (3): Assign
Sentiment scores and
polarities

Feat

ure
Matrices

{

:

Negative Polarity
Terms

Figure 17: Text Extraction and Polarity Prediction Framework
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Table 1: most frequently words in discussion paper

Number of paper
First | Second | Third |  Fourth | Fifth | Sixth | Seventh
10 Most Frequent Words

our 46 our 32 our 45 Political 24 our 46 our 46 | our 23
we 45 parliamentary 22 parliamentary 39 our 32 government 30 government 30 education 16
democracy 15 government 20 government 38 we 19 political 27 political 27 | we 15
citizens 12 we 17 political 38 society 13 national 22 national 22 | future 9
practices 12 system 12 role 26 democratic 12 parliamentary 18 parliamentary 18 | knowledge 6
country 9 citizens 7 parties 24 democratic 10 we 16 we 16 | educational 5
election 9 majority 7 national 21 Jordanians 10 continue 14 continue 14 | human 5
democratic 8 parliament 7 parliament 20 active 8 system 14 system 14 | Jordan 5
Jordanians 8 parties 7 citizens 17 citizens 8 democratic 13 democratic 13 modern 5
future 7 transition 7 Jordanians 13 civic 7 elections 13 elections 13 resources 5

students 5

Table 2: positive and negative word in discussion paper

. Positive Negative
Paper Number Paper title Date #of word Word Word
First Our Journey to Forge Our Path Towards 29/12/2012 1949 167 64
Democracy
Making Our Demaocratic System Work
Second for All Jordanians 16/1/2013 1299 113 44
. Each Playing Our Part in a New
Third Democracy 2/3/2013 3844 251 112
Towards Democratic Empowerment and
Forth Active Citizenship 2/6/2013 1784 158 58
Goals, Achievements and Conventions:
Fifth Pillars for Deepening Our Democratic 3/10/2014 2928 212 86
Transition
Sixth Rule of Law and Civil State 16/10/2016 2966 215 84
Developing Human Resources and
Seventh Education Imperative for Jordan’s 15/4/2017 1062 120 41
Progress

5.CONCLUSION AND FUTURE WORK

In this paper we have described a framework for generating
long-text speech graph from transcripts of political speeches.
The objective of the research described was to deploy
sentiment analysis techniques for the extraction of speech
graphs that will in turn allow for the graphical visualisation of
the high level structure of such speeches showing the evolution
and the distribution of sentiment intensity and polarity of the
subjective text within the speeches.

The operation of the framework was illustrated and evaluated
using seven long-text political speeches published on the King
Abdullah 11 Official Website https://kingabdullah.jo/ (in a flat

text form). The promising results obtained so far indicate that:
(i) it is possible to capture the speech structure representing
the attitude of each speech; (ii) it is possible to use lexicon
based opinion mining techniques (such as SentiWordNet) to
identify the attitudes embedded within long-text political
speeches or discussions, although dedicated political lexicons
might need to be used to improve overall accuracy. Future
extensions will be directed at the adoption of machine learning
techniques instead of lexicon based technique that used in this
research work, in addition to use deeper linguistic analysis
techniques for extracting latent meanings and information
embedded in the speeches.
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(7) Seventh Discussion paper Word Cloud.
Figure 18: Text Visualization Using Word Cloud (https://www.wordclouds.com/) for the seven Discussion papers
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Figure 19:The resulted summary visualization showing the differences between the attitudes of consecutive speeches and to highlight the
evolution of the sentiment polarity among the speeches using statistical linguistic analysis for political jargon
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