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ABSTRACT 

In this paper the authors seek to propose a mechanism for 
conducting text summarization and visualisation with respect 
to long-text political speeches so as to simply their outcomes. 
To this end artificial intelligence approach are considered 
using sentiment analysis based on sentiment lexicon 
(SentiWordNet 3.0). Sentiment analysis and visualization 
approaches and supporting techniques is conducted by 
predicting the sentiment polarity of individual speech in 
political speeches (discussion paper) using transcripts taken 
from King Abdullah II Official Website. The resulted text 
visualizations indicate that the attitude of each speech can be 
effectively predicted and summarized using sentiment analysis 
and text visualization techniques. The authors then go on to 
consider the differences between the attitudes of consecutive 
speeches and to highlight the evolution of the sentiment 
polarity among the speeches using statistical linguistic 
analysis for political jargon that is a feature of the political 
speeches under the study. 
 
Key words: Artificial Intelligence, Text Mining, Sentiment 
Analysis, Text Summarization, Text visualization. 

 
1. INTRODUCTION 
 
Text Summarization and Visualization is an approach to 
convert text to simplified images that make long-texts simpler 
to understand and to save time for researchers to search for 
specific work-related tasks more easily and efficiently. 
Sentiment analysis is an application of natural language 
processing for tracking the mood of the public about a 
particular product or topic or trend. Sentiment analysis, which 
is also called opinion mining, involves building a system to 
collect and examine opinions concerning some object of 
interest like products made in blog posts, comments, reviews, 
or tweets [1, 24, 25]. 

 

This paper presents a framework combines the sentiment and 
lexical contents in the context of long-text visualization for the 
seven discussion papers of His Majesty King Abdullah II Ibn 
Al Hussein. The seven discussion paper are long-text political 
speeches discussing various related topics, it also discusses the 
general challenges in the country. The research work described 
in this paper proposes a framework for visualizing long-text 
speech as a graph that summarizes transcripts of political 
speeches. The objective was to deploy sentiment analysis 
techniques for the extraction of speech graphs that will in turn 
allow for the graphical visualisation of the high level structure 
of this kind of long-text speeches showing the evolution and 
the distribution of sentiment intensity and polarity of the 
subjective text (positive and negative feelings) embedded 
within that individual speeches in order to automatically 
identify the subjectivity and orientation of text segments  and 
to extract political attitudes or viewpoints from that transcripts. 
The operation of the framework was illustrated and evaluated 
using the seven long-text political speeches published on the 
King Abdullah II Official Website https://kingabdullah.jo/ (in a 
flat text form) [2]. 

 
2. LITERATURE REVIEW 

 
We start by providing some relevant background for our study. 
We first introduce text visualization and then discuss some 
related work that has applied text summarizing and visualizing 
techniques, including sentiment analysis, to the analysis of 
political text. 

 
Text Visualization is an approach to analyze a text in a clear 
image. Wang et al., Tunggawan et al., Young et al., Chatfield 
et al. focused on analysis of Tweets about U.S. presidential 
election campaign [3][4[5] in different manners. Wang et al. 
focused on the analysis of Tweets (15411 Tweets processed) 
about the 2012 U.S. presidential election campaign. Figure 1 
and 2 represent different visualizations for trending words and 
for most positive, negative and frequent tweets.  Figure 1 
displays volume and sentiment by a candidate as well as 
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trending words and a statistical summary. The top-left bar 
graph shows the number of positive and negative tweets about 
each candidate in the last five minutes as an indicator of 
sentiment towards the candidates. The top-right chart displays 
the number of tweets for each candidate every minute over the 
previous two hours. The bottom left shows system statistics, 
including the total number of tweets, the number of seconds 
since the system start, and the average data rate. The bottom 
right table shows trending words for the last five minutes. 

Figure 2 displays the most positive, negative and frequent 
tweets, as well as some random neutral tweets. It also shows 
thetotal volume over time and a tag cloud of the most frequent 
words in the last five minutes across all candidates. 

Tunggawan et al.[4]  focused on the analysis of Tweets about 
2016 U.S. presidential election campaign. The following figure 
(Figure 3) shows how the authors used and visualized twitter 
data.The distribution of tweet labels, most tweets related to 
Bernie Sanders, Donald Trump, and Hillary Clinton from a 
specific number of tweets. Figure 4 shows how the model 
accuracy is affected by several training data, where they trained 
more models for each candidate using first tweets and used 
them to predict the next 4000 tweets’ sentiment. 

 

 

 
 

Figure 1: Dashboard for volume, sentiment and trending words 
 

 

 
 

Figure 2: Dashed for most positive, negative and frequent tweets. 
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Figure 3: Sentiment Distribution by Candidates 
 

 
 

Figure 4: Model Test using n First Tweets as Training and 4000 Next Tweets as Test Data 
 

YoungnyoJoa [5] collected data from different sources like 
social Twitter, print media, television networks, news 
magazines, online partisan media, online non-partisan media, 
and political commentators. Figures 5 and 6 show the 
visualization image in the context of negative and positive 

collection data. YoungnyoJoa [5] then used the results to draw 
two directed graphs of positive and negative word as shown in 
figure 7 and 8. 

 

 
Figure 5: Aggregated Time Series of Negative Sentiment Words by Media Type. 

 

In Figure 7, the edges represent significant relationships found 
in Granger causal tests for each media Twitter account-media 
group pair comparison. Granger causality is a statistical 

concept of causality used to investigate causality between two 
variables in a time series. The arrows denote the direction of 
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Granger causality relationship. The size of nodes was adjusted 
to represent the out-degree centrality calculated in the network. 

In figure 8, the edges represent significant relationships found 
in Granger causal tests for each media Twitter account-media 
group pair comparison. The arrows denote the direction of 

Granger causality relationship. The size of nodes was adjusted 
to reflect the out-degree centrality calculated in the network. 

 

 

 
 

Figure 6: Aggregated Time Series of Positive Sentiment Words by Media Type. 
 
 
 

 
 

Figure 7: Directed Granger Causality Graph: Negative Sentiment. 
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Figure 8: Directed Granger Causality Graph: Positive Sentiment. 

 

 
 

Figure 9: U.S. presidential speeches visualization system interface. 
 

Mun et al.[6] developed an interface of a text visualization 
system dedicated for a corpus data of 957 political speeches for 
43 U.S. presidents from George Washington to Barack Obama. 
Figure 9 shows that developed text visualization interface for 
the presidential speech. 

Michaela Edwards [7] conducted interesting analysis on 
Twitter data speeches, where six statements to Trump other 
American presidents and compare between them with respect 
to their RNC (Republican National Convention) speeches. 

Presidential speeches were analyzed through word occurrence 
of specific ultimate terms revealing similarities and differences 
in Trump’s efficient method and those before him. Figure 10 
shows representative Chart Images of Word Occurrence for six 
different RNC speeches. 

González et al. [9] used a natural language processing based 
approach employing the latent Dirichlet allocation (LDA) 
algorithm, which is a generative statistical model, to conduct 
text mining techniques on almost 900 presidential “state-of-
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the-union”—type speeches from 10 Latin American countries 
from 1819 to 2016. Recently, the abundant amount of 
documents reference to poverty and inequality shows that how 
poverty and inequality are discussed differently. Figure 11 
plots the relationship between average poverty and inequality 
and relative frequency of usage of poverty and inequality in 
presidential speeches. For each country, they calculate the 
average poverty rate and Gini coefficient for the period 2000-
2015, using all years for which data are available. 

Sim et al. [10] measured political candidates’ ideological 
positioning from their speeches. Ideological cues were inferred 

using a domain-informed Bayesian HMM from a labelled 
corpus of political texts annotated with predefined ideologies. 
Figure 12 represents visualizations of the speeches for Obama, 
Romney, and McCine. The proportion of time spent in each 
ideology by McCain, Romney, and Obama in the 2008 and 
2012 presidential election seasons are highlighted and 
represented visually. 

 

 

 
 

Figure 10:Pie Chart Images of Word Occurrence. Wordcount analysis in six different RNC speeches. 
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Figure 11: The relationship between average poverty and inequality and relative frequency of the usage of poverty and inequality in 
presidential speeches. 

 

 
 

Figure 12: Proportion of time spent in each ideology by McCain, Romney, and Obama during the 2008 and 2012 Presidential election seasons. 
 

Santos et al. [11] conducted a sentiment based visualization 
approach using tweets about the World Cup in 2014. User’s 
sentiments about Brazil vs. Germany game and hashtags 
mostly used online by Brazilians. Figures 13 and 14 discuss the 
visualization approach used.Cui et al. [23] used the word cloud 

to analyze and visualize documents. The top center of Figure 
15 presents a significance trend chart viewer, which shows a 
curve extracted from a collection of papers with different time 
stamps. The x-axis represents the time, and the y-axis 
represents the significance of the word clouds. The green curve 
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in the chart represents the measured significance of the word 
clouds at different time stamps. Five-word clouds ((a)-(e) in 
the figure) are created using their algorithm for five selected 
time points where high significance values are observed. 

 

 
 

Figure 13:Percentage of tweets with the three hashtags that suggest whether there will or will not be World Cup. 
 
 

 
 

Figure 14:Most frequent hashtags that appeared on July 8th 
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Figure 15: Two word cloud layouts (a) and (b) generated by the importance criterion and the co-occurrence criterion, respectively. 
 

 

3. DATA SET   
 

To act as a focus for the work described in this paper the seven 
long-text political speeches published online were used. The 
authors extracted the speeches associated with the seven 
discussion papers from the King Abdullah II Official Website 
https://kingabdullah.jo/. Figure 16 shows the seven discussion 
papers and their titles. King Abdullah of the Hashemite 
Kingdom of Jordan, since ascending the Throne in 1999, His 

Majesty has established a clear vision for comprehensive 
reform and the future of democracy in Jordan. King Abdullah 
II has sought to inspire a national dialogue on the reform 
endeavor and the democratic transformation process that 
Jordan is undergoing, intending to reach a consensus, 
encouraging public participation in decision-making, and 
sustaining the constructive momentum around the on-going 
reform process. 
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Figure 16: The Seven Discussion Papers published on the King Abdullah II Official Website https://kingabdullah.jo/. 

 

 
Figure 17: Fragment First Discussion Paper: “Our Journey to Forge Our Path Towards Democracy” as published on the King Abdullah II 

Official Website https://kingabdullah.jo/. 
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4. TEXT VISUALIZATION FOR KING ABDULLAH 
SEVEN DISCUSSION PAPERS 

 
In this work, we have used SentiWordNet 3.0 (sentiment 
lexicon) for purpose of sentiment analysis. Given a text, the 
goal is to classify subjective words, expressed as bag-of-words 
(BOW), into two distinct sentiment labels; positive or negative.  
The core step to predict the sentiment label for a given word is 
the lookup process, where each word included in each 

discussion paper is looked up in the sentiment lexicon. If a 
word is not included in the lexicon it will be considered as a 
neutral word as described in following Algorithm 1. The 
Sentiment Label of a word is categorized according to its 
sentiment score found in the sentiment lexicon. Accordingly, 
the Sentiment Label Set S is categorized as positive or 
negative; where: positive indicates a positive polarity and 
negative indicates negative polarity. 

 

Algorithm 1: Words Sentiment Identification Using Sentiment Lexicon 
1: INPUT: SentiWordNet Lexicon 
                 {T, BOW} 
2: OUTPUT: Set of Sentiment Labels S = {Positive, Negative} 
3: PosCount=  Number of words having Positive Sentiment Polarity 
4: NegCount= Number of words having Negative Sentiment Polarity 
5: PosScore =   The accumulated Positive Sentiment Intensities for each discussion paper 
6: NegScore =  The accumulated Positive Sentiment Intensities for each discussion paper  
7: for all τi∈T  do 
8:  retrieve sentiment intensity for Term τi 
9:   if intensity > 0  
10:                                    then τi= Positive 
11:                 else if intensity < 0  
12:                                    then τi = Negative 
13:   else [i.e intensity = 0]  
14:                                     then τi = Neutral 
15:                 end if 
16: end for 

 
 

Figure 17: Text Extraction and Polarity Prediction Framework 
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Table 1: most frequently words in discussion paper 
 

Number of paper 
First  Second Third Fourth Fifth Sixth Seventh 

10 Most Frequent Words 
 
our              46 
we               45 
democracy  15 
citizens    12 
practices    12 
country     9 
election        9 
democratic   8 
Jordanians   8 
future          7 

 
our        32 
parliamentary  22 
government     20 
we       17 
system       12 
citizens        7 
majority        7 
parliament       7 
parties        7 
transition         7 

 
our       45 
parliamentary 39 
government    38 
political       38 
role       26 
parties            24 
national       21 
parliament      20 
citizens       17 
Jordanians     13 

 
Political       24 
our     32 
we     19 
society     13 
democratic   12 
democratic   10 
Jordanians   10 
active      8 
citizens      8 
civic      7 

 
our       46 
government    30 
political        27 
national       22 
parliamentary 18 
we       16 
continue       14 
system       14 
democratic     13 
elections       13 

 
our       46 
government   30 
political       27 
national       22 
parliamentary  18 
we       16 
continue       14 
system       14 
democratic     13 
elections        13 

 
our   23 
education   16 
we   15 
future    9 
knowledge    6 
educational   5 
human    5 
Jordan    5 
modern    5 
resources     5 
students    5 
 

 
  

Table 2: positive and negative word in discussion paper 
 

Paper Number Paper title Date #of word Positive 
Word 

Negative 
Word 

First Our Journey to Forge Our Path Towards 
Democracy 29/12/2012 1949 167 64 

Second Making Our Democratic System Work 
for All Jordanians 

16/1/2013 1299 113 44 

Third Each Playing Our Part in a New 
Democracy 

2/3/2013 3844 251 112 

Forth Towards Democratic Empowerment and 
Active Citizenship 

2/6/2013 1784 158 58 

Fifth 
Goals, Achievements and Conventions: 
Pillars for Deepening Our Democratic 

Transition 
3/10/2014 2928 212 86 

Sixth Rule of Law and Civil State 16/10/2016 2966 215 84 

Seventh 
Developing Human Resources and 
Education Imperative for Jordan’s 

Progress 
15/4/2017 1062 120 41 

 
 
 
5. CONCLUSION AND FUTURE WORK 
 
In this paper we have described a framework for generating 
long-text speech graph from transcripts of political speeches. 
The objective of the research described was to deploy 
sentiment analysis techniques for the extraction of speech 
graphs that will in turn allow for the graphical visualisation of 
the high level structure of such speeches showing the evolution 
and the distribution of sentiment intensity and polarity of the 
subjective text within the speeches. 

The operation of the framework was illustrated and evaluated 
using seven long-text political speeches published on the King 
Abdullah II Official Website https://kingabdullah.jo/ (in a flat 

text form). The promising results obtained so far indicate that: 
(i) it is possible to capture the speech structure representing 
the attitude of each speech; (ii) it is possible to use lexicon 
based opinion mining techniques (such as SentiWordNet) to 
identify the attitudes embedded within long-text political 
speeches or discussions, although dedicated political lexicons 
might need to be used to improve overall accuracy. Future 
extensions will be directed at the adoption of machine learning 
techniques instead of lexicon based technique that used in this 
research work, in addition to use deeper linguistic analysis 
techniques for extracting latent meanings and information 
embedded in the speeches. 
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(1) First Discussion paper Word  Cloud. 

 
(2) Second Discussion paper Word  Cloud 

. 

 
(3) Third Discussion paper Word  Cloud.  

(4) Fourth Discussion paper Word  Cloud 
. 

 
(5) Fifth Discussion paper Word  Cloud. 

 
(6) Sixth Discussion paper Word  Cloud. 

 

 
(7) Seventh Discussion paper Word  Cloud. 

 
Figure 18: Text Visualization Using Word  Cloud (https://www.wordclouds.com/) for the seven Discussion papers. 
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Figure 19:The resulted summary visualization showing the differences between the attitudes of consecutive speeches and to highlight the 
evolution of the sentiment polarity among the speeches using statistical linguistic analysis for political jargon 
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