
Leelavathi Rajamanickam et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 231 - 234

231


ABSTRACT

Software testing is an area in software development life cycle
in terms of manpower and cost. Much research has been done
in order to reduce the cost and manpower to fix the errors and
bugs. Generating test cases from different phases
automatically improves the quality. Generating test cases at an
early stage is efficient than having it after development phase.
The effort and time spend on finding and fixing errors is
reduced than having it after development. At the future stage
fixing the errors results in enormous code correction and
consumes more time and effort. In this paper, the different
paradigms of testing techniques for test cases are generated
and can investigate their coverage and associated capabilities.

Key words: generation-testing tools, software-testing,
security, testing-types.

1. INTRODUCTION

Software testing is to perform various tests on a data to
obtain a result, by comparing the original value with tested
value. It is not only fining errors or bugs in the software but
refining to get a good quality of the software [2]. The phases
of system development life cycle require time, effort and cost.
To get a bug free or error free program software testing is very
important phase for development. It also finds faults in the
design [1]. To ensure high quality software, software testing
is performed. This is done to detect defects in the System
under test that can cause software failures. The process is
time-consuming and complex. It can consume about 50% of
the total cost. It can also be defined as the process of
validating and validating System under test to meet technical
and business expectations. The software testing generation
has been continuing from many years. The growing maturity
in programming and the technologies forces to test the
programs and to optimize. Early programmers were
responsible for testing, and the program should be high
reliable. Testing teams are organized to produce a key
checklist for the whole project. As on change of period, it was
detected that testing teams can identify the errors or bugs and
give a clear structure. In current perspective of business, it
needs more relaxed scenarios and identify the cut cost
methods for getting a good quality. Testing began as manual
testing in the 19th century and evolved in the 21st century

with automated testing of hybrid/keyword frameworks. In this
day and age, testing software projects typically costs about
30-50% of the project. As the complexity in the software rises
automatically the process of testing also increases in cost and
this leads to high level of risk. If the software testing process
is of low quality then it leads to system shutdown, reframe of
work, high maintenance cost etc. Software validation is used
to check that the system under test is compliant and similar to
the structure test. Validation is done by running system under
test, which is similar to functional testing. Generally
speaking, there are four types of software testing (a) black box
testing (b) white box testing and (c) greybox testing, and
functional testing. Software tests can be performed manually
or automatically using test tools. Automated software testing
has been found to be better than manual testing. Recently,
more and more test case generation tools have been available.
These tools use a variety of methods to perform their tasks.

Software testing also works on the product's security

parameters, which are the most recent priority to avoid any
type of vulnerability and backdoor hacking that could lead to
development

2. REVIEW

To identify the defects, errors or bugs in the process of
programming or development, software testing is required.
This is required to make sure that customer is satisfied with
the application and it is reliable. And also, it is required to
ensure the quality of the product. By providing good quality
products to the customers, their trust can be achieved. To
provide a good quality product or an application to the
customers testing is important. To have accurate result with
low maintenance and reliable cost, testing is to be performed
so that the application does not have any errors. If the
application has errors then in further stages of development,
many consequences are to be faced.

2.1 Quality

First of all, your products are of high quality, which is very
important to customers. Customers will definitely pay more
for quality. What's more, by giving good products to the
customer, the customer is satisfied and there will be a good
relationship between both the parties and can have brand for
the products which will have higher priority.

Software Testing: The Generation Tools

Dr Leelavathi Rajamanickam1, Nurul Azlia Binti Mat Saat2, Siti Norbaya Binti Daud

1SEGi University, Malaysia, leelavathiraj@segi.edu.my
 2SEGi University, Malaysia, azliamatsaat@segi.edu.my

 3SEGi University, Malaysia, norbayadaud@segi.edu.my

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse20822019.pdf

https://doi.org/10.30534/ijatcse/2019/20822019

Leelavathi Rajamanickam et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 231 - 234

232

2.2 Trust

Software testing provides confidence in product
development and quality assurance. Quality assurance
performed during software testing provides business
confidence in the realization of business and user
requirements.

2.3 Increase Success

To have increase in success such as profit good products are
to be delivered and it does not require much advertising
because it get publicity very fast. The most important and best
active directory tool to use is through the word-of-mouth.
Providing products that have been rigorously tested and
quality tested means respecting customers. This will help
retain existing customers and gain new ones. The testing
phase will not only bring profits, but also reduce existing
costs. In future this concept saves money, the software that is
going to sold doesn't have to be constantly fixed. It is of
compromise on quality that ends up costing more than the
plan. The other benefit is that the bugs are eliminated before
the product is given to customer. This prevents in having
unsatisfied customers and spending unnecessarily leads to
customer support. The other benefit, using an automated
software test solution reduces service costs.

2.4 Reliability

The probability of the software operations will operate
without any errors, bugs or failures for a specific period of
time is software Reliability [16].

During software testing, product quality is measured by a
variety of parameters, such as functionality, performance,
security, availability, and acceptability. All parameters of
product results are verified to make the product more reliable.

2.5 Security

Software testing also works on the product's security
parameters, which are the most recent priority to avoid any
type of vulnerability and backdoor hacking that could lead to
development of source code.

3. TYPES OF SOFTWARE TESTING GENERATION

TOOLS.

3.1 Combinatorial Testing

Failures are detected by combinatorial testing where the
parameter interactions are triggered by software under test, an
array test suite is generated by the sampling mechanisms.
Combinatorial test is used to select a set of input cases with
high failure indication capability. It can reveal 90% of
programming errors. This is done by specifying the scope of
each input. Then analyze the system under test to find out the

degree of interaction between these inputs (T). It then
generates a test set where every possible combination of T
variable is in the set. The minimum number of test cases
generated should be a multiplication of the possible values of
the maximum T input variable. Combinatorial Testing
research can include the following (a) combinatorial testing
for modeling, (b) enhancing the existing test suite generation
algorithm, (c) improving analysis of testing result, (d)
exploring the application of combinatorial testing to different
levels of testing and additional types of systems, (e)
understand limitations and strengths of combinatorial testing,
and (f) combining other testing techniques with combinatorial
testing.

3.2 Acts

Acts is a combinatorial test case generation tool. It supports
1 to 6 ways of interaction, using 3 different algorithms:

Base case: Where each possible value of a parameter has to
appear once in the test set.

IPOG: In-parameter-order-generation is used by utilizing the
greedy search technique to calculate maximum interaction
element combinations coverage.

IPOG-D: In-parameter-order-generation is a combination of
IPOG with a recursive called as IPOG-D; it is to reduce the
search space during generation of the test suites.

3.3 Genetic Algorithm

Genetic Algorithm also known as EvoSuite, it uses an
evolutionary approach to generate test suites. The tool targets
code coverage standards, such as branch coverage. In
addition, it reduces unit tests to improve readability. It can be
executed using command line prompt and it also has plugin to
integrate it in Maven, IntelliJ and Eclipse. The tool was the
result of a 2010 study by Gordon Fraser and Andrea Arcuri.
Many researchers see EvoSuite as the primary reference tool
in the search-based software testing literature.

3.4 Randoop

Random Search also known as Randoop, it creates unit tests
for java classes in JUnit format. It can be used for two
purposes (a) to find bugs in your program (b) to create
regression tests that will alert when the program's behavior
changes in future. Randoop combines random test generation
with test execution to produce an efficient method. It showed
errors that were unknown and are widely used libraries. The
use of randoop continues to be used in industries such as ABB
Corporation. This random search generates a feed-back
directed from random test generation. This technique is
random but clever, generating a sequence of methods or
constructor calls for the class under test. Randoop
increasingly creates a continuous method by selecting
randomly selecting the call method that is to be applied and

Leelavathi Rajamanickam et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 231 - 234

233

parameters are selected based on the previously constructed
sequence. In the new method a set of new instruction are
executed and it is checked based on the contracts. The
sequence that results in a breach of contract is output to the
user as a test for breach of contract. Sequences that show
normal behavior are stated as regression tests. The set of
sequences that produce illegal behavior are ignored. The
normal sequences generate new sequences and to extend a
sequence that already is in a distorted state.
A test case can be generated from the feedback-directed
aspect by randoop test generation; it can perform both
systematic and unsystematic random test generation [8] and
covers error detection. The four small data structures that are
non-trivial, randoop achieved a higher or equal block and
predicate coverage than model checking and unsystematic
random generation. Randoop found many unknown errors are
not found by either model checking or unsystematic random
generation. You can always re-run the randoop to check for
new errors, generate tests for newly written code, or
regenerate tests after code changes, resulting in ideal behavior
changes.

3.5 JUnit Generator

It is a unit testing framework and it is important for the
development of test-driven development, and is the family of
unit testing frameworks which are collectively known as
xUnit that originated with SUnit.

Although ACTS generated a bigger number of test cases, it
is the fastest in test case generation and the most appropriate
in statement coverage, branch coverage, and mutation
scoring. The number of test cases consumed by EvoSuite is
much smaller, but this is due to the relationship between
mutation scores and generation time. But it achieves
reasonable representation and branch coverage. Randoop
spent the most time generating test cases, but achieved higher
variance scores than EvoSuite, and fewer than ACTS. But that
comes at the expense of reporting and branch coverage. JUnit
Generator was ranked the lowest in statement coverage, and
branch coverage.

4. MATERIALS AND METHODOLOGY OF

SOFTWARE TESTING GENERATION TOOLS

Software testing generation tools is testing the whole
application in terms of behavior, front-end and back-end
functionalities along with load testing. A set of activities are
performed through manual testing, automation testing or both,
it aims to show errors in the software application. It covers the
entire end to end functional testing of a software application.
This testing helps the team to evaluate and enhance the
software quality and at the same time, it the entire software
application is being tested with functional testing, which also
evaluates and enhances the quality of software. And reduces
the testing cost. The whole bundle of tests can be performed
by using application that covers frontend or GUI testing,
backend testing or database testing, load testing, etc.

The above main types of testing methodologies can be used
to assure the required level of testing depending on the type of
application.

4.1 Functional Testing and Blackbox Testing

For any software application using functional testing
methodology for the given set of inputs, the original result is
matched with the expected result. The program tester is not
aware of the code; therefore, it is known as blackbox testing.
Blackbox testing is mostly used for three types of testing, i.e.
functional testing, non-functional testing, and regression
testing. The following testing strategies are followed by
blackbox testing. They are equivalence class approach,
boundary value approach, decision table approach, and state
transition tables approach.

4.2 Unit Testing and Whitebox Testing

In whitebox testing, the testing is done by the programmers
after the coding part is completed for any application module.
Whitebox testing follows the coverage-analysis, path
-coverage, dead-code-analysis, code-duplication-analysis,
infinite-loop-analysis.

4.3 Greybox Testing

Greybox testing is a combination blackbox testing and
whitebox testing. The program tester applies the mixed
strategies that include both blackbox as well as whitebox
testing strategies.

5. CONCLUSION

Software testing is a very important component method
which takes a huge amount of the project's time, resource, and
budget. Testing's main purpose is to force the system to come
out with any kind of system failure that could be found and
eventually fixed. In addition to failure detection, it ensures
that bugs in specific functionalities have already been fixed
which increases the confidence and quality of the project,
though it doesn't mean that the function is bug-free.

REFERENCES
1. Leelavathi Rajamanickam. Software Testing, Analysis

and Objectives, International Journal of Advanced
Trends in Computer Science and Engineering
(IJATCSE), Vol. 3, pp. 01-04, 10 Oct. 2014.

2. Leelavathi Rajamanickam. Tools for Object Oriented
Software, International Journal of scientific research
and management (IJSRM), Vol. 2, pp. 01-04, pp.
1205-1208, Aug. 2014.

3. Ghahrai. A, M. Seven Principles of Software Testing
— Testing Excellence. Dec. 2018.

Leelavathi Rajamanickam et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 231 - 234

234

4. Awan. k, Shah. J, Akram. A, Gupta. N, Kim. H, Adke. R
and R. Unbehaven. Types of Software Testing:
Different Testing, 2018.

5. D. Graham, E. V. Veenendaal, I. Evans and R. Black.
Foundations of Software Testing: ISTQB Certification
Thomson Learning, 2007.

6. Bertolino. A. Software testing research and practice
ASM'03 Proceedings of the abstract state machines 10th
international conference on Advances in theory and
practice, In Proc, pp. 01-21, Mar. 2003.
https://doi.org/10.1007/3-540-36498-6_1

7. Myers, Glenford J. The art of software testing, The
Psychology and Economics of Program Testing, 2nd ed.
NewYork: Wiley, c1979. Ch. 2, pp. 10-21.
Peter Sestoft, Systematic Software Testing, Vol 2,
2008-02-25, pp.1-17.

8. Programming Research Ltd. Static and Dynamic
Testing Compared. PR:QA White Paper Series: WP1.1,
pp. 1-4.

9. U. Rueda, R. Just, J. P. Galeotti, and T. E. J. Vos. Unit
Testing Tool Competition. in 2016 IEEE/ACM 9th
International Workshop on Search-Based Software
Testing (SBST). May 2016. pp. 19–28
https://doi.org/10.1145/2897010.2897018

10. A. Arcuri, J. Campos, and G. Fraser. Unit test
generation during software development: Evosuite
plugins for Maven, IntelliJ and Jenkins, in IEEE
International Conference on Software Testing,
Verification and Validation (ICST). IEEE Computer
Society, 2016, pp. 401–408.
https://doi.org/10.1109/ICST.2016.44

11. BYRCE, R. C. AND MEMON. Test suite prioritization
by interaction coverage. In Workshop on Domain
Specific Approaches to Software Test Automation
(DOSTA’07). ACM, New York, 1–7.

12. COHEN, M. B., SNYDER, J., AND ROTHERMEL, G.
Testing across configurations: Implications for
combinatorial testing. SIGSOFT Software Engineering.
Notes 31, 6, pp. 1–9.
https://doi.org/10.1145/1218776.1218785

13. Kuhn, D.R.; Kacker, R.; Lei, Y. Practical
Combinatorial Testing. National Institute of Standards
and Technology, October 6, 2010.
https://doi.org/10.6028/NIST.SP.800-142

14. Zamli, K.Z., Othman, R.R., Zabil, M.H.M. On Sequence
Based Interaction Testing, IEEE Symp. On Computers
and Informatics, IEEE, 20-23 Mar. 2011, pp. 662-667.
https://doi.org/10.1109/ISCI.2011.5958995

16.D. HemaLatha, P. PremChand. Estimating Software
Reliability Using Ant Colony Optimization Technique
with Salesman Problem for Software Process.
International Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE), Vol 7, No.2, pp.
20-29. https://doi.org/10.30534/ijatcse/2018/04722018

