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ABSTRACT 
 
Identifying prone road traffic accidents (PRTA) has been based 
on the total number of accidents data. Determining road names 
that have not been appropriately approved makes the data 
biased. Many researchers have reviewed many factors, spatial 
methods of analysis, and ways to improve past traffic strategies. 
The searching method with a systematic literature review (SLR) 
was conducted on seven publishers of the traffic accident 
classification database. They are ACM Digital Library, IEEE 
e-Xplore, ScienceDirect, Springer, Sage, Taylor & Francis, and 
Wiley, then produced 189 major relevant studies to the findings 
of this study. SLR is used to find the most relevant journals, 
research topics, trends in the field, multi-criteria spatial dataset 
parameters, estimation methods, trends, the best methods 
currently, proposed improvement methods, and the most 
commonly used efforts to determine in a collection of road 
traffic accidents. The study results obtained that multi-criteria 
spatial data were developed in different spatial analyses. The 
SLR mapping results found gaps for hybrid two types of 
classification methods on multi-criteria decision making 
(MCDM) and Spatial Multi-level Classification. The 
consistency test of many methods is done by the Consistency 
Test Method (MCT), the value of Precision-Recall Accuracy 
(ARC), and Site Consistency Test (SCT). 
 
Key words : spatial analysis, spatial data modeling, prone road 
traffic accident, hybrid methods, multi-criteria spatial analysis, 
SLR. 
 
1. INTRODUCTION 
 
The number of traffic accidents based on statistical data series is 
one indicator of the main factors determining PRTA 
classification. Data on the number of accidents that can be 

 
 

accessed publicly do not contain complete information on the 
accident road. The detailed data is still private in Government 
Agencies. Things that become indicators of the main factors, if 
not detailed in the spatial analysis modeling process, will result 
in biased decisions when used as a policy to reduce the number 
of traffic accidents. The main factors of traffic accidents are the 
lack of interchanges along roads, inappropriate and 
nonstandard horizontal curves along roads, traffic of smugglers 
roads [1], and road horizontal alignment conditions [2]. Other 
factors are the function of road geometry, the environment, and 
traffic conditions [3]. Real-time traffic and weather data are also 
factors that affect road accidents [4]. Road geometric 
construction design [5], poorly functioning road infrastructure, 
environmental conditions, roadway signals, congestion, human 
factors, and lack of safety while driving are also critical 
determinants of road accidents [6].  
 
The number of accidents resulting in death continues to increase 
each year. In 2004 the road traffic was ranked 9th. The World 
Health Organization (WHO) estimates that 2030 road traffic 
will advance to the 5th rank [7]. On the World Health Day 
(WHD) dated April 7, 2004, WHO made the theme "Road 
Safety is No Accident". Data collected by WHO recorded every 
1.25 million people per year deaths due to road accident, ≥ 20 
million people injured in a road accident. 75% of casualties 
occur in developing countries, with 32% occurring in 
motorcyclists. WHO estimates that between the years 2000 to 
2020, the number will increase by 60% if transportation systems 
are not improved by setting up traffic systems to achieve safe 
roads [8]. WHO has published its report on the "Global Status 
Report on Road Safety 2015", in which deaths from road 
accidents rank first with the highest number of deaths occurring 
in some developing countries such as Indonesia. It can be 
predicted and prevented by applying a transportation system 
that can warn against accident-prone areas [7].  
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Previous research reviewed methods for predicting RTA using 
modified C4.5 algorithm [9], autoregressive integrated moving 
average [10], hot spot analysis (Getis-OrdGi*) [11][12]. The 
methods to explain RTA factors, among others, a machine 
learning approach [13], accident modification factors [14], 
factor analysis [15], minimum uniform crash criteria [16], the 
simple crash ratio of a reference group [17], minimum uniform 
crash criteria [16], critical crash rate method [18], extremely 
severe crash [19], the simple crash ratio of a reference group 
[17], critical crash rate method [18], yearly multiplier [17], and 
extremely severe crash [19].  
 
The Systematic Literature Review (SLR) is used to identify, 
evaluate, and assess in interpreting the results of studies that 
have been carried out. The purpose of SLR is to answer the 
research topic, problem statement, and advanced research that 
could be done in software engineering [20][21]. The initial step 
in the SLR is a review of the research question (RQ), identify the 
methods used to answer the RQ, identify as much literature 
relevant to the RQ, documenting all search results to make it 
easier to find out how full of reviews that have been conducted 
on the RQ [22]. 
 
The SLR results in the spatial analysis for the PRTA 
classification mostly use the artificial intelligence (AI) hybrid 
method two types of classification methods on MCDM (AHP 
method, Fuzzy AHP method, TOPSIS, WSM, and WPM) and 
Spatial Multi-level Classification (Artificial Neural networks, 
Extreme learning machines, k-nearest neighbors, Naive Bayes, 
Decision trees). The SLR will provide an overview of the topic 
of the study of the PRTA classification that has been published 
in several publisher databases. The SLR current state focuses on 
the type of road network, the multi-criteria spatial dataset used, 
the AI method used for spatial modeling, and the spatial 
analysis method used to advance the consistency of results 
between the field and search results data. The SLR results will 
be used as a reference for further research. Among other things, 
it analyzes multi-criteria parameters that affect the results in the 
road traffic classification category. Directs to evaluate newly 
proposed models using hybrid classification methods on 
MCDM and spatial multi-level to PRTA classification. 
 
The proposed model using hybrid classification methods on 
MCDM and spatial multi-level classification is used in this 
study to process the determinant parameter data in the PRTA 
classification that include road conditions, traffic volume, 
accident rate [23] [24] [25]. Spatial datasets based on (i) arterial 
road networks (speed scheme, V/C ratio, the width of the road, 
number of lanes, road shoulder, median strip, horizontal 
alignment, vertical alignment, road conditions, and vehicle 
type), (ii) collector road networks (speed scheme, V/C ratio, the 
width of the road, number of lanes, median strip, horizontal 
alignment, vertical alignment, road conditions, and vehicle 
type), and (iii) local road networks  (speed scheme, V/C ratio, 
the width of the road, road conditions, average daily traffic 
volume (ADT), and adjustment the size of the city). 
 

The PRTA classification results can be used as a reference for 
conducting road safety audits, minimizing accident rates on the 
road, and ensuring no deaths. It helps policymakers make 
decision-making processes in road management following the 
Global Plan for the Decade of Action for Road Safety year 
2011-2020 WHO for pillar one and pillar 2. 

 
2.  RESEARCH METHODOLOGY 
 
The systematic literature review (SLR) was conducted to map 
the PRTA classification on the type of road network. In this 
paper, three stages of SLR, planning research topics, implement 
SLR research, and the SLR report, as shown in Figure 1.  
 
Planning research topics with processes that identify the need 
for research on SLR topics, develop a review of the protocol to 
research issues, and evaluate review protocols on a research 
topic. The SLR stage implementation with process research for 
primary research topics, select primary studies (PS) in research 
topics, extract data from PS, assess the quality of PS, and 
synchronize the multi-parameter criteria. Reporting the results 
SLR with process disseminate results. 
 

PLANNING THE RESEARCH TOPIC

IMPLEMENTATION OF SEARCH STRATEGI SLR

REPORTING THE RESULTS SLR

STUDI SELECTION

Step 1: Set of Research Question with Identify The need to Research Topic For an SLR

Step 2: Develop Review Map Questions to Research Topic

Step 3: Evaluate Review Questions on Research Topic

Step 4: Search for Primary Studies on Research Topic

Step 5: Select Primary Studies in Accordance with the Research Topic

Identification of Query String Identification of Literature Resources

Step 9: Data Extraction Form

Step 11: Disseminate results

Step 10: Data Synthesis Methods

START

END

Step 6: Data Extraction from primary studies

Step 7: Quality Assesment Question Criteria for primary studies

Step 8: Synchronize of research question

Inclusion Criteria Exclusion Criteria

Figure 1: Systematic Literature Review Steps 
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2.1 Search Strategy 
 
The material used in SLR activities is the search process on 
popular digital library databases. This activity aims to collect 
material on the topic under study to produce a broad literature 
review coverage. Searching on digital library databases 
(Journal, conference, symposium, and book chapter) are limited 
to the publication from January 2013 to September 2018. 
Keyword search is used to focus on the title, keyword, and 
abstract. Here is a list of digital library databases used in 
searching the SLR materials: ACM Digital Library, IEEE 
eXplore, Science Direct, Springer, Sage, Taylor & Francis, and 
Wiley. 
 
Keyword search used in the SLR material search process was 
developed from PICOC [26] [27] [28], namely by identifying the 
keyword search such as: 
 Knowing the population  and the intervention of the research 

topic 
 The RQ that have been defined 
 Search the title, abstraction, and the relevant keyword terms 

(synonyms, antonyms, and alternative spelling) 
 Using Boolean search 'ANDs' dan 'ORs'. (roads traffic 

accident OR accident rate OR safety-critical system OR road 
safety analysis OR the location of traffic accident OR PRTA 
OR black spots OR black sites OR black zone OR black area 
OR trouble spot) AND (Multi-criteria OR classification OR 
spatial analysis OR spatial data modeling) 
 

2.2 Study Selection 
 
Study selection is made by applying inclusion and exclusion 
criteria, which serves to review the abstract and the title of a 
paper on the SLR activities and decide whether the paper being 
taken follows the search process based on the topic suitability 
[29]. The article was obtained from various digital library 
sources, then calculated to identify an appropriate theme that fit 
the research topic by choosing a search strategy, developing a 
search process, evaluating the results, and doing the inclusion 
and exclusion criteria [28].  

Study selection to choose the feasibility of the primary study 
(PS) with inclusion and exclusion criteria concerning the 
relevance of the article according to research topics, place of 
publication, the period making the article, evaluation of papers 
on the subject which is becoming a trend for further research, 
restrictions on the use of language in the article referenced.  
 

A. Inclusion Criteria (Primary studies) 
 

Studies on articles that contain some term keyword PRTA 
classification discussing the problem, objectives, mathematical 
models, datasets multi-criteria parameter, methods, and results 
achieved. Studies in an article published in journals and 
conferences international in the English Language, published in 
January 2011 to September 2018, if there is a publication with 
same study the will be used the complete version and in the year 
the new   
 

B. Exclusion Criteria (Secondary Studies) 
 

The study did not focus on discussing the article with the 
context, objectives, or research to multi-criteria parameter 
dataset, mathematical modeling, classification methods in the 
field of research topics the PRTA classification manifestly 
missing, non-peer-reviewed publications, articles Page ≤ 3 
pieces. Grey literature (papers without bibliographic 
information, date/type paper, volume and issue numbers were 
excluded), and Publications Articles that do not include the full 
text, in the search engines (www.google.co.id) the contacting 
authors.  

 
Storage and processing of the results of the search process using 
software article Mendeley. Figure 2 excludes primary studies 
based on the title and abstract and the exclusion of PS based on 
the full text, the number of articles that have been obtained at 
this stage of the process of finding articles with select primary 
studies by the research topic. Papers that do not conform to SLR 
activity research topics are not included for 
inclusion/calculation; the result SLR only refers to the article, 
which has some similarities according to research topics 
studied.

 

Select Automatic Database 
Digital Search Libraries

ACM Digital Library (dl.acm.org)
IEEE eXplore (ieeexplore.ieee.org)
ScienceDirect (sciencedirect.com)
Springer (springerlink.com)
Sage (journals.sagepub.com)
Taylor & Francis (tandfonline.com)
Wiley (onlinelibrary.wiley.com)

Start

Define Search String

(roads traffic accident OR accident 
rate OR safety critical system OR 
road safety analysis OR location of 
traffic accident OR prone roads 
traffic accident OR accident prone 
roads OR traffic accident OR black 
spots OR black sites OR black 
zone OR black area OR trouble 
spot) 

AND 

(MCDM OR classification OR 
spatial analysis OR spatial data 
modeling)

Primary Studies 
Found/Known

Execute Database 
Digital Search Libraries

false

Refine string keyword search

Identify and Organize 
Primary Studies Retrieval

1572 papers

Remove 
Duplicate Paper 

1536 papers

Reviewers Reviewed 
Exclude Secondary 
Studies (Exclusion 

Criteria) with Analysis of 
The Papers Titles and 

Keyword. On This Stage, 
Only Inclusion Criteria 

Paper

1126 papers

End

The Complete SLR was retrieved 
and reviewed Primary Studies 

(Inclusion Criteria)

0-ACM(journal category)                  
4-ACM(proceedings category)         
4-IEEE(journal category)                 
41-IEEE(proceedings category)      
41-ScienceDirect                              
26-Springer(journal category)          
2-Springer(proceedings category) 
13-Sage                                              
46-Taylor & Francis                          
12-Wiley

Reviewers analyzed the 
papers abstract and 
Exclude Secondary 
Studies (Exclusion 

Criteria). On This Stage, 
Only Inclusion Criteria 

Paper

189 paper

ACM Digital Library (journal category 23)
ACM Digital Library (proceedings category 32)
IEEE eXplore (journal category 69)
IEEE eXplore (proceedings category 187)
ScienceDirect (394)
Springer (journal category 179)
Springer (proceedings category 54)
Sage (153)
Taylor & Francis (354)
Wiley (127)

true

ACM Digital Library (7830)
IEEE eXplore (6710)
ScienceDirect (3156)
Springer (1081)
Sage (1087)
Taylor & Francis (1982)
Wiley (1715)

 
 Figure 2: Search and Selection Paper of Primary Studies 
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2.3 Data Extraction and Synthesis Phase 
 
Data extraction is used to collect data on the SLR process with 
"?" Primary Inclusion Criteria Study paper categories. This 
process to answer the RQ is described in Table-1. The synthesis 
phase is used to normalize the terms used in the PRTA 
classification by using the term commonly used, including: 
 Multi-criteria Spatial Dataset that is used as input to the 

model to be built. 
 Mathematical modeling is using to determine the PRTA 

classification. 
 The relationship between mathematical modeling and the 

multi-criteria parameter dataset is determined by civil 
engineering and computer science expertise. 

 
Table 1: The Data Extraction Properties 

Property Description 
Study 
identifier on 
Publication 
Papers 
(Researcher, 
Year, Title, 
and Country) 

RQ1, RQ2. How to identify articles in the 
paper using keywords which correspond to 
the research topic (spatial analysis or 
spatial data modeling for roads traffic 
accident, accident rate, location of traffic 
accident, road safety analysis, black spots, 
black sites, black zone, black area, trouble 
spot, accident-prone roads, prone-roads 
traffic accident)? Journal publication. 

Paper 
Database 
resource; Type 
of Papers; 
Application 
context; Type 
research on 
papers; 
Contributions 
of the 
publication; 
Research 
Trends and 
Topics 

RQ3. ACM Digital Library, IEEE 
eXplore, ScienceDirect, Springer, Sage, 
Taylor & Francis, Wiley; Journal, 
conference, symposium, and book chapter; 
government and academic;  inductive and 
deductive approach (research, experience, 
position or concept paper; evaluation 
research papers, validation research 
papers, solution proposal papers, and 
opinion papers; how does the activity can 
use for the identification of research topics 
and trend in the field of GIS to the 
prone-roads traffic accident classification? 
Trends and topic research Researchers. 

Dataset 
Multi-Criteria 
Parameter to 
PRTA 
classification 

RQ4. How do management to comparison 
the Dataset Multi-Criteria Parameter use to 
determine the prone-roads traffic accident 
classification? Spatial Datasets roads 
traffic accident classification. 

Mathematics 
Model to 
PRTA 
classification 

RQ4, RQ5. What are mathematic model 
shapes used as input the dataset 
Multi-Criteria Parameter to determine 
prone-roads traffic accident classification? 
Analysis of spatial or spatial data modeling 
to roads traffic accident classification. 

PRTA 
classification 
methods 

RQ6, RQ7, RQ8. What methods are most 
widely used for prone-roads traffic 
accident classification, and How do we 
identify the application of MCDM methods 
to determine Prone-roads traffic accident 

Property Description 
classification? Validation methods to roads 
traffic accident classification; Metrics used 
to measure estimation accuracy, precision, 
and recall methods comparison. 

 
2.4 Study Quality Assessment and Data Synthesis 
 
The Study Quality Assessment is critical in assessing the quality 
of the primary studies undertaken at this selection study stage 
through inclusion or exclusion criteria. Giving the detailed data 
statements on the inclusion or exclusion criteria, measure the 
quality of the PS result by determining the strength of the 
conclusions describe, as a reference to the importance of 
individual studies when the result is being synthesized and 
instructions on advanced research recommendations/ future 
work [27]. The Study Quality Assessment can be realized if the 
PS minimizes bias (Systematic error) and maximize internal 
and external validity (Generalizability and Applicability) [27]. 
 
The quality assessment was done by evaluating the credibility of 
the paper, paper completeness, and relevance of the PS were 
selected to provide an overview of Quartile (Q1-Q4) in the 
selected PS. Ranked at each given paper quality scores by 
category as suggested [27] [30] [31] [28], that is poor quality 
(score= 0), partially quality (score= 0,5), and excellent quality 
(score=1). All paper documents obtained in the process will be 
evaluated by a device, which classifies paper into the category of 
the PS [30], that is: 
 Evaluation of Research Papers (ERP), paper implement and 

evaluate the use of a technique of problem-solving methods. 
 The Validation Research Papers (VRP) uses a case study to 

evaluate an engineering problem-solving method. 
 The Solution Proposal Papers (SPP) contains a new method 

to provide solutions to a problem. 
 Opinion Papers (OP), the paper outlines the strengths and 

weaknesses of the comparison in using a method. 
 

The Data Synthesis is used to collect evidence from primary 
studies (Inclusion Criteria) and was selected to answer the RQ of 
accumulating evidence and qualitative of quantitative data. 
Descriptive / narrative of synthesis data obtained from the 
results of studies (homogeneous/heterogeneous) on the 
intervention, population, context, sample sizes, outcomes, study 
quality, tabulated in a table to describe the differences and 
similarities with the review question [27].  The Quantitative 
data synthesis. The Data Synthesis by using a table, pie chart, 
bar chart based on RQ. 
 

2.5 Threats to Validity 
 
Threats to validity are used to perform analytical studies related 
to the research topic of the PRTA classification based on the 



Anik Vega Vitianingsih  et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 583  - 599 

587 
 

multi-criteria parameter with MCDM methods. The article 
search in the journal is not based on a reading of the manual of 
topics on all titles so that it is not aware of any bias in the 
selection of research topics.  
 
SLR will conduct a study on the results of a conference paper or 
paper that is published in the journal by a research topic, the 
PRTA classification. The research topics are selected based on 
strategy SLR that has been done by (a) reviewing the various 
databases of the digital library, (b) create a keyword search with 
Boolean ANDs and ORs and (c) make the Study Quality 
Assessment (QA) Criteria through the inclusion and exclusion 
criteria. 
 
The RQ is determined to determine the feasibility study was 
taken on a research topic, but it is possible the study SLR is not 
going well because not all of the databases of digital libraries in 
the extraction of items (title, abstract, and keywords). SLR of the 
reference, all the studies were extracted following topics the 
proposed research to identify studies missed during the search at 
the beginning [32]. To overcome this, then the threats to validity 
are grouped into four categories, that is construct, internal, 
external, and conclusion [33]. 
 
Concept Validity Threats. Major construction on Validity 
Concept that determines a keyword search of the most 
commonly used of the research topics are taken [33], this section 
there are five taxonomic concepts built to get the keyword search 
that is commonly used is (1)"accident roads", (2)"multi-criteria 
parameter", (3)"spatial analysis or spatial data modeling", (4), 
and (5)"MCDM method". The first concept is all words that 
contain the term "accident roads" and all the words that contain 
a synonym for "accident roads" ("roads traffic accident", 
"accident rate", "location of traffic accident", "road safety 
analysis", "black spots", "black sites", "black zone", "black 
area", "trouble spot", "accident-prone roads", "prone-roads 
traffic accident") been associated with the field research topics 
of accident roads. The second concept is related to the word 
"multi-criteria parameter" contained in all the synonyms 
"accident roads" that are used to detect the parameter criteria 
used to determine the "accident roads". The concept of the third, 
fourth and fifth are all words in the search database that contains 
the word "spatial analysis", "mathematics modeling", 
"classification", and "MCDM methods" are synchronized with 
the synonyms of the word "accident roads". A complementary 
manual search of the SLR is not done; this threat can be 
overcome by entering the keyword search. This threat is to be 
addressed by entering the keyword search commonly used in the 
digital library database. 
 
Internal Validity Threats. The primary purpose of conducting 
SLR on the study was to reduce the internal validity threats [28]. 
Threats to the internal validity occur because the conclusions 
are subjective on the activities of the SLR in the choice of 

articles of paper and extraction of data to the contents of the 
paper. This can happen if the SLR on paper main does not 
clearly describe the research topics taken [31]. To overcome 
these threats because of lack of understanding in the knowledge 
content of articles of paper, the writer who is currently pursuing 
a Ph.D. is controlled by the promoter in determining papers 
selected as a premier study. 
 
External Validity Threats. External validity is the SLR result 
determination overall, representing a review of the main 
research topics were taken [31]. The SLR ability to identify valid 
literature produced on an issue entire contents, research if 
literature made invalid, then the idea is poured on a research 
topic, not by the generated content [34].  
 
Conclusion Validity Threats. To produce a valid conclusion 
validity, all articles of the paper refer to research topics taken. In 
certain circumstances, where some research in making 
conclusion validity did not include all reviews (excluded review 
paper) should be included (Included review paper) in the review 
to produce conclusion validity for certain conditions [31], 
because it does not all the contents of articles of paper related to 
the main study can be identified [27]. To overcome conclusion 
validity threats, need to be designed study selection with the 
inclusion and exclusion criteria.  
 
3.  RESULT AND DISCUSSION 
 
In this mind map SLR in Figure 10, 189 major study papers 
through SLR were used to analyze spatial datasets, spatial 
analysis through mathematical modeling, and methods used for 
the PRTA classification. SLR distribution is carried out from 
January 2013 to September 2018. This topic shows the research 
direction on the main research topics.  The spatial analysis to 
SLR studies found that Spatial data analysis using the MCDM 
method approach from SLR primary studied only focuses on 
road safety subject [35] [36] [37].  Figure 3 is the distribution of 
the number of papers included in the PS category to be used as 
reference research material (2018=43 papers; 2017=49 papers; 
2016=30 papers; 2015=20 papers; 2014=24 papers; 2013=23 
papers). 

 

 
Figure 3: The Number of PS SLR 
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The amount of paper distribution in each publisher in the 
Scopus journal and proceeding was in Figure 4, 142 papers 
(75%) published in journals, and 47 papers (25%) published in 
the proceedings.  
 

 
Figure 4: The Number of Mapping PS 

 
A brief overview of the primary studies is shown in Figure 5, 
which shows that this study is still a trending topic in several 
Scopus indexed journal publishers distributions. The highest 
value is on the publisher Taylor & Francis. Publisher IEEE 
Digital Explore contributes to the highest number of importance 
on the conference results in Figure 6. 
 

 
Figure 5: The Distribution PS in Scopus Journal 

 

 
Figure 6: Distribution of Name of the Journal to PS 

3.1  Research Topics Field 
 
Figure 7 is the distribution of research topic models in the PS of 
spatial analysis for the most used type of classification with a 
value of 29% papers, followed by the second order for the 
classification method of 27% model clustering. Others use 
predictive, statistical, regression, probability, distribution, 
estimation, forecasting, dan optimization models. In this study, 
researchers improve using classification categories. 
 

 
Figure 7: Dissemination of Research Model in PS 

 

3.2  Methods Used 
 

 

 
Figure 8: Number Study of Method Approach 
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The summary of the state-of-the-art methods obtained from SLR 
of the PS, presented in Figure 8 and Appendix. The Artificial 
Neural Network (ANN) method has the highest rating of 
methods that are often used in SLR in primary studies. The 
Empirical Bayes method and decision tree in data mining are 
also widely used in the clustering category in spatial data 
modeling of accident-prone areas. In this study, the authors 
conducted a hybrid MCDM method with ANN, test the 
consistency of the method from the model produced with the 
Method Consistency Test (MCT), the value of Precision Recall 
Accuracy (ARC) and Site Consistency Test (SCT). 

 
3.3 Spatial Datasets 
 
Based on the previous SLR, the authors present a list of spatial 
datasets and methods used as targets in the development of this 
study. Spatial datasets are used to describe the needs of spatial 
data in the form of multi-criteria parameters. In the GIS field 
research, the need for spatial data and data attributes is 
essential, but it will be an obstacle if data acquisition is a private 
agency.  
The amount of use of data properties in GIS. Private data types 
are most widely used in developing GIS applications for 
modeling spatial data. The PS has obtained a value of 96% in 

previous studies that used private data types, while only 4% used 
public data types, as shown in Figure 9. 

 
Figure 9: Number of Mapping Criteria Type Datasets

 
Figure 10: Mind Map of the SLR 
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3.4 Proposed Method Improvements 
 
This paper uses an Inductive Qualitative Approach in the 
modeling of PRTA to identify the findings of science during the 
research process. They propose a PRTA classification using 
multiple criteria parameters (data series), make the modeling of 
PRTA classification by calculating (1) the value of traffic 
accident by type of events and the index of the accidents, (2) the 
value of the density that of roads traffic accident happened to 
each zone and the amount of data in each year, (3) the value of 
risk factors based on the severity of the accidents, (4) the value 
of severity of roads traffic accident events, (5) the value of crash 
prediction models using data series, and (6) the value of the 
societal cost of each type the accident, and (7)the test result is 
using SCT, MCT, and APR. 
 
The SLRs that have been carried out in this study, there is no 
topic on the PRTA Classification proposed using two types of 
classification methods on MCDM (AHP method, Fuzzy AHP 
method, TOPSIS, WSM, and WPM) and Spatial Multi-level 
Classification (Neural networks, Extreme learning machines, 
k-nearest neighbours, Naive Bayes, Decision trees). The results 
of the best methods through APR measurement will be a 
reference in decision making in road management. 

 
3.5 Implications for Research 
 
The most crucial thing in developing spatial analysis modeling 
for the PRTA classification is to have a significant analysis 
between the data in the field and the resulting spatial analysis. 
Testing to obtain substantial results needs to be done with MCT, 
ARC, or SCT (depending on the dataset's behavior). Based on 
the review through SLR, different evaluation results were 
obtained between each paper discussion; this depends on the 
multi-criteria datasets of the parameters and the type of model 
used.  
 
Many researchers have developed models through hybrid 
methods with methods that have the same characteristics. The 
results of this SLR review several models used for the PRTA 
classification, where the models with classification types using 
ANN are most widely used in the 2013-2018 study period. 
 

3.6  Limitations of This Review 
 
The study on SLR is carried out with several limitations relating 
to the lack of validity of search terms, the publisher period, and 
the publisher database's selection. This paper reviews the needs 
of the multi-criteria parameter datasets, types of models, and 
methods used for spatial analysis. Referring to the SLR results, 
it will be used to find out how valid the results of the 

classification are given because this relates to the spatial 
datasets, both private and public, and models and methods. 
 
4. CONCLUSION AND FUTURE WORKS 
 
The SLRs study that has been conducted on 189 papers as the 
PS, there is no topic on the PRTA classification in the arterial 
road, collector road, local road, road pavement, and road 
geometry categories using two types of classification methods 
on MCDM (AHP method, Fuzzy AHP method, TOPSIS, WSM, 
and WPM) hybrid Multi-level Classification (Neural networks, 
Extreme learning machines, K-nearest neighbors, Naive Bayes, 
Decision trees). The best methods through APR measurement 
will be a reference in decision making in road management.  
 
Existing research is still limited to one type of road used as an 
object (specific region), and 96 % is used Private Spatial 
Datasets and in this study, using an Inductive Qualitative 
Approach in the modeling of PRTA to identify the findings of 
science that is done during the research process. 

APPENDIX 
Table 2. the Distribution of Method to  Road Traffic Accident 

Authors Methods Used 
[38] [39] Agglomerative Hierarchical Clustering 

Algorithm 
[40] Density-Based Spatial Clustering  
[41] [42] Expectation Maximization Clustering 
[43] Fuzzy C-Means Clustering  
[44] Hierarchical Clustering  
[40] [45] [46] [47] [48] [49] [50] 
[51] [52] 

K-means Cluster Analysis 

[53] [54] K-Modes Clustering Algorithm 
[53] Latent Class Clustering 
[18] [55] [56] Network kernel density estimation  
[57] [58] [59] [60] Kernel Density Estimation  
[61] Traffic Density Levels  
[62] Fuzzy Analytic Hierarchy Process  
[63] Fuzzy Comprehensive Evaluation 
[64] Fuzzy Entropy Feature Selection 
[40] [65] Neuro-Fuzzy Inference System 
[66] Adaptable Neural Fuzzy  
[49] [67] [68] Fuzzy Logic 
[69] [70] [71] [67] [72] Fuzzy Rules 
[73] [74] [75] [76] [77] [78] [79] 
[80] [81] [82] [83] [84] [85] 

Artificial Neural Network  
 

[86] Back-Propagation Neural Network  
[61] Convolutional Neural Networks  
[82] Fitting Neural Network 
[82] Generalized Regression Neural Network  
[87] [88] [89] [85] Genetic Algorithm-Based Neural Network  
[61] [71] Genetic Programming  
[90] [91] [92] Long Short-Term Memory Neural 

Network 
[82] Multi-Layer Feedforward Artificial 

Neural Network  
[93] Multiobjective Particle Swarm 

Optimization  
[94] Particle Swarm Optimization  
[76] Particle Swarm Optimization-Back 

Propagation Neural Network 
[74] Probabilistic Neural Network  
[86] [74] Radial Basis Function Neural Network 
[61] Recurrent Neural Networks  
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Authors Methods Used 
[37] Simultaneous Multi-Objective 

Optimization 
[94] [95] [96] [87] [97] Support Vector Machine 
[98] [99] Hierarchical Ordered Logit Model 
[100] Sequential Binary Logit Models 
[101] [61] Mixed Logit  
[102] [103] Nested Logit   
[104] [95] [100] [105] [103] 
[106] 

Multinomial Logit  

[107] [103] [108] Binary Logit  
[100] [109] Ordered Logit Model  
[110] Akaike information criterion Statistic 
[111] [112] [113] [114] [115] Bayesian Hierarchical Spatial  
[116] [99] [117] Bayesian Inference  
[118] [110] Bayesian Information Criteria Statistic  
[101] [4] Bayesian Logistic Regression  
[119] Bayesian Multiple Testing  
[113] Bayesian Multivariate Modelling  
[120] [76] [121] [122] [123] [88] 
[114] [117] 

Bayesian Networks  

[124] [125] Bayesian Probabilistic Networks  
[52] [126] [52] [126] Bayesian Random Parameters Logistic 

Regression  
[127] [128] [129] Bayesian Spatial models  
[130] Binomial Regression  
[128] Bivariate Regression Model  
[131] Boosted Trees Regression  
[83] Dynamic Regression  
[132] Empirical Bayesian Count Without 

Volume and With Volume  
[112] [133] Full Bayes Hierarchical Statistic  
[134] Full Bayesian  
[135] Gaussian Mixture Model  
[136] [137] Generalized Linear Model  
[3] Heterogeneous Negative Binomial  
[124] [138] Hierarchical Bayes  
[98] Hierarchical Ordered Probit Model  
[3] [139] Hurdle Negative Binomial  
[3] [139] Hurdle Poisson  
[87] Linear Discriminant Analysis  
[140] [141] [142] Linear Regression  
[143] Local Regression  
[140] Logarithmic Linear Regression 
[144] [145] [146] [147] [148] 
[149] 

Logistic Regression  

[150] [110] Log-Likelihood Statistic  
[133] [108] [110] Log-Normal Distribution Model  
[151] Matrix Factorization-Based Framework, 

Feature-Based Matrix Factorization, 
Non-Negative Matrix Factorization, 
Feature-Based Non-Negative Matrix 
Factorization 

[12] Multinomial Logistic Regression  
[152] [153] Multiple Linear Regression  
[79] Multivariate Analysis  
[154] Multivariate Linear Regression  
[155] Multivariate Poisson Lognormal 

Regression  
[124] [156] Multivariate Regression Analysis  
[155] [133] Multivariate Spatial Correlation  
[157] [92] Multivariate Statistical Analysis 
[41] [158] Multivariate-Poisson-lognormal-spatial  
[136] [159] [80] [3] [86] [160] 
[65] [139] [138] [161] [153] 

Negative Binomial  

[115] [162] Negative Binomial Multilevel Model  
[75] [163] [164] [115] [162] 
[165] [72] [166] [138] 

Negative Binomial Regression  

[95] [126] Nonlinear Canonical Correlation Analysis  
[65] Non-Linear Exponential Regression  
[78] [103][75] Ordered Probit Regression  
[150] [136] [75] [3] [133] [65] Poisson  

Authors Methods Used 
[139] [161] [153] 
[167] [134] Poisson Lognormal Regression  
[146] Poisson Mixture Model  
[163] [14] [166] [168] Poisson Regression Model  
[169] Poisson Tweedie distribution  
[111] [137] Poisson-Gamma  
[137] Poisson-Inverse Gaussian  
[170] [138] [72] Quantile Regression  
[115] Random-Effect Negative Binomial  
[97] Random-parameters Negative Binomial 
[97] Random-parameters Poisson  
[140] [171] Regression Equation Method  
[118] Regression Hazard Model  
[73] [107] [14] [118] Regression Model  
[38] [87] Regression Trees  
[172] Simple Linear Regression  
[173] [138] Spatial Poisson-Lognormal  
[174] [175] [176] [177] [12] 
[178] 

Statistical Analysis  

[108][97] Tobit Regression 
[11][12] Spatial Autocorrelation (Moran's I 

method)  
[3] Zero-Inflated Negative Binomial  
[98] Zero-Inflated Ordered Probit Model  
[3] Zero-Inflated Poisson  
[179] Ontology-based Classification and 

Regression Tree 
[180] [181] [76] [46] [48] [87] K-Nearest Neighbour  
[45] Standard Empirical Bayes'  
[17] [45] [169] [182] [163] [183] 
[130] [184] [138] [72] [125] 
[171] [185] [43] 

Empirical Bayes’  

[186] [187] [66] [188] [127] [47] 
[189] [190] 

Naive Bayes Classifier  

[124] [138] Hierarchical Bayes  
[190] Adaboost and bagging Mining   
[37] [191] Analytic Hierarchy Process  
[192] [190] [193][9] C4.5 Algorithm Decision Tree  
[188] [193] [194] CART Decision Tree  
[87] [195] CN2-SD Mining Algorithm  
[187] [189] [81] [192] [88] [196] 
[197] [193] [194] [198] [110] 
[198] 

Decision Tree  

[199] Degree of Attribute Importance  
[200] [201] Electre-Multicriteria Analysis 
[19] Fault Tree Analysis  
[186] Gradient Boosting Trees  
[202] GUHA Data Mining Method  
[188] [194] ID3 Algorithm Decision Tree  
[188] J48 Algorith Decision Tree  
[195] MIDOS Mining Algorithm  
[203] Multi Attribute Decision Analysis  
[24][25] Multiple-Attribute Utility Theory  
[204] Outliner Mining  
[35] [36] Promethee-MCDM  
[95] [4] [190] Random Forest Mining  
[94] [189] Rule Extraction  
[201] [50] [15] [130] [54] [205] 
[206] 

Rule Mining  

[185] Simple Ranking method  
[35] TOPIS-MCDM 
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