
Abul Hafeez et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 164 – 167

164

ABSTRACT
UML class model is an essential element of today's software
development process. In modern software development
methodologies, it is considered a key contributor in every
phase of software development. It may be automatically
converted into other UML models and even in programming
code. However, the erroneous model generates other
erroneous models. The model verification technique checks
the presence of error in the UML class model. This paper's
main objective is to introduce a technique for the completely
automatic and expressive transformation of the UML class
model's qualified association into ontology. Because the
current verification method does not support the
transformation and verification of qualified associations.
Later on, the ontology-based reasoning method is presented to
verify qualified associations and their constraints.

Key words: Ontology, Model Verification, Class model,

Verification Tool, MDE
1. INTRODUCTION
Software are everywhere, and they are not only in the
computer but also in home appliances, mobile phone, car, and
other devices. But the failure of software causes economic and
lives losses. For example, Cloudflare sensitive customer data
such as passwords, cookies leaked from customer websites in
2017, due to a bug in the software [1]. Due to wrong software
calculation, 3200 US prisoners were released early from 2003
to Dec 2015 [2]. However, sometimes software failure not
only cost in terms of money, e.g., in Saudi Arabia, the US
missile defense system failed to identify an attack due to the
erroneous calculation in the software in 1991 and 28
American soldiers losses their life. These are few examples of
misfortunes due to software errors [3]. Hence, software
correctness is a vital problem in the industry, and precise
software testing is crucial before deployment. Although
testing has some limitations: it checks the absence of errors,
and it is performed in later stages (after coding). Error

correction cost is higher in later stages as compared to the
initial stages [4]. The identified testing problems can be
easily tackled through model verification. Innovative
software development methods such as MDA consider UML
models as an integral part of the entire development process.
[5,6]. In MDA, automated model-to-model conversion
provides systematic reuse of existing software artifacts.
However, the automatic transformation may generate some
problems, e.g., models can be developed with bugs, and
ultimately these bugs can implicitly be shifted in the code.
Hence, the model must be verified for better software [7,8].
The UML class model is an essential UML component and
specifies static aspects of the system [9]. The class model
comprises classes and various kinds of relationships
(dependency, association, and generalization) [10,11,12].
Existing verification methods of the UML class model are
sufficiently good. However, support of some important
elements of the UML class model is missing. For example, a
comparison of the different verification methods of the class
model presented in [13] claims that none of the verification
methods has the support of qualified associations. Previously
many researchers have presented work on verification of the
UML class model. A detailed formal transformation of the
UML meta-model in Z notation presented by France et al.
[14]. Object-Z is an extension of Z notation, which has
object-oriented capability has also been used to represent the
UML meta-model's abstract syntax [15, 16]. B method has
also been applied to formalize and verify the UML class
model [17,18]. They used B prover to verify consistency
against the well-formedness rules [18]. They transformed the
well-formedness rules through the B abstract machine
invariants.
Many works have also employed various semi-formal
techniques to verify the UML class models, e.g., Constraint
Satisfaction Problem (CSP) and Alloy. A linear
inequality-based method proposed by Cadoli et al. [19] for
UML class mode verification. They used CSP for representing
and solving linear inequalities. Alloy, a semi-formal method,
has also been used to transform and verify the UML class
model. Bordbar et al. [20] presented the UML Class model's

Ontology-Based Transformation and Verification of

UML Qualified Association
Abdul Hafeez1, Asif Wagan2, Samreen Javed3 , Imtiaz Hussain4

1Department of Software Engineering SMI University Karachi, Pakistan, ahkhan@smiu.edu.pk
2Department of Computer Science SMI University Karachi, Pakistan, asif.wagan@smiu.edu.pk

3Department of Computer Science SMI University Karachi, Pakistan, SamreenJaved@smiu.edu.pk
4Department of AI & Mathematical Sciences SMI University Karachi, Pakistan, imtiaz@smiu.edu.pk

ISSN 2278-3091
Volume 10, No.1, January - February 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse221012021.pdf

https://doi.org/10.30534/ijatcse/2021/221012021

Abul Hafeez et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 164 – 167

165

transformation with OCL into the Alloy. This approach
transformed the meta-model into the Alloy and class model
into Alloy's signature as a meta-model instance. Maoz et al.
[21] presented formalization of advanced UML model
elements into the Alloy, such as interface and multiple
inheritances.
Different researchers also used ontology to verify the UML
class model, such as a comparison between UML and Web
Ontology Language (OWL) presented by Xu et al. [22]. They
presented that UML and OWL have many resemblances, such
as classes, relationships, and attributes.
2. QUALIFIED ASSOCIATION
Association between classes also annotated by additional
properties called qualifier. The qualifier imposes an
additional constraint called a qualifier constraint. It allied
with multiplicity and created a partition on the target class
instances. The qualified association can be divided into two
types. In type 1, multiple instances of target class related to a
single instance of source class under a category as shown in
figure 1 where the association "enroll" connecting department
and students through" session". This association is specifying
that one or many departments enroll many students under a
session. If we semantically investigate this association, we
easily found that department class instances are linked with
student class instances through the session. For clarity, figure
2 shows the semantic representation of the UML class model
shown in figure 1. Figure 2 have two departments {D1, D2}
and both have two sessions, such as the D1 has (Session Fall
19 and Session Spring 20), each batch has students, and D2
has (Session Fall 19 and Session Fall 20). In type 2, A
key-value is attached with the source class, which uniquely
related instance of the target class. This association is trivial
and can be achieved through unique key constraints.

Figure1: Department Student class model

Figure 2: Qualified association partition

3. SOLUTION
A new class is introduced for the qualifier in between the
source and target classes in the proposed solution. The source
class is connected with the newly introduced class through
association, and the new class is connected with the target
class through a new association called "hold" (shown in figure
3) and formalized in ontology as :

Department ⊑⊺
Session ⊑⊺
Student ⊑⊺
Hold ⊑ObjectProperty
Enroll ⊑ObjectProperty
Holdby⊑ObjectProperty
Enrollby⊑ObjectProperty
Hold(Department,Session)
Holdby(Session,Department)
Enroll(Session ,Student)
Enrollby(Student,Session)
Hold≡Holdby-
Enroll≡Enrollby-

Figure 3 : Department student class model ontology

4. EXPERIMENTS AND RESULT
Numerous ontology tools are available in the market.
However, protégé is a widely accepted, and open-sourced tool.
Initially, it was developed for biomedical projects. It currently
supports various formats to represent ontology, such as
RDF/XML, Turtle, OWL/XML, and OBO. Furthermore, it
also supports many reasoners such as pellet, racer, fact++,
and HermiT.
The results illustrate that the method proposed in this work
can efficiently formalize and verify qualified association. For
evaluation, we implement the UML class model shown in
figure 1 in Protégé.
In the ontology model development, the top-level UML class
model elements such as classes are transformed into the
ontology concepts, as shown in figure 4. Further, UML class
model associations are converted into ontology object
properties. Then, the domain and range of object property are
set. Finally, proposed constraints are applied in the ontology,
and the model's verification is performed through the Protégé
reasoner as shown in figure 5.

Abul Hafeez et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 164 – 167

166

Figure 4: Ontology of Qualified association

Figure 5: Verification result obtained in Protégé

5. CONCLUSION
UML class model formalization and verification are very
important in modern software practices, such as Model
Driven Architecture. In previous work, several UML class
model elements were formalized and verified through
different techniques. However, some crucial elements, such as
qualified association was never checked. The proposed
method performs transformation and verification of qualified
association of UML class model through ontology. This
transformation map qualified associations into the new
ontology class, added in the middle of the source and target
class, and examine various correctness features such as
consistency. The method proposed in this work has many

advantages because ontology supports various efficient
reasoners, which can perform reasoning on large models very
efficiently. In the future work, we transformed the OCL
constraints and other UML class model unsupported
elements.

REFERENCES
1. N. H. Hussein and A. Khalid. A survey of cloud

computing security challenges and solutions,
International Journal of Computer Science and
Information Security, Vol. 14, p. 52, 2016.

2. Technica . Software bug granted early release to more
than 3,200 us prisoners. Available on
https://arstechnica.com/tech-policy/2015/12/software-bu
g-granted-early-release-to-more-than-3200-us-prisoners
/. Accessed: 2020-05-28.

3. M. Defense. Software problem led to system failure at
Dhahran, Saudi Arabia, US GAO Reports, report no.
GAO/IMTEC-92-26, 1992.

4. K. Erdil, E. Finn, K. Keating, J. Meattle, S. Park.
Software maintenance as part of the software life
cycle, Comp180: Software Engineering Project, pp.
1–49, 2003.

5. M. Kardoš and M. Drozdová. Analytical method of
CIM to PI, transformation in Model Driven
Architecture (MDA), Journal of Information and
Organizational Sciences, Vol. 34, pp. 89–99, 2010.

6. S. Kent. Model driven engineering, in proc.
International Conference on Integrated Formal
Methods, Berlin, Heidelberg, 2002, pp. 286–298

7. A. Shaikh and U. K. Wiil. Overview of slicing and
feedback techniques for efficient verification of
UML/OCL class diagrams, IEEE Access, Vol. 6, pp.
23864–23882, 2018.

8. J. L. F. Alemán and A. T. Álvarez. Can intuition
become rigorous? foundations for UML model
verification tools, in Proc. 11th International
Symposium on Software Reliability Engineering, 2000.
pp. 344–355,

9. H. Malgouyres and G. Motet. A UML model
consistency verification approach based on
meta-modeling formalization, in Proc. of the 2006
ACM Symposium on Applied Computing, 2006, pp.
1804–1809.

10. M. Singh, A. K. Sharma and R. Saxena. An uml + z
framework for validating and verifying the static
aspect of safety critical system, Procedia Computer
Science, 2016, Vol. 85, pp. 352–361.

11. R. Clarisó, C. A. González and J. Cabot. Towards
domain refinement for UML/OCL bounded
verification, in Proc. International Conference on
Software Engineering and Formal Methods Collocated
Workshops, York, UK, 2015, , pp. 108–114.

12. M. H. Awaad, H. Krauss and H.D. Schmatz. Advanced
praise for the unified modeling language reference
manual reading, Zentralblatt für Bakteriologie,

Abul Hafeez et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 164 – 167

167

Parasitenkunde, Infektionskrankheiten und Hygiene.
Erste Abteilung Originale. Reihe A: Medizinische
Mikrobiologie und Parasitologie, Vol. 240, 1978.

13. A. Shaikh, U. K. Wiil and N. Memon. Evaluation of
tools and slicing techniques for efficient verification
of UML/OCL class diagrams, Advances in Software
Engineering, Vol. 2011, 2011.

14. R. France, A. Evans, K. Lano and B. Rumpe. The UML
as a formal modeling notation, Computer Standards
and Interfaces, Vol. 19, pp. 325–334, 1998.

15. S. K. Kim and D. Carrington. A formal mapping
between UML models and object-Z specifications, in
Proc. International Conference of B and Z Users, York,
UK, 2000, pp. 2–21.

16. S. K. Kim and D. Carrington. A formal v&v framework
for UML models based on model transformation
techniques, in Proc. In the Proceedings of the 2nd
MoDeVa Workshop - Model Design and Validation,
Montego Bay, Jamaica, Springer, 2005, pp. 1-7.

17. H. Ledang and J. Souquières. Integrating UML and B
specification techniques, in Proc. The Informatik 2001
Workshop on Integrating Diagrammatic and Formal
Specification Techniques, Vienna, Austria, 2001, pp.
1-8.

18. H. Ledang. Automatic translation from UML
specifications to B, in Proc. 16th Annual International
Conference on Automated Software Engineering (ASE
2001), 2001, San Diego, USA, IEEE, pp

19. M. Cadoli, D. Calvanese, G. De Giacomo and T.
Mancini. Finite satisfiability of UML class diagrams
by constraint programming, CSP Techniques with
Immediate Application, (CSPIA), vol. 2, 2004.

20. B. Bordbar and K. Anastasakis. UML2alloy: A tool for
lightweight modelling of discrete event systems., in
Proc. International Conference Applied Computing,
Algarve, Portugal, IADIS, 2005, pp. 209–216.

21. S. Maoz, J. O. Ringert and B. Rumpe. Cd2alloy: Class
diagrams analysis using alloy revisited, in Proc.
International Conference on Model Driven Engineering
Languages and Systems, Wellington, New Zealand, 2011
pp. 592–607.

22. W. Xu, A. Dilo, S. Zlatanova and P. van Oosterom.
Modelling emergency response processes:
Comparative study on OWL and UML, Information
Systems for Crisis Response And Management, Harbin
Engineering University, pp. 493–504, 2008.

