
Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5686 – 5690

5686


ABSTRACT

Virtualization is playing as a core component in cloud
computing but performance overhead impact in its one of
layer is forcing the researchers to think its usage in research
areas with cloud for high performance computing. Where
containers usage based on operating system virtualization
widespread now a days is handling the performance impact
via facilitating one of the lightweight layers of virtualization
in terms of computing resources such as network bandwidth,
throughput, CPU, memory at a large extent. Docker is one of
the popular containerized platforms to be used in cloud
computing and high-performance computing research areas.
In this paper, we are proposing a basic strategy to avoid the
performance impact and feasibility using Docker engine
along with its evaluation in terms of containers vs virtual
machine. Later, we have described the containerized
placement now a days and performance specific problems
resolution using container images for the development and
deployment of HPC applications. The results and related work
are focusing on a scalable approach in terms of availability
and portability.

Key words: Cloud Computing, Docker, High Performance
Computing (HPC), Virtualization, Virtual Machine (VM)

1. INTRODUCTION

The core key component of cloud computing is virtualization.
OS virtualization in terms of being light weight in nature
signifies containers are best fit in cloud for HPC application
deployment within clusters. The demanding feature of
development, deployment, upgradation and migration in HPC
under Cloud can be eligible as one of the suitable fit to
containerization. Clusters are going to be very complex
mainly aimed for HPC but their strong and powerful
computing is making its higher demand in cloud over several
years in research and scientific communities. HPC clusters
require multiple CPU cores with higher network bandwidth,
low latency and huge computing resources with a
well-defined infrastructure. Their effective and efficient use
with multiple CPU cores, GPU can extend the frontier of their
volume and features having capability to run scalable

applications. There will be a need to add the resiliency design
consideration in parallel to this. In today’s IT world, HPC is
considered as a solution to solve the complex research
datasets processing and leveraged as a solution to achieve
parallelism and performance. Where data is growing day by
day, HPC is also getting considered in Cloud Computing.
HPC applications are considered in form of multiple parallel
jobs execution with defined set of allocated computing
resources with different tools and techniques like Message
Passing Interface. Cloud computing offers multiple services
in terms of infrastructure, platform, and software with
multiple models. Virtualization will be considered as a basic
underlying layer of infrastructure where Linux OS is suitable
for developing the interconnected systems cloud computing to
form the HPC clusters in terms of containers with a
well-defined set of computing resources in terms of GPU,
memory, multiple core processor, latency, higher network
bandwidth etc.

We have considered the various expects of performance
specific to the execution of HPC applications using
containerization with a measurable scale. Due to
infrastructure independence, OS virtualization and isolation
nature of containers, scalability and performance can be
easily improved. In addition to parallel computing,
virtualization introduced Cloud computing. To achieve
virtualization, various hypervisors such as KVM, Xen can be
easily used in Cloud computing but due to performance
impact, their adoption has been avoided in HPC clusters. The
lack of multi core processor optimization and with higher
speed of fabrics, they have not been considered as a suitable
option. On other side, Containers which are totally based on
OS virtualization gained popularity in HPC community.
Containers and Virtual machines both are based on
virtualization. In Cloud computing, Infrastructure as a
Service or platform as a Service is based on VM provision
with the help of hypervisors. On the other hand, containers
are also getting considered with a different underlying
technique of virtualization which is resulting into a large
bucket of features like light weight, scalable in nature and
much more. Virtual machines are mainly based on the
hardware layer abstraction where containers are going to have
the abstraction over the operation system layer. In this paper,
we will start first with the comparison of VM and containers
via analyzing the platform and then in later sections using
Docker engine, will deploy the HPC application over the
cluster built on the top of own private cloud infrastructure

High Performance Computing using Containers in Cloud

Manish Kumar Abhishek1, D. Rajeswara Rao2
1Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India,

manish.abhishek@gov.in
2Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, rajeshpitam@gmail.com

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse220942020.pdf

https://doi.org/10.30534/ijatcse/2020/220942020

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5686 – 5690

5687

using OpenStack. To evaluate the application performance,
containers deployment has been considered and with standard
tools i.e. Graph500 [1] and LINPACK [2]. Results will
represent the comparison of performance with Virtual
machines where Docker is significantly providing higher
performance.

2. MATERIAL AND METHODS

2.1 Virtualization in High Performance Computing

Analysis around high performance computing usually
demands multiple core performance, GPU and high memory
to resolve huge data set issues. For the execution of
application in HPC cluster, OS is going to differ from host to
host and workstation workloads. Via leveraging
Virtualization, we can easily have several OS on an individual
physical server with the help of knowingly techniques such as
hypervisors or the usage of containerization that is totally
based on underlying layer of operating system virtualization
[3]. It provides encapsulation, scalability, partitioning and
isolation which is mainly needed to process the large scale of
dataset size application problem.

A. Virtual machine
It is a well-known abstraction of underlying layer of hardware
based on totally isolation. With the help of hypervisors,
multiple virtual machines can be easily provisioned to form
an HPC cluster on the top of individual or group of physical
servers with limited performance but with higher security [4].
Each individual virtual machine is considered to have its own
execution environment to execute the multiple parallel
processes in terms of operating system with well-defined
computing resources [5]. Figure 1 shows the whole
abstraction with multiple underlying layers with the
application.

Figure 1: Virtual Machine underlying layers

B. Container
It is also a well-known abstraction of underlying layer of
operating system with well-defined namespaces at the level of
process isolation [6]. Using Docker platform, we can easily
manage the multiple containers spawning which are going to
be very light weight in nature and can be instantly provisioned

using defined images with native performance. Each
container will represent a unique process having its own
individual process id (PID), There is no need of separate
hypervisors. Complete lifecycle of containers are going to be
managed by Docker engine. Even same image can be
leveraged for the containers in terms of reusability. Docker is
going to be mainly holding the responsibility of developing,
porting, integration and execution of application like
distributed micro services [7] environment to overcome the
challenges of monolith application. Figure 2 shows the
diagrammatic representation of underlying layers of a
container. All dependencies required to run an application are
going to be bundled inside the container only with the help of
defined Docker image.

Figure 2: Container underlying layers

C. Docker
It is a well-known emerging technology and trending now
days for containers handling to execute multiple distributed
applications. It is an open source platform [8] to support the
containerization and widely used in one of the Cloud models
i.e. Infrastructure as a Service (IaaS). Here, we do not really
require the usage of hypervisors. It is going to be very light
weight mainly consisting three components i.e. Docker
Registry, Containers and Images. Containers can easily share
the same operating system kernel to get provisioned instantly
with the effective usage of defined resources in terms of
processor and memory. Basically, it is using the union file
system to have the distributed Docker images for containers
with underlying benefit of copy-on-write feature which makes
it fit to gain the scalability under cloud infrastructure. Docker
file is mainly used to execute the Docker images in form of
containers which will get spawned as a container using
Docker commands and can be easily managed such as start,
stop, bash, upgrade etc. It is a real example of reusability in
terms of containers and HPC application usage ease. All the
required dependencies are getting bundled inside the
container to execute the application and end user can
manually or automated defined images to run the process
push the same in Docker registry and execute it.

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5686 – 5690

5688

3. PROPOSED MODEL FOR EXECUTING HPC
APPLICATION USING DOCKER

As described in above section that virtual machine is having
the dependency of complete file system and operating system
dependency in individual environment, it will surely increase
the performance overhead in terms of having OS and libs
during the phase of provisioning of multiple number of virtual
machines to execute the HPC application. Docker is based on
containerization which is holding the OS level virtualization
via sharing the same OS and dependent needed libraries. In
addition to that, they will also share the same file as Docker
images for containers are built from file systems [9] layered
architecture. Each container will be treated as a unique
process having PID. Application which will be deployed
using the containers sitting on the top of a single physical
server will share the same libs/bin or any dependency of it. It
will help to overcome the computing resources availability
issue and scalability problems that we can face with VMs.
Table 1 shows the comparison between VMs and containers
computing resources for the spawned computing instances to
have HPC Cluster.

Table 1: Comparison between VMs and Containers resources

Computing
Instances

Virtual
Machines

(vCPU, running
process, vRAM)

Container
(process count)

8 8,8,16 8
16 4,4,8 4
32 2,2,4 2

HPC cluster environment has been built up with a group of six
containers with well-defined computing resources to handle
even huge datasets from application perspective. For
application, we defined the Docker images to make them run
as an individual process. Images have been pushed on private
harbor registry which will be pulled via ansible scripts to
deploy the containers. Spring boot application has been
deployed. We have computed the performance results with
respect to containers in comparison to bare metal and found
them comparable [10]. Figure 3 shows the computed
performance using NVIDIA tesla.

Figure 3: Performance analysis of Containers vs Bare metal

The consumption of computing resources is always a concern,
but we can compute it and defined in override.yaml file for a
better handling in terms of min and max memory, CPU, I/O
threads. We have designed an algorithm using which next
container will be determined that need to be spawned with
required computing resources. Algorithm 1 shows the
pseudocode for the computation of container’s computing
resources within HPC Cluster to run the application and to
overcome the performance overhead. We are going to have a
set of physical servers in our private infrastructure and on top
of that we need another set of containers to form an HPC
cluster. In our cloud environment containers has been
spawned instead of VMs. We have computed the resulted
container which is going to have maximum computing
resources as a remaining quota of both running containers
and used physical servers. The next container which is going
to be spawned to achieve scalability with respective to
running application will be the resulting one which has been
considered as an output of our algorithm.

Algorithm 1. Pseudocode for the computation of container
that needs to be spawned next with required computing
resources.
Input: Cnm, PSm
Output: map Cs
1: Cs = φ
2: for each container ∈ PSm do
3: for each m ∈ Cnm do
4: CS = φ
5: compute free CScpu, Cnm
6: compute free CSmem, Cnm
7: compute isGPU, t, f
8: compute Affinity, t, f
9: CStotal = Cnm + PSm

10: map CStotal with container id
11: end for
12: end for
13: return map Cs;

 Cnm: Set of running containers on top of physical
server m having count n

 PSm: Set of physical servers having count m
 Cs: Computed Container that is going to be spawned

next with required computing resources.
 CS: Computing resources

4. EVALUATION
Using our built environment, we have tested the application
deployment efficiency followed by reduction of performance
overhead in terms of restricting the number of unused micro
services having the application with respect to multiple inter
dependencies. The key standard chosen for VMs is native
performance overhead via benchmarking the different test
cases around containers and VMs configurations. The
computing resources in terms of CPU, GPU, affinity and
memory allocation for VMs and containers needs to be
saturated without testing environment.

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5686 – 5690

5689

Our built environment consist a set of16 containers running
on the top of HPC cluster with a physical server. Computing
resources includes GPU enabled, 18 physical cores and 132
GB RAM with Intel core processor. Gigabit Ethernet has been
used for network. VMs have been provisioned via hypervisor
KVM/QEMU 4.2.0. Docker version 19 has been used to
spawn the containers with Ubuntu as an Operating System.
From testing perspective, we have defined our testbeds. At
first, we have targeted the medium level of dataset problem to
get the best case for containers as well as VMs performance
and later we did the benchmarking via increasing the
instances count with varying computing resources which
actually shows the performance variance results. For HPC
application benchmarking, HPL benchmark has been used
which is the implementation of LINPACK for the random
dense linear system equations [11]. HPL internally uses the
double-precision floating point arithmetic and MPI for
portable routines. So, we have used HPL benchmark along
with its math lib OpenBLAS [12] and OpenMPI [13] for our
testing environment mainly targeted for HPC cluster mounted
in OS and installed on physical server host. It provides the
elasticity of multiple containers deployment even on single
compute instance in private cloud infrastructure [14]. Usually
metric size raises the issue of HPL that is directly proportional
to the performance computation impact. Here, we came with a
list for both containers as well as VMs matrix sizes which
raises from 65% to 80% of memory in terms of RAM. Figure
4 shows the container efficiency during the phase of
application execution within HPC cluster using our built
deployment model. Figure 5 shows the memory usage
comparison of VMs vs Containers.

Figure 4: Benchmarking using HPCL for VMs vs. Containers

Figure 5: Memory usage comparison for VMs vs. Containers

Using the results, the best case for native performance can be
considered with an approximation of 290 GFLOPs which
clearly makes containers best fit over VMs. Containers can be
considered with a matrix size greater than 70% but less than
75% where VMs can be considered below 70% to 60%. The
evaluation of HPC results above 80% was difficult to achieve.
On other side memory consumption in terms of RAM get
higher for virtual machines in comparison to containers
which states that performance is indirectly proportional to
matrix size. It means if memory consumption increases,
performance impact can be seen where on other side in case of
containers it is totally in reverse manner. Figure 6 shows the
same performance results in terms of configuration i.e.
containers are preferable over VMs. To conclude for HPC
cluster, we have reviewed the workload distribution across
containers and observed an issue that with the increase of
workload distribution along with consideration of multiple
process execution within a container. Figure 7 shows that
during HPL run if it reaches to maximum requirement of
defined computing resources then ability of its computation
are getting impacted.

Figure 6: HPCL Benchmarking for Computing Instances

Figure 7: Graph500 based HPCL benchmarking with count

increment of VMs vs. containers computing Instances.

We got better result with reduced computation but found that
point to be noted and taken care in terms of CPU cycles as a
part of Docker resource management. Containers can be
stop-start instantly and easily using Docker commands but as
count increases, data traceability in form of resource
management need to be worried. Here, we are evaluating our
proposed model for dynamic allocation resources, usage of
free computing resources for non-HPC application,
performance, profiling, queue Using Grpah500 based HPCL

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5686 – 5690

5690

benchmarking, we found that as count goes beyond 25 and
reaches to 32 or later, due to OS kernel sharing we face the
issue in resource control. There is a need to address this issue
which we can take as a future work in our testing
environment.

5. CONCLUSION
This paper presents the research work to reduce the
performance overhead and containers consideration to run an
HPC application in cloud environment. Docker is used to
spawn the containers on the top of private cloud infrastructure
built using OpenStack. Comparison between VMs and
containers has been evaluated to get the better performance
results. An effective and efficient report has been generated
around performance results which significantly showing the
containers adaption to run HPC application. Research work
was aimed for containers. The adaption of virtualization in
terms of Containers via Docker can be leveraged in cloud
computing to run HPC applications.

ACKNOWLEDGEMENT

A special vote of thanks to the Koneru Lakshmaiah Education
Foundation for helping and facilitating me required
infrastructure and my guide as well as staff members who
have helped me to complete this research work.
REFERENCES
1. K. Ueno and T. Suzumura, “Highly scalable graph

search for the graph500 benchmark,” in Proceedings
of the 21st international symposium on
High-Performance Parallel and Distributed Computing.
ACM, 2012, pp. 149–160.

2. J. J. Dongarra, P. Luszczek, and A. Petitet, “The
LINPACK benchmark: past, present and future,”
Concurrency and Computation: practice and experience,
vol. 15, no. 9, pp. 803–820, 2003.

3. R. Morabito, J. Kjallman, and M. Komu, “Hypervisors
vs. lightweight virtualization: a performance
comparison,” in Cloud Engineering (IC2E), 2015 IEEE
International Conference on. IEEE, 2015, pp. 386–393.

4. P. Patel, V. Tiwari and M. K. Abhishek, "SDN and NFV
integration in openstack cloud to improve network
services and security," 2016 International Conference
on Advanced Communication Control and Computing
Technologies (ICACCCT), Ramanathapuram, 2016, pp.
655-660, doi: 10.1109/ICACCCT.2016.7831721.

5. G, Nida. (2020). “A Virtual Machine Introspection in
Cloud Computing for Intrusion Detection.”
International Journal of Advanced Trends in Computer
Science and Engineering. 9. 2662-2666.
10.30534/ijatcse/2020/26932020.

6. S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L.
Peter- ¨ son, “Container-based operating system
virtualization: a scalable, high performance
alternative to hypervisors,” in ACM SIGOPS
Operating Systems Review, vol. 41, no. 3. ACM, 2007,
pp. 275–287.

7. Sarita and S. Sebastian, "Transform Monolith into
Microservices using Docker," 2017 International
Conference on Computing, Communication, Control and
Automation (ICCUBEA), Pune, 2017, pp. 1-5, doi:
10.1109/ICCUBEA.2017.8463820.

8. (2014) Docker homepage. [Online]. Available:
https://www.docker.com/

9. C. P. Wright and E. Zadok, “Kernel korner: unionfs:
bringing filesystems together,” Linux Journal, vol.
2004, no. 128, p. 8, 2004.

10. A. M. Joy, “Performance comparison between linux
containers and virtual machines,” in Computer
Engineering and Applications (ICACEA), 2015
International Conference on Advances in. IEEE, 2015,
pp. 342– 346.

11. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.
(2012) Hpl - a portable implementation of the
high-performance linpack benchmark for
distributed-memory computers. [Online]. Available:
http://www.netlib.org/benchmark/hpl/

12. Z. Xianyi, W. Qian, and Z. Chothia, “OpenBLAS,”
URL: http://xianyi. github. io/OpenBLAS, 2014.

13. M. Open, “Open MPI : Open source high
performance computing,” 2012.

14. Karimunnisa, Syed & Kompalli, Vijaya. (2019). “Cloud
Computing: Review on Recent Research Progress
and Issues”. International Journal of Advanced Trends
in Computer Science and Engineering. 8. 216-223.
10.30534/ijatcse/2019/18822019.

15. J. Leskovec, D. Chakrabarti, J. Kleinberg, and C.
Faloutsos, “Realistic, mathematically tractable graph
generation and evolution, using kronecker
multiplication,” in Knowledge Discovery in Databases:
PKDD 2005. Springer, 2005, pp. 133–145.

16. T. Adufu, J. Choi, and Y. Kim, “Is container-based
technology a winner for high performance scientific
applications?” in Network Operations and Management
Symposium (APNOMS), 2015 17th Asia-Pacific. IEEE,
2015, pp. 507–510.

17. J. Turnbull, The Docker Book: Containerization is the
new virtualization. James Turnbull, 2014.

18. D. Bader, J. Berry, S. Kahan, R. Murphy, J. Riedy, and J.
Willcock, “The graph 500 list: Graph 500 reference
implementations,” Graph500. http://www. graph500.
org/reference. html (2 Febuary 2012), 2010.

19. D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek,
“Intel R quickpath interconnect architectural
features supporting scalable system architectures,” in
High Performance Interconnects (HOTI), 2010 IEEE
18th Annual Symposium on. IEEE, 2010, pp. 1–6.

20. Chung, Minh & Nguyen, Hung & Nguyen, Manh-Thin &
Thoai, Nam. (2016). Using Docker in High
Performance Computing Applications.
10.1109/CCE.2016.7562612S. Chen, B. Mulgrew, and
P. M. Grant. High Performance Computing (HPC) on
AWS. [http://aws.amazon.com/hpc-applications.]

