
Remesh K M  et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 9(4),  July – August  2020, 5576  –  5582 

5576 
 

 

 
ABSTRACT 
 
The use of a single threshold for deciding on acceptance or 
rejection in a probabilistic two-way decision-making process 
is inappropriate when the available information is uncertain 
or incomplete. Probabilistic three-way decisions use a pair of 
thresholds to trisect the universe allowing a more effective 
and sensible decision-making process. Determination of 
optimal thresholds in the probabilistic three-way 
decision-making model minimizes the overall uncertainty of 
the three regions. This assures the quality of trisections and 
guides to more valuable and accurate decisions. Quality of 
trisection can be measured with the use of objective functions. 
In this paper, the optimal pair of thresholds is determined 
experimentally by using Shannon entropy and chi-square 
static as objective functions and are analyzed and compared. 
 
Key words: Rough Set Theory, Probabilistic Rough Sets, 
Three-way decisions, Shannon entropy, Chi-square statistic.  
 
1. INTRODUCTION 
 
Data gathered from real-world systems may have uncertain or 
incomplete information. Decision making on real-world data 
thus becomes complex as it may lead to incorrect decisions or 
decisions with errors. In such situations, decision making is 
typically formulated by selecting a threshold as a trade-off 
between errors and decisions [1][2][11]. The uncertainty 
aroused due to bisection can be resolved by a probability to 
represent uncertainty and relay on a threshold to make an 
appropriate decision as accept or reject. This is known as 
probabilistic two-way decisions [1][11]. In this case, the 
decision space is divided into two regions of acceptance and 
rejection based on a threshold. These regions are also called 
positive regions and negative regions. A hypothesis is 
formulated and if the probability of the hypothesis is less than 
the threshold value, the hypothesis is rejected and the 
information is in the negative region. If the probability of the 
hypothesis is greater than the threshold value, the hypothesis 
is accepted and the information is in the positive region 
[1][11]. 

 
 

Here, the decisions are not definite. It is a trade-off between 
incorrect-acceptance and incorrect-rejection due to 
insufficient information or incorrect data. There are only two 
choices viz accept with errors or reject with errors [1][11]. 
Now, the major concern is in minimizing the errors aroused 
due to incorrect-acceptance and incorrect-rejection to a low 
level. The problem of incorrect-acceptance and 
incorrect-rejection can be overwhelmed to a certain extent by 
the introduction of a third region in the decision space called 
non-commitment region or boundary region. To trisect the 
information space, a pair of thresholds (α, β) satisfying the 
condition 0 ≤ β ˂ α ≤ 1 is required. If the probability of the 
hypothesis is below β, decide to the negative region, if the 
probability of the hypothesis is in between the two thresholds 
α and β, decide to the boundary region, otherwise, if the 
probability is higher than the threshold α, then decide to the 
positive region [1][11]. 
 
In this paper, the optimal pair of thresholds were determined 
using two different objective functions viz Shannon Entropy 
and Chi-square statistic on a variety of data sets. The size of 
the original data set was reduced using “Reduct 
sizereduction” algorithm proposed by the authors [14] and the 
optimal pair of thresholds for the resultant data set thus 
obtained was determined using the above mentioned objective 
functions. The results obtained were compared and analyzed. 
 
The minimal set of attributes that characterize the whole 
knowledge of an information system is known as the reduct of 
the information system [14]. All the attributes in a reduct are 
significant. Removal of attributes having negligible 
significance in the information system does not adversely 
affect the classification accuracy and the overall performance 
of the information system [14]. The “Reduct sizereduction” 
algorithm removes attributes having negligible significance 
thereby reducing the number of attributes to characterize the 
knowledge in the information system. 
 
In this paper, two algorithms using Shannon entropy and 
Chi-square statistic are presented to determine the optimal 
pair of thresholds  
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2. RELATED STUDY 
 
Rough Set Theory is a mathematical tool to deal with vague, 
imprecise, inconsistent, and uncertain knowledge [3].  The 
basic concept of Rough Set Theory is the indiscernibility 
between objects. Two objects are said to be indiscernible if all 
the knowledge characterized by the two objects are the same.  
Yan Zhang in his study [21], uses game-theoretic rough sets 
for the study and analysis of the changes in probabilistic 
thresholds and its impact on the Gini coefficient of rough set 
regions. For this purpose, he has formulated a competitive 
game between regions and adopted an interactive learning 
mechanism such that effective thresholds can be obtained. 
Xiaofei Deng and Yiyu Rao in their study [11] proposed an 
information-theoretic approach by using Shannon Entropy as 
a measure of uncertainty to determine the optimal pair of 
thresholds. The problem of determining the optimal pair of 
thresholds in three-way decisions is formulated as the 
minimization of Shannon entropy of the three regions. 
Xiaofei Deng and Yiyu Rao in their study [1] presented a 
general framework for the determination of a pair of 
thresholds in three-way decisions as an optimization problem. 
This study also presented a heuristic algorithm based on a 
gradient-descent approach for the determination of the 
optimal pair of thresholds. Nouman Azam, Yan Zhang and 
Jing Tao Yao in their study [9] use Game-Theoretic Rough 
Set (GTRS) model to resolve the issues encountered when the 
rough set-based three-way decision is extended to multiple 
criteria decision making (MCDM). MCDM uses multiple 
functions, and the difference in evaluation functions is 
addressed by implementing a game with multiple evaluation 
functions as game players and the differences in results are 
resolved by determining a tradeoff between evaluation 
functions. Conditions under which different game outcomes 
could contribute to a game solution is the choice structure for 
selecting the three types of decision choices. Cong Gao and 
Yiyu Yao in their study [10] established the chi-square 
statistic as an objective function to quantify the goodness of a 
three-way approximation. A large value of the Chi-square 
statistic shows a strong correlation between the trisection and 
classification. Nouman Azam and Jing Tao Yao in their study 
[16] proposed variance-based criteria for the determination of 
thresholds in three-way decisions. The authors introduced 
variance-based criteria viz within region variance, between 
region variance and the ratio of these two variances for 
determining thresholds in three-way decisions. The authors 
formulated the problem of finding an optimal pair thresholds 
as optimization functions. 
 
3.  THREE-WAY DECISIONS 
 
Most of the decision-making problems have to deal with 
incomplete, imprecise, and vague information and leads to 
decision making under uncertainty. To reduce the cause of 
uncertainty, a three-way decision-making strategy is adopted 
over the years, in which a non-commitment decision option is 
exercised [9]. Thus, the decision-making process leads to 

three decision actions viz accept the objects to the Positive 
region, reject the objects to the Negative region and 
non-commitment objects to the Boundary region [10]. Many 
application areas especially medical decision making, 
psychology, social judgment theory, management sciences, 
and machine learning has been using three-way decisions 
over the years [2]. 
 
Let U is a finite set of objects and C is a concept such 
that UC  . Based on the Pawlak rough set model, the three 
regions in the three-way decision model are defined as [9]: 

 CxUxCPOS  ][|)(                         
 cCxUxCNEG  ][|)(                            

 
 )]([)]([|)( cCxCxUxCBND                   (1)  

      Where ][x  represents an equivalence class of the object 

x and cC represents the complement of concept C.  
The rough set being a powerful tool for dealing with 
imprecise and vague information is much useful in three-way 
decisions.  
 
3.1 Probabilistic Three-way Decisions 
Suppose U represents a finite set of objects called the universe 
and C represents the target set such that UC  . For a pair of 
thresholds ),(  , such that 0 ˂ 1 , the concept C is 
approximated for acceptance, rejection, and non-commitment 
using the following three-way decision rules: 
   Rule for Acceptance :   If Pr(C | [x])  accept x C; 
   Rule for Rejection  :   If Pr(C | [x])    reject  x C; 

   Rule for N0n-commitment  :  If  ˂ Pr(C | [x]) <  , 
neither accept or reject x C.  
Accordingly, the positive, negative, and boundary regions are 
defined as follows: 

   ])[|Pr(|)(),( xCUxCPOS )(),( CP  ;  the lower 

approximation of P 
   ])[|Pr(|)(),( xCUxCNEG  CCP )(),(  ;  the 

compliment of upper approximation of  P 
   ])[|Pr(|)(),( xCUxCBND  CCNEGCPOS )()( ),(),(    

                                                                                        (2) 
3.2 Evaluation function 
The three fundamental issues concerning the evaluation and 
designated values in three-way decision theory are [4][9] :  

a. Decision measurement 
The first issue is to define a set of values each for 
measuring satisfiability for acceptance and 
non-satisfiability for rejection. A single set may be 
used for measuring both satisfiability and 
non-satisfiability. 

b. Evaluation functions  
The second issue is the construction and 
interpretation of evaluation functions for evaluating 
objects. An evaluation of a set of criteria set apart 
satisfiability or non-satisfiability of objects. 
Evaluation functions may be constructed and 
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interpreted in a sensitive and practically operable 
manner. Examples of evaluation are cost, risk, 
errors, benefits, profits, user satisfaction, etc. 

c. Decision conditions 
The third issue is the determination and 
interpretation of the two thresholds that trisect the 
decision regions. These sets of thresholds should 
reflect a perspective understanding of acceptance 
and rejection. 

 

4. THRESHOLD DETERMINATION USING 
SHANNON ENTROPY AS OBJECTIVE FUNCTION 
The amount of information contained in a variable is termed 
as the entropy of that variable. According to Shannon, the 
information content of anything can be measured in bits. 
Shannon entropy quantifies the amount of information in a 
variable. The degree of uncertainty in any probability 
distribution or a partition can be measured using the Shannon 
entropy as [1][11][13]: 

)log*( PiPiH
i
 ,                                                       (3) 

    where Pi is the probability of the distribution or partition i. 
Shannon entropy can be used to measure the uncertainty 
level. A pair of thresholds ),(  , such that 0 ˂ 0.5 ≤ 

1 , trisects the data space into three partitions: 
)).(),(),(()( ),()(,),(),( CBNDCNEGCPOSC    

The uncertainty concerning each region },{)( cCCC   is [11] : 
            

)).(|Pr(log))(|Pr(

))(|Pr(log))(|Pr())(|(

),(),(

),(),(),(

CPOSCCPOSC

CPOSCCPOSCCPOSH
cc

C



 
 

 

)).(|Pr(log))(|Pr(

))(|Pr(log))(|Pr())(|(

)(,)(,

)(,)(,)(,

CNEGCCNEGC

CNEGCCNEGCCNegH
cc

C



 
 

 

)).(|Pr(log))(|Pr(

))(|Pr(log))(|Pr())(|(

),(),(

),(),(),(

CBNDCCBNDC

CBNDCCBNDCCBNDH
cc

C



    

                                                                                        (4) 
where Pr( C | POS(α,)(C) ) is the conditional probability of an 
object in C such that the object is in the probabilistic positive 
region and so on. Conditional probabilities are evaluated as 
follows [11]: 

|)(|
|)(|

))(|Pr(
),(

),(
),( CPOS

CPOSC
CPOSC









                                            
))(|Pr(1))(|Pr( ),(),( CPOSCCPOSCc

   

 

|)(|
|)(|

))(|Pr(
)(,

)(,
)(, CNEG

CNEGC
CNEGC









                                         
))(|Pr(1))(|Pr( )(,)(, CNEGCCNEGC c

   

 

|)(|
|)(|

))(|Pr(
),(

),(
),( CBND

CBNDC
CBNDC









                                     
))(|Pr(1))(|Pr( ),(),( CBNDCCBNDC c

   
                                                                                   (5) 

The overall entropy of the three partitions is [11] : 
 

   )).(|())(Pr())(|())(Pr(

))(|())(Pr())(|(

),(),()(,)(,

),(),(),(

CBNDHCBNDCNEGHCNEG

CPOSHCPOSCH

CC

CC












 

         which is the expected overall entropy and is called the 
conditional  entropy of  )( C given  )(),( C 

 

The probabilities of the three regions can be computed as 
[11]: 
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|)(|
))(Pr( ),(
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(6) 
The Shannon entropy of a partition },{ c

C
CC is [11]: 

||
||log

||
||

||
||log

||
||)(

U
C

U
C

U
C

U
CH

cc

C  , where C ⊆ U and C ≠ 

∅.                (7) 
 

Upon trisecting the partition using the thresholds ),(  , 
the reduction of uncertainty may be computed as: 
 ))(|()( ),( CHH CC    . Here, )( CH    is independent of 

),(  . Thus, to obtain the maximum uncertainty reduction, 
minimize ))(|( ),( CH C  .

  Thus, the optimal pair of 

thresholds can be found out by the optimization problem: 

    
))(|(

),(

**
),(

minarg),( CH C 


  .                     (8)
 

Where ( α*, β* )  are the optimal pair of thresholds. 
 
 
4.1 A Method for Optimal Threshold Determination using 
Shannon Entropy 
 
Assume that each equivalence class of a training example is a 
partition and want to predict the class of an arbitrary object. If 
the dimensions of all the classes are the same then the 
prediction to which the object belongs is the most uncertain 
and hence the information entropy attains the maximum 
value (log n). If there is only one class, the information 
entropy attains the minimum value (0). Thus, the problem to 
find out the pair of optimal thresholds is to identify a pair of 
thresholds such that the information entropy is minimal. 
 
An algorithm to determine the optimal pair of thresholds 
using Shannon entropy as an objective function is proposed 
here. The approach followed in this method is to determine 
Shannon entropy for various pairs of thresholds and identify a 
pair with the minimum entropy as the optimal pair of 
thresholds. The values of thresholds are varied by 
systematically applying stepwise increment/decrement to the 
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existing values within the limit 0 ˂ 1 .  The 
proposed algorithm is given below: 
 
Algorithm Optimal_Thresholds_by_Entropy_Minimization 
Input: A set of training examples U  
          The target concept such that C ⊆ U 
          Step-size by which α and β are to alter 
Output: A set of optimal thresholds ( α, β ) 
 
Begin : 

1. Determine equivalent classes of U 
2. For each equivalent class i, repeat  steps 3 to 4 
3. Determine the probability of the class :   

setdatatheinelementsofnumberTotal
classtheinelementsofNumberX i )Pr(

 

4. Determine the conditional probabilities of the class :  

     classtheinelementsofnumberTotal
conceptthetobelongsthatclasstheinelementsofNumber

XC i )/Pr(
 

5. Sort   )|Pr()|Pr(),Pr( i
c

ii XCandXCX  in descending 
order according to )|Pr( iXC  

6. Initialize  α = 1, β = 0, min = 1; 
7. Do 

8. Compute probabilities and conditional 
probabilities of the three regions 

9. Compute Shannon entropy of the three regions 
10. Compute overall uncertainty of the three regions 
11. If    (overall uncertainty < min ) then  

       min = overall uncertainty
 

α’    =  α 
β’   =  β 

                    end 
12. Modify  α = α – step-size, β = β + step-size  

13. While ((β < 0.5) and (α  ≥ 0.5 )) 
14. Return ( α’ , β’ ) 

End. 
 
4.2 Experimental Results 
Experiments were conducted using the algorithm on various 
data sets downloaded from the UCI Machine Learning Data 
Repository. Determination of an optimal pair of thresholds 
was done for each data set in two different ways say Case 1 
and Case 2. 

1. In Case 1, the above algorithm is directly applied to 
each of the data set and obtained an optimal pair of 
thresholds.  

2. In Case 2, the attribute reduction algorithm “Reduct 
sizereduction” proposed by the same authors [14] 
was used to reduce the number of attributes in the 
data set, and a revised data set is obtained with less 
number of attributes wherever possible. Then, the 
above 
“Optimal_Thresholds_by_Entropy_Minimization” 
algorithm is applied to the revised data set and 
obtained the optimal pair of thresholds. 

 

Even though the algorithm outputs optimal thresholds in one 
run by identifying the minimum of the entropy for different 
pairs of α and β, entropy for each pair is tabulated in Table 1 
and Table 2 for analysis purposes. 
Case 1:  
 The data set “mammography” downloaded from UCI 
Machine Learning Data Repository is used and applied to the 
algorithm. There are 961 samples and 6 attributes in the data 
set. The conditional entropy for various threshold values, α 
and β are tabulated in Table 1. 
   

Table 1: Conditional entropy 

 
 
Case 2: 
In this case, the algorithm “Reduct sizereduction” is applied 
to the data set “mammography” and the possible attributes 
were removed from the data set. There were only 4 attributes 
in the resultant data set as against 6. This data set is then 
applied to the 
“Optimal_Thresholds_by_Entropy_Minimization” to 
determine conditional entropy. The conditional entropy thus 
obtained for various threshold values α and β are tabulated in 
Table 2. 
 

Table 2:  Conditional entropy after attribute reduction 
 
 
   
 
 
 
 
 
4.3 Observations 
A pair of thresholds with minimum conditional entropy is the 
optimal pair of thresholds. Here in Case 1, the minimum 
conditional entropy is 0.1546 for the thresholds α = 0.9 and β 
= 0.2, and these pairs of thresholds are the optimal pair of 
thresholds in Case 1. The positive region ranges from 0.9 to 1, 
the negative region is from 0 to 0.2 and the boundary is 
between 0.3 to 0.8.  
In Case 2, there are two instances in the table 2, with 
minimum conditional entropy 0.5507 for thresholds α = 0.7 
and 0.8 and β = 0.2. The pair of thresholds with α= 0.7 and β 
= 0.2 being the affirmative one, can be selected as optimal 

β 
→    
α  ↓ 

0.4 0.3 0.2 0.1 0.0 

1.0 0.2066 0.1796 0.1626 0.1576 0.1542 
0.9 0.1993 0.1754 0.1546 0.1587 0.1621 
0.8 0.2127 0.1851 0.1678 0.1613 0.1642 
0.7 0.2305 0.2009 0.1825 0.1709 0.1783 
0.6 0.2562 0.2239 0.2040 0.1826 0.1991 
0.5 0.2723 0.2647 0.2439 0.2134 0.2383 

β →     
α ↓ 

0.4 0.3 0.2 0.1 0.0 

1.0 0.6206 0.6243 0.6698 0.6921 0.9003 
0.9 0.5585 0.5573 0.5566 0.5622 0.6171 
0.8 0.5556 0.5541 0.5507 0.5553 0.6016 
0.7 0.5556 0.5541 0.5507 0.5553 0.6016 
0.6 0.5680 0.5663 0.5607 0.5643 0.6012 
0.5 0.5745 0.5727 0.5661 0.5693 0.6017 
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thresholds. Thus, the positive region is from 0.7 to 1, the 
negative region is from 0 to 0.2 and the boundary is only 
between 0.3 to 0.6. The size of the boundary region is reduced 
in turn reducing the deferment area as compared with Case 1.  

5. THRESHOLD DETERMINATION USING 
CHI-SQUARE STATISTIC AS AN OBJECTIVE 
FUNCTION 
 Chi-square statistics can also be used as an objective function 
for the determination of a pair of threshold values. A 
contingency table of three-way decisions shows connections 
between the actual classification  },{ cCC  and the three-way 
approximations 

))(),(),(()( ),()(,),(),(
CBNDCNEGCPOSC    as 

shown in table 3 below [10]:   
 

Table 3: Contingency Table of Three-way Decisions 
 )(),( CPOS 

 )(),( CBND 
 )(),( CNEG 

 Total 

C  CPn  CBn  CNn  Cn  
cC  PC cn  BC cn  NC cn  cCn  

Total 
Pn.  Bn.  Nn.  n  

 
 CPn , CBn    etc are the numbers of objects in the 

corresponding region and category of a class and  Cn , Bn.   
etc are the marginal totals. 
Chi-square  statistic can be used to test the 
independence of two variables. The   statistic can be 
computed from a contingency table as:   

 

             (9) 
, 
where “observed” is the 

actual observed number in the contingency table and 
“expected” is the expected number.  Cn  and Pn.  can be 
computed as: 
                      Cn  = CPn   +  CBn   +  CNn    and   

                       Pn.  = CPn  + PC cn  

(10) 
The expected value of the positive region  
   =   Probability of the concept * Probability of the positive 
region of the concept * total number of objects.  
    =  

 n
nnn

n
n

n
nUCPOSC PCCP ..

),( ||*))(Pr(*)Pr( 







.  

(11) 
Similarly, the expected values for the negative and boundary 
regions may be calculated.  
 
The observed value of the positive region is CPn  obtained 
from the contingency table. The divergence under the 
independence assumption between the observed and the 

expected values can be measured as   2
. / nnnn PCCP   . If 

the observed value is close or equal to the expected value, 
then,    2

. / nnnn PCCP 
   

is close to or even equal to 0. That is 

  2
. / nnnn PCCP 

  

/  nnn PC /.
 is also close to or even equal 

to 0. Thus, if the value of the chi-square statistics is large then 
it is presumed that the dependency is strong. Statistically, 
significant chi-square statistics mean that  },{ cCC  and 

)(),( C  are correlated or dependent and a larger chi-square 

statistic indicates a stronger correlation [10]. 
 
To find optimal thresholds, it is required to find a pair of 
thresholds that provide the strongest correlation or obtain a 
pair thresholds with the maximum chi-square statistic . 
Thus, the optimal pair of thresholds can be found out by the 
optimization problem [10]: 

 ),
2

),(

** maxarg),(



  .                                   (12)

 

Where ( α*, β* )  are the optimal pair of thresholds. 
 
5.1 An Algorithm for Optimal Pair of Threshold 
Determination Using Chi-square Statistic 
 
An algorithm using the Chi-square statistic as an objective 
function to determine the optimal pair of thresholds is 
proposed in this paper. Chi-square statistic for various pairs 
of thresholds is determined in this method and the pair with 
the maximum chi-square statistic is chosen as the optimal 
pair of thresholds. The values of thresholds were varied by 
systematically applying stepwise increment/decrement to the 
existing values within the limit 0 ˂ 1 .  The 
proposed algorithm is given below: 
 
Algorithm Optimal_Thresholds_by_Chi-square_Statistic 
Input: A set of training examples U 
          The target concept such that C ⊆ U 
          Step-size by which α and β are to alter 
Output: A set of optimal thresholds ( α, β ) 
Begin : 

1. Determine equivalent classes of U 
2. For each equivalent class i, repeat  steps 3 to 4 
3. Determine the probability of the class :   

setdatatheinelementsofnumberTotal
classtheinelementsofNumber

X i )Pr(  

4. Determine the conditional probabilities of the class :  

classtheinelementsofnumberTotal
conceptthetobelongsthatclasstheinelementsofNumber

XC i )/Pr(  

             )|Pr(1)|Pr( ii
c XCXC   

5. Sort   )|Pr()|Pr(),Pr( i
c

ii XCandXCX  in descending 
order according to )|Pr( iXC  

6. Initialize α = 1, β = 0, max = 0; 
7. Do 

 


ected
ectedobserved

exp
)exp( 2

2
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8. Construct the contingency table for the observed 
numbers 

9. Construct the contingency table for the expected 
values    

10. Compute the chi-square statistic 
   


ected

ectedobserved
exp

)exp( 2
2  

11. If (  > max ) then  
max =   
α’    =  α 
β’   =  β 

                    end 
12. Modify  α = α – step-size, β = β + step-size  

13. While ((β < 0.5) and (α  ≥ 0.5 )) 
14. Return ( α’ , β’ ) 

End. 
 
5.2 Experimental Results 
Experiments using the algorithm described above were 
conducted on various data sets downloaded from the UCI 
Machine Learning Data Repository. Determining the optimal 
pair of thresholds was done for each data set as described in 
the case of determining of optimal pair of thresholds using 
Shannon entropy. 
The data set “mammography” is used for the analysis purpose 
here as in the previous case. The Chi-statistic for various 
threshold values α and β have tabulated in Table 4 as in Case 
1 above. 
 

Table 4: Chi-square statistic 
 
 
 
 
 

 
            
As in Case 2 above, the chi-square values for various pairs of 
thresholds are tabulated in Table 5 using the above algorithm. 
Less significant attributes of the data set “mammography” are 
removed as above and given to the algorithm to determine 
chi-square values. 
 
Table 5: Chi-square statistic after attribute reduction 

                     
 
 
 
 
 
 
 
 

5.3 Observations 
Optimal thresholds are determined as the pair of thresholds 
with maximum chi-square statistics. In Table 4, the 
chi-square value 812.56 is the highest among others. Thus, 
the pair α = 0.7 and β = 0.2 are the optimal pair of thresholds. 
The positive region ranges from 0.7 to 1, the negative region 
is from 0 t0 0.2 and the boundary is between 0.3 to 0.6. 
In the case of Table 5, highest chi-square value is obtained in 
two cases with α = 0.7, β = 0.2 and α = 0.8, β = 0.2. As in the 
previous case α = 0.7, β = 0.2 is selected as optimal 
thresholds. The positive region ranges from 0.7 to 1, the 
negative region is from 0 t0 0.2 and the boundary is between 
0.2 to 0.7. Thus, the positive region is from 0.7 to 1, the 
negative region is from 0 to 0.2 and the boundary is only 
between 0.3 to 0.6. From these, it is evident that the sizes of 
the boundary regions remain the same in both cases. 
 
6.  CLASSIFICATION ACCURACY 
 
The Classification accuracy of the positive and negative 
regions was compared for all the pairs of threshold values. 
The best classification accuracy was found for the pair of 
thresholds α = 0.7, β = 0.2 and α = 0.8, β = 0.2,  mitigating the 
selection as the optimal pair of thresholds. The incorrectly 
classified instances for the above thresholds were also found 
to be the lowest when compared with all the other pairs of 
thresholds. 
 
7. CONCLUSION 
 
In a decision making strategy that involves insufficient, 
uncertain information, both the Shannon entropy and 
Chi-square statistic can be effectively used as objective 
functions to determine the optimal pair of thresholds. Optimal 
pair of thresholds is computed as an optimization problem in 
both the algorithms proposed in this paper and can be used as 
a general framework for the computation of optimal 
thresholds. The information-theoretic rough set model using 
Shannon entropy adopts entropy minimization and a pair 
with minimum value is the optimal pair. Whereas, a high 
value of chi-square statistic indicates a high correlation and 
thus the pair with the maximum chi-square statistic is the 
optimal pair. The classification accuracy of the positive and 
negative regions obtained through the two methods reiterates 
the obtained pair of thresholds as the optimal pair. 
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