
Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3708

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse184932020.pdf

https://doi.org/10.30534/ijatcse/2020/184932020

 Component-Based Software System using Computational
Intelligence Technique for Reliability Prediction

Shivani Yadav1, Bal Kishan2

Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak-124001, India
1shivaniyadav17@gmail.com

2balkishan248@gmail.com

ABSTRACT

Software developers and companies are working to create
reliable software for their users. This has resulted in the
need for enhancing predictive software quality models for
risk-less software development based on the type of
software. Development and testing costs can be reduced
by reusing existing codes and components. Re-use of
components results in increased productivity, quality, and
maintainability of the software as iterations are made for
incremental changes, new developments altogether, and
reducing development cost, time, effort.
Component-based software systems along with soft
computing techniques should be used for having more
reliable software. With the increase in demand for
software quality prediction, several techniques have been
used to predict software quality. The focus of this paper is
on the software product’s quality; metrics and we
thoroughly review the literature of existing computational
intelligence/soft computing techniques and analyze the
findings according to the techniques. We have discussed
models for software quality prediction for
component-based software and computational
intelligence techniques which are widely prevalent for
software quality prediction and compare different
techniques. In our study, we have done a comparative
analysis of soft computing techniques. This study will
help the other researchers to study and understand which
technique would be more helpful in making the software
reliability prediction model for component-based software
by combining different computational techniques.

Key words: Reliability, models, soft computing, CBS

1. INTRODUCTION

IEEE Standard Glossary of Software Engineering Terminology
[1, 2], defines the software product’s quality in two ways: 1) the
extent to which development of software, system or any
component meets the desired condition and 2) if the developed
software, system, or component satisfies the user prospect.

Software failures can originate during different software
development lifecycle phases as a result of the work done by
designers, programmers, and analysts. Software testing ensures
that the software is reliable and free of any such residual errors.

Modeling of testing scenarios to cover all possible test cases is
an integral part of this exercise and requires tremendous work.
Once developed, these models successfully are used for error
prediction and estimation, serving as the basis for software
reliability and the need for further testing to prevent all current
and future failure scenarios.

Software quality has been measured using multiple models that
use various characteristics and their relationships specifying
quality requirements. These characteristics can be thought of as
fundamental factors, each of which can have sub-factors).
Metric based evaluation can be done for these sub-factors of
software quality. [3]

There is a lot of common vocabulary for defining quality
concepts for software product development and goods
manufacturing. Due to the complex and intellectual nature of
large software systems, the development of software based on
components is gaining traction. The measurement of quality
and reliability aspects of component-based software products
requires its own set of tools, which can help in improving the
productivity of developers as well.

One of the major challenges for component-based system
developers is selecting the right component from a multitude of
components available in the marketplace. It is difficult to define
a single uniform criterion for optimal component selection. The
process of component selection involves information gathering,
modeling, selection, simulation of the system, etc. which makes
it a long and tedious process. Any changes to the services of a
component require the same set of processes to be re-run for the
re-examination of the system. To overcome the time challenge,
developers are prone to accepting the first working solution
instead of running the same configuration over a range of
components to find the optimal component [4-6]. These choices
can often affect system performance and product design.
Automation of the detailed selection process provides a good
opportunity for automation to aid in the examination of
components in a short period. As a result, there are multiple
approaches for component selection using computational
intelligence techniques for increasing the overall reliability of
the system.

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3709

Soft computing techniques try to solve real-world problems,
characterized by uncertain, imprecise, and difficult to categorize.
It could be seen as analogous to working with natural elements
like plants and animals which are adaptive and flexible in
behavior [7].

Here, soft computing approaches have been introduced, which
examines functional and non-functional, requirements for
determining the optimal components required for a system. The
prediction models could be based on some computational
intelligence approaches likewise Regression Models, Artificial
Neural networks, and Fuzzy systems [8]. While traditional
quality metrics consisted of functions that ingest software data
and provided a single value, denoting the degree of an attribute
measuring software quality, soft computing methods estimates
provide estimated development cost and effort using
computational intelligence/ soft computing optimization
algorithms.

1.1 Software Quality Metrics

Let us have a look at some of the major quality metrics:

Maintainability: Three quality metrics are generally used to
measure the maintainability of software: instability,
abstractness, and efferent coupling. The application which is
having an abstractness(A) value equal to 0 and instability(I)
value equal to 1, known as non-dependable application and
application having efferent coupling(Ce) equal to 0 and
instability(I) equal to 0 is categorized as a reliable application.
Abstractness is computed with the help of the subsequent
expression,

Abstractness = Na/Nc (9), where
Na = abstract classes
Nc = no. of total classes

Furthermore, instability computed as,

 (Ce) / (Ce + Ca) (10), where

Ce = Efferent Coupling
Ca = Total Coupling

Another method to calculate the maintainability of software is to
find the number of dependable applications that make up the
software. Higher the number of dependable application
components, the lower will be its maintainability.

 Reliability
A key parameter for estimating the quality of the software is its
reliability. The ability of software to be accessible and provide
failure-free operations is called reliability. It can be determined
at implementation time by working out the failure rate and
execution time. Reliability can be measured using the following
expression,

 Reliability = (11)

Reusability: Reusability is the degree to which components or
features of the software can be reused to create new software
applications. The aim is to avoid repetition of work and save
development efforts, costs, and time. Since the components
continue to be reused and tested over time, the reliability of the
systems also tends to be higher. Reusability of software
components can be assessed using factors like,
 Understandability – ease of understanding the source code

and functionality of the component
 Portability – ease of adoption across different environments

1.2 Quality Model

There are two major categories of quality models:
1. Basic Models – these models focus on complete and
comprehensive product evaluation
2. Tailored Quality Models – which focus on the evaluation of
components

The Basic Models can be used for any kind of software products
and are hierarchical in structure. The six most important are:
Mc Call[1977], Boehm [1978], FURPS [1992], Dromey [1995],
ISO 9126-1 [2001]; its variants for internal (ISO / IEC 9126-3
[2003]), external (ISO / IEC 9126-2 [2003]), and metrics used
in quality: ISO / IEC 9126-4 [2004]. The ISO -9126 model as a
result of inputs from previous models, namely Boehm and
McCall models. A new adapted model: ISO 25010 or ISO/IEC
CD 25010 was established in 2007 [3] called as Software
product Quality Requirements and Evaluation or SQuare.

Tailored Quality Models started coming up in 2001 with the
Bertoia model. Further models were proposed by
Georgiadou[2003], Alvaro[2005], and Rawashdesh. They differ
from basic models since their applicability is confined to
specific application domains, where the relative importance of
features may vary according to that particular domain. The need
for such models is driven by specialized organizations and their
need for evaluation of individual components. Most of these
models are adapted from Basic Models, with a slight
modification to fulfill the goals of different domains.

 ISO 9126 MODEL: This model is an enhancement of Boehm
and McCall models as ISO 9126 model uses the basics concepts
of both the models mentioned above. It focuses on two aspects

1) The characteristics of internal and external quality, and
2) The quality of user characteristics mentioned.

Internal quality characteristics can be evaluated without
execution, like source code, while external attributes require
execution to be evaluated. External quality attributes can only be
assessed during system operation or maintenance phase.

The quality in use attributes is concerned with the efficiency,
effectiveness, and security of the software product and the
resulting user satisfaction. The ISO-9126 model brought about
standardization in software quality terminology and used as the
ground model for building tailored quality models. Its main
aspect was to institutionalize the phrasing of the software

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3710

quality [3]. ISO 9126 quality model for internal and external
quality incorporate reliability, functionality, efficiency, usability,
portability, and maintainability. Furthermore, quality in use
provides effectiveness, productivity, safety, and satisfaction.

ISO 25010 Model: ISO 25010 emerged in 2007, as an update
of the existing ISO 9126 model. According to this model,
software product quality can be divided into 8 key features and
each feature has some specified characteristics. The aim of this
model is quality driven software development.

One major change in this model is the removal of portability as
a key feature. Instead, security and compatibility have been used
to encompass some characteristics previously considered part of
portability, and also some other characteristics that weren’t
considered earlier. Portability has been clubbed under
Transferability as a characteristic.

ISO 25010 shares similarities with the ISO/IEC 9126 model
along the lines of internal, external, and quality in use attributes.
Parameters used for software quality are reliability, performance,
security, maintainability, transferability, compatibility,
operability, and functional suitability [12].

1.3 Soft Computing Techniques

Many new algorithms which emulate natural process
optimization have surfaced over time, including genetic
algorithm by Holland in 1975, simulated annealing by
Kirkpatrick, Gelatt Jr., and Vecchi in 1983, evolutionary
algorithms by Schwefel in 1995, ant colony optimization by
Dorigo and Maria in 1997 and particle swarm optimization by
Parsopoulos and Vrahatis in 2002. All these algorithms provide
incremental improvement by incorporating current inputs and
finding a more optimal solution in the search space. Since these
algorithms do not take derivates of the cost function, they can be
applied to discrete variables and non-continuous cost functions
as well. In figure 1, we showcase some of the important
prediction techniques of the software quality deployed on soft
computing techniques/ computational intelligence technique
and their categorization

Figure 1: Different Soft Computing Approaches

Neural Networks: Neural network is defined as a circuit
containing many simple processing elements based on neutrally
simple processing elements. The building blocks operate on
local information in an asynchronous manner, thereby
removing the need for an overall system clock.

Fuzzy logic: The concept was developed by Zadeh at UC
Berkeley for representing data that is imprecise as a result of its
natural behavior. It allows transitional, also called fuzzy, values
between crisp or non-fuzzy values like yes/no, high/low, etc. In
the area of designing non-linear control systems, fuzzy logic
plays an important role.

Evolutionary computing: Evolutionary computing can be
viewed as the optimization methods and stochastic search and
algorithms computed from the natural theory of progression or
Theory of Darwinian [13, 14]. These algorithms have found
applications across numerous research areas, such as
bioinformatics.

Bayesian network: These are models that show the graphical
representation for probabilistic computations based on the
Bayesian theory of probability. In a Bayesian network, the nodes
show continuous or discrete variables along with curves
producing connections among variables. It can find applications
across fields like document classification, image processing,
and medicine.

Chaos theory: Chaos theory focuses on deterministic systems
that are highly dependent on the initial conditions. It states that,
while the events may appear chaotic on the horizon, but are
quite structured and one can find underlying patterns and
triggers that result in a change in the state of non-linear systems.
A small change, no matter how minuscule, in the state of a
deterministic non-linear system can result in trajectories that are
exponentially different over some time. However, the system
needs to be at least three dimensional and non-linear [15].

Genetic Algorithm: Genetic algorithms maintain a population
set consisting of individuals, represented as a set of
chromosomes. Fitness scores are assigned to each individual
based on their degree of satisfaction with the desired criterion. A
new generation is created by a three-step process:
Selection – individuals with better fitness scores are selected
and allowed to pass on their chromosomes to future generations.
Crossover – chromosomes from selected individuals are
combined to create completely new individuals
Mutation – a random variation is introduced into chromosomes
of a new generation

This process is repeated until the required level of accuracy or
optimization is achieved. The model is derived from the theory
of evolution, where individuals might expire but the remaining
population achieves fitness over some time. Genetic algorithms
are used to solve optimization issues for complex, non-linear
problems using machine learning models [16].

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3711

2. LITERATURE REVIEW

This section discusses different techniques/methods of
predicting different software quality models based on
component-based software combining with computational
techniques for the enhancement of the quality of software.

Kavita Sheoran and Om Parkash Sangwan used existing models
for software quality prediction. The results from the Software
quality model (SQM) were compared with ISO 25010,
Component-based quality model (CBQM), ISO 9126, Bertoia,
and Alvaro model. The study was conducted using secondary
sources of data. Several characteristics were considered, like
reliability, usability, maintainability, and portability, along with
sub-characteristics like understandability, performance,
compatibility, and accuracy. It was found that the Alvaro model
was able to provide better results, especially in terms of
accuracy, testability, and understandability [17].

Mamta Punia and Amandeep Kaur put forward a method to
predict software maintainability levels on a five-level scale,
ranging from very well to very poor, using soft computing
techniques and MATLAB’s fuzzy logic toolbox. The toolbox
helped create rules and generate training and test data sets,
which were then fed into a multilayer feed-forward neural
networks. The method was evaluated using Mean Absolute
Relative Error (MARE) and Mean Relative Error (MRE). The
experimental conclusion showed reasonable levels of accuracy
and usefulness of an artificial neural network (ANN) in
predicting software maintainability [18].

Deepak Gupta et al. discussed a study using multiple estimation
techniques of software quality, including Fuzzy System,
Regression Tree, Multiple Linear Regression, Rule-Based
System, Case Base Rule, and Artificial Neural Network, and
their respective performance. The aim was to construct an
accurate software quality prediction model. The best results
were obtained from the fuzzy and rule-based system but no
single technique could alone fulfill all requirements and
emphasized the need for hybrid techniques [19].

Sheikh Fahad Ahmad conducted a comparative analysis of
software quality models and various metrics associated with
those models for predicting software reliability. Characteristics
like size, performance, complexity, quality, etc. were considered
for evaluation using three proposed models: McCALL,
BOEHM, and ISO9126 [20].

Tibor Bakota et al. sought to build a probabilistic approach that
could use expert knowledge to deal with imprecision while
computing complex quality characteristics. It used the freedom
offered by ISO9126 standard to propose a new approach while
focusing on maintainability. An acyclic graph with nodes
corresponding to inward-looking (source code) and
outward-looking (execution performance) quality properties
was constructed to determine quality characteristics. The
measures of these characteristics were expressed as a goodness

function on an interval scale, where 0 and 1 are the worst and
best cases. The results showed changes in the quality model with
the occurrence of maintenance activities in a positive
correlation. Development activities could be revealed by
changes in values [21].

Mbusi Sibisi et al. created a framework for quality requirement
specification and defined the characteristics in ISO/IEC 9126-1
(2001). The research focused on creating a framework for
adapting software quality models that could work on an
intermediate or end software product and meet different
customer and organizational needs. While a general quality
profile questionnaire is used to select reliable metrics and rating
levels, it requires an objective approach to select appropriate
characteristics and sub-characteristics at the product level.
Results were validated by focusing on seven factors listed in ISO
9126-2: Reliability, Repeatability, Reproducibility, Availability,
Inductiveness, Correctness, and Meaningfulness. It was found
that the validation process was successful at the characteristic
level, whereas, sub-characteristics level validity required further
improvements [22].

José P. Miguel et al. took a user-centric approach for proposing
models to identify quality issues leading to some new measures
such as reusability, configurability, availability, lower cost, and
better quality, were considered for evaluating the components.
Some of the models, with a range in a small domain, have been
adapted from ISO 9126. Basic models can also be adapted to
build custom quality models as per requirement. Open-source
models highlight community-driven requirements [3].

Ashwin B. Tomar et al. evaluated some quality models based on
their methodology and techniques used. The models were
evaluated using case studies and experiments, apart from expert
opinions and surveys. The authors went through seventy
research papers on software quality, before categorizing them
into eight research areas. The paper recommended the need for
further research on software quality models [23].

Hsu et al. proposed an adaptive model for path reliability
estimation testing for component-based software systems. The
model could use three methods: brand, sequence, and loop, for
path reliability estimation. According to the author, the
resulting path reliability model could estimate the application
reliability [24].

Diwaker et al. estimated the usability of reusable components
and system integration using the interaction between
components in the purview of Component-Based Systems.
Reusability ensures a better estimation of efficiency and
reliability over time. According to the author, Ant Colony
Optimization was used to identify reusable components and
interaction of components [25].

Mohamed Abdullahi Ali et al. conducted a literature review and
proposed a component quality model to determine the
characteristics of a good component. The literature review was

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3712

carried out using protocol-based automated searches. According
to the author, the proposed quality model had design
phase-specific metrics and was highly relevant for addressing
design issues [26].

Olusola used the Genetic-Fuzzy system to evaluate the
reusability of 69 software components using five quality factors.
Software components were selected from 3rd party software
vendors and data extracted from those components was used to
compute metric values of the five quality factors. The results of
the Genetic-Fuzzy System (GFS) approach were used for the
comparison with the Adaptive Neuro-Fuzzy Inference System
(ANFIS) technique with the help of an average
root-mean-square error. According to the author, the GFS
approach provided better accuracy than ANFIS. Another
finding was the better suitability of Java components for reuse
than the other components used in the experiment [27].

Osheen Bhardwaj et al. analyzed different techniques presented
in research papers for estimated quality in component-based
development. According to the author, important perspectives
which they identified are significant for reducing time, effort,
and cost for development through reuse. These are
Improvements in the component-based framework by reducing
its complexity. The authors have also suggested a monkey
testing approach for security improvement and quality
maintenance [28].

Hu et al. used modified adaptive testing for developing a model
for estimating the reliability of component-based systems.
According to the authors, they concluded the importance of
failures observed from a user’s side through extended metrics
placed on Nelson’s reliability model. An adaptive model was
built to select test cases, within a limited budget, based on test
history information. This enhanced the testing process by
improved test case selection [29].

Lance Fiondella et al. introduced a model which is based on the
concept of Correlated Component Failures (COCOF). Providing
due consideration to application architecture, correlation and,
component reliabilities, and efficient software reliability
assessment approach is proposed. According to the author, the
algorithm used in the approach is transforming a Multivariate
Bernoulli distribution into a joint distribution of component
outcomes [30].

 Studying all the previous work done by various researchers
helps us to assess that there is a critical need to work in the field
of making reliable software in fixed time and cost asked
customers/organizations. The quality of software can be
increased through many ways like testing each component at
every phase of the software development life cycle (early
removal of bugs), using various optimization techniques
[31-38]. Nowadays, a reliable, more efficient, and fault-free
software product is demanded in almost every field like routing
protocols in the area of communication, big data analysis in the
area of security of web, social networking sites, facial
recognition and for working in a smart environment, etc
[39-49]. But, my work focuses on making an early fault
predicting reliability model based on component-based software
using computational intelligence techniques. Computational
intelligence techniques provide us transcendent results with a
large amount of data.

Table 1 below describes the various quality models, parameters
supported by them, approaches used by the model,
functional/non-functional behavior, its advantages, and
disadvantages.

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3713

Over the years, a multitude of reliability models has been
conceptualized, analyzed, and evaluated. Software reliability growth
models have been greatly improved with the advent of

soft computing techniques like Fuzzy Logic, Genetic Programming
(GP), Neural Network (NN), Ant Colony Optimization (ACO), Genetic
Algorithms (GA), and Artificial Bee Colony (ABC), etc. have been
summarized in table 2 below:

Model Parameters
Supported

Approach

Functional/
Non Functional Advantages Disadvantages

FURPS

Functionality, Reliability,
Usability, Supportability,

Performance

Component,

Object-oriented,
Hierarchical

Functional and
Non-Functional

Clearly defines
functional and
non-functional
requirements

 Does not consider account
portability and maintainability

 Only takes into account user
requirements and disregards

developer considerations
 Doesn’t take into account

domain-specific attributes

Dromey’s
Quality
Model

Functionality, Reliability,

Usability, Reusability,
Portability, Efficiency

Component

Functional and
Non-functional

 Broad enough to
work for different

systems
 Added reusability

and process
maturity

Software quality measurement

criteria missing

Bertoa’s
Quality
Model

Functionality, Reliability,

Usability, Efficiency,
Maintainability

Component

Allows for effective
evaluation of COTS

products

 Does not address portability and
reusability

 Incomplete due to failure of
carrying out an experiential

assessment

McCalls
Model

Correctness, Reliability,
Efficiency, Integrity,

Usability,
Maintainability,

Flexibility, Testability,
Portability, Reusability,

Interoperability

Object-oriented,

Hierarchical

Non-functional

Quality

characteristics and
metrics relationship

 The functionality of software
products not considered directly

 Difficult to use this framework to
set precise and specific quality
requirements as it is based on

Yes/No responses

Ghezzi
Model

Integrity, Flexibility,
Accuracy, Portability,

Maintainability,
Reliability, Usability,

Reusability

Component

Functional and
Non-functional

Helps developers
achieve external and

internal qualities

Dependent on internal software

quality and developer

IEEE
Model

Efficiency, Functionality,
Usability, Reliability,

Portability,
Maintainability

Component

Functional and
Non-functional

Provides a standard
for software

maintenance and
includes other

standards such as
software quality

assurance

Describes only qualitative factors of

various measurement techniques

ISO

9126-1M
odel

Accuracy, Efficiency,
Functionality,

Interoperability,
Maintainability,

Portability,
Security, Usability

Object-oriented,

Hierarchical

Functional and
Non-functional

 Applicable to

every kind of
software

 Identifies internal
and external

quality
characteristics

Generality

Boehm
Quality
Model

Flexibility, Reliability,
Portability, Efficiency,

Testability,
Understandability,

Usability, As-is Utility

Object-oriented,
Hierarchical

Functional and
Non-functional

 Hierarchical
representation of
software product
characteristics to
get a contribution
in total quality.

 The suggestion about measuring
the quality characteristics missing
 Architectural integrity is not

considered

Table 1:Various quality models, parameters supported

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3714

Table 2: Different Soft Computing Techniques
Sr.

No.
Title of the Paper Author’s Name

Methodology

Used
Objective Summary/Findings

1.
“A Study of the Connectionist
Models for Software Reliability

Prediction” [50]

‘S. L. Ho, M. XIE and
T. N. GOH’ Neural network

To review the
usefulness of a modified
Elman recurrent neural
network in predicting

software failures

The Elman model
yields slightly better

results than the
Jordan model and
has a significant

advantage over the
feed-forward model

2.

“Employing four ANNs
Paradigms for Software

Reliability Prediction: an
Analytical Study” [51]

‘Sultan H. Aljahdali
and Khalid A.

Buragga’
Neural network

To analyze the
performance of four

different connectionist
paradigms reliability
prediction modeling

Due to the capture of
the changing nature
of the used data set,
improved function
prediction using
Elman recurrent

NNs and achieves
better prediction

capability

3
“Software Reliability

Prediction using Neural
Network with Encoded Input”

[52]

‘ManjubalaBisi and
Neeraj Kumar Goyal’ Neural network

To draw up guidelines
for encoding parameter

identification which
provides consistency in
results across different

datasets

Proposed a
feed-forward neural
network which uses

exponential and
logarithmic
functions for

encoding scheme
and results after

comparison
delivered good

prediction capability

4

“Estimation for Faults
Prediction from

Component-Based Software
Design using Feed Forward

Neural Networks” [53]

‘Sandeep Kumar Jain
and Manu Pratap

Singh’
Neural network

To predict component
reliability using various

neural network
architectures

Estimated fault
prediction behavior

for a complete
software product
and a subset of

components
over a cumulative

execution time

5

“Application of Fuzzy Time
Series in Prediction of Time
Between Failures & Faults in

Software Reliability
Assessment” [54]

‘S. Chatterjee, S.
Nigam, J.B. Singh, and

L.N. Upadhyaya’
Fuzzy Logic

To linguistically
express software failure

for reliability model
validation

Proposed models are
flexible and

computationally
simple, with

reduced execution
time. They do not

require any
de-fuzzified
techniques

6

“Development of Software
Reliability Growth Models for
Industrial Applications Using

Fuzzy Logic” [55]

‘Sultan Aljahdali’ Fuzzy Logic

To explore the usability
of fuzzy logic for

development of SRGM
for fault estimation

during testing

Developed
high-performance
modeling capable

models

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3715

7
“Software Reliability Modeling

Using Soft Computing
Technique” [56]

‘KhatatnehKhalaf and
Thaer Mustafa’

Fuzzy Logic

To develop an accurate
model using a custom
set of test data through
a fuzzy logic technique

Accurate
predictions for the

target database
using developed

models

8
“A Genetic Programming

Approach for Software
Reliability Modeling” [57]

‘Eduardo Oliveira
Costa, Aurora Trinidad

Ramirez Pozo, and
Silvia Regina Vergilio’

GP

To introduce a
cost-efficient technique

named (µ+λ) GP
(Genetic

Programming) for
reliability modeling

Proposed (µ+λ) GP
system yielded

better results than
classical techniques
for small datasets

9
“A New Software Reliability

Growth Model:
Genetic-Programming-Based

Approach” [58]

‘Zainab Al- Rahamneh,
Mohammad Reyalat,

Alaa F. Sheta,
SuliemanBani-Ahmad,

Saleh Al- Qqeili’

GP

To propose a genetic
programming model to

develop a Software
Reliability Growth

Models (SRGM) which
predicts faults during

the testing process

Genetic
Programming
operators were

recalibrated to boost
convergence process

10
“SRGM with Imperfect
Debugging by Genetic

Algorithms” [59]

‘R. SatyaPrasad, O.
NagaRaju and R. R. L

Kantam’

Genetic
Algorithm

To estimate the effect
on SRGM after

incorporation of a
change-point problem

and imperfect
debugging

The proposed model
with the exponential

distribution finds
better software
reliability as

compared to other
existing models

11
“The Research on Reliability

Optimization of Software
System Based on Niche Genetic

Algorithm” [60]

‘Qian Yuexia, and
GuWeijie’

Genetic
Algorithm

To propose a novel
Genetic Algorithm for

system reliability
optimization

The proposed
algorithm resolves

the reliability of
multi-module

complex software
effectively whilst

also improving the
speed and quality of

resolution

12
“Assessing Software Reliability

Using Modified Genetic
Algorithm: Inflection SShaped

Model” [61]

‘R. Satyaprasad, and G.
Bharathi’

Genetic
Algorithm

To develop a modified
genetic algorithm for
software reliability

assessment by
developing Inflection
S-shaped model based

on the time domain
software failure data

using

The suggested
algorithm works

better and quicker
than traditional

algorithms

13
“Enhancement and comparison
of ant colony optimization for
software reliability models”

[62]

‘Latha Shanmugam
and Lilly Florence’ Ant Colony

To compare the ant
colony optimization

method with an
enhanced version of the

same

Improved Ant
Colony

Optimization
method gave

improved
estimation accuracy,
with reduced time

and space
complexity

14
“Software Reliability

Prediction by Using Ant
Colony Optimization

Technique” [63]

‘Ramakanta
Mohanthy,

Venkatshwarlu Naik,
and Azmath Mubeen’

Ant Colony

To develop a novel
approach for

optimization of
reliability prediction

A combination
approach provides
better results than

traditional Ant

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3716

models using raw data Colony
Optimization

method

15
“Software Defect Prediction

using Ant Colony
Optimization” [64]

‘Kiran Kumar B., Dr.
JayadevGyani, and Dr.

Narsimha G’
Ant Colony

To study the
effectiveness of ant
colony optimization

technique on multiple
datasets for defect

removal

Ant colony
optimization

technique gives
good results on

predictions methods

16

“Estimating Software
Reliability Using Ant Colony
Optimization Technique with

Salesman Problem for Software
Process” [65]

‘D. Hema Latha and P.
Premchand’ Ant Colony

To develop an
optimized approach for

reliability prediction
using Ant Colony

Optimization method

ACOT with
traveling salesman
problem assesses

real-time data and
provides software

reliability solutions

17
“Evolutionary algorithms,

simulated annealing, and tabu
search: a comparative study”

[66]

‘Habib Youssef, Sadiq
M. Sait and Hakim

Adiche’

Simulated
Annealing

To comparatively study
three popular

approximation
algorithms for floor
planning problem:
Genetic Algorithm,

Simulated Annealing,
and Tabu Search

It was observed that
Tabu Search

provided better
results in terms of

solution quality

18
“Simulated Annealing Neural
Network for Software Failure

Prediction” [67]

‘Mohamed Benaddy
and Mohamed

Wakrim’

Simulated
Annealing

To propose a hybrid
approach comprising
simulated annealing

techniques and neural
network methods

Proposed adaptive
simulated annealing
method resulted in

faster execution
time than the RCGA

due to reduced
search space

19

“The Determination of
Preventive Maintenance using

Simulated Annealing
Algorithm Based on Weighted

Fitness Function” [68]

‘Yeny Krista Franty,
and BudhiHandoko’

Simulated
Annealing

To use a simulated
annealing algorithm for
drawing up a machine
maintenance schedule

The proposed
schedule increase
reliability while
minimizing cost

20
“An adaptive neuro-fuzzy
model for estimating the

reliability of component-based
software systems” [69]

‘KirtiTyagi and Arun
Sharma’ Neuro-Fuzzy

To come up with an
adaptive neuro-fuzzy
inference model for

estimation of reliability
for component-based

software system

Reliability
evaluation of FIS

technique is
improved by using

ANFIS

21
“Soft Computing Techniques

For Enhancing Software
Reliability” [70]

‘Dhavakumar P,
Shankar.S, and

VikramPandi M’
Neuro-Fuzzy

to give failure-free
access software system

in the entire
environment for roving

software reliability

Provides the best
indication of

prediction strength
of developed fuzzy
model for accessing

the software
reliability

22
“An Analysis of Software

Reliability Assessment with
Neuro-Fuzzy based Expert

Systems” [71]

‘BonthuKotaiah, MVS
Prasad and R.A. Khan’ Neuro-Fuzzy

To examine the
effectiveness of

reliability assessment
methods using

neuro-fuzzy based
system

Non-parametric
models are more

preferabler to
parametric models

as they give accurate
reliability even

when historical data
is missing

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3717

23
“The Use of Cuckoo Search in
Estimating the Parameters of
Software Reliability Growth

Models” [72]

‘NajlaAkram AL-Saati
and

MarwaAbd-AlKareem’
Cuckoo Search

To find better
parameters for

reliability growth
models

Results show that
Cuckoo Search

outperformed both
Particle Swarm

Optimization (PSO)
and Ant Colony

Optimization
(ACO) in finding

superior parameters
tested with identical

datasets

24
“Assessment of distribution

system reliability using
artificial bee colony algorithm”

[26]

‘Mukul Dixit,
PrasantaKundu and
Hitesh R. Jariwala’

Artificial Bee
Colony

To propose the
methodology for

distribution system
reliability assessment
using Artificial Bee

Colony (ABC)
algorithm

Artificial Bee
Colony algorithm
identified optimal
values for failure

rate and repair time
for all distribution

segments while also
minimizing a
penalty cost

function

25
“Artificial Bee Colony

Algorithm for Reliability
Analysis of Engineering

Structures” [74]

‘Haojin Li, Junjie Li
and Fei Kang’

Artificial Bee
Colony

To demonstrate with
the help of an example

that Artificial Bee
Colony (ABC)

algorithm is more
reliable and gives

accuracy in reliability
analysis of engineering

structures

The algorithm can
be used to efficiently

solve global
optimization

problems that have
continuous

variables. It can
provide a good

measure of
reliability index

It can be seen that different models require different soft
computing techniques. Observations reveal that researchers
prefer the Neural Network approach in reliability models. From
an accuracy standpoint, genetic programming provides better
results as compared to other computational intelligence
techniques. Although, simulated annealing and cuckoo search
are not used much. The table data is useful to compare and select
relevant soft computing techniques for modeling.

3. PROPOSED WORK

Our work focuses on finding a promising solution to detect
faults and defects early in the SDLC for component-based
software. Systematic and well-defined milestones are required
to achieve the objectives.
We will focus on developing a new hybrid approach for testing
CBSE based applications by combining the benefits of the
component-based approach and computational based technique.
The model will be developed by choosing one of the
computational intelligence techniques such as machine
learning, fuzzy logic, evolutionary computations, swarm
intelligence, probability reasoning. One of these techniques is
applied to individual components for making reliable software.
Hence, from the given computational intelligence techniques,
we will focus on particle swarm optimization based on swarm

intelligence technique in a combination of fuzzy logic to retrieve
optimal results especially in case of large data sets and complex
problems. This proposed technique will help in generating
software reliability prediction models for component-based
software using computational intelligence methodologies.

Figure 2: Computing Methodology

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3718

4. CONCLUSION
The literature review has shown that there is an abundance of
quality prediction models proposed by researchers over the
years. However, finding the right model for a particular
application is a challenging task as seen by varying degrees of
success of different models under different circumstances. There
is scope for automating some parameters of measurement
offered by quality models, to speed up process and leverage
reusability wherever applicable. ISO 25010 has increased the
key features to eight, as opposed to six that were present in ISO
9126. Future software quality models will use ISO 25010 as the
reference model for product development.

Present shreds of evidence show that soft computing could
provide more software quality models to prove software
reliability that takes into account the complexity of the task but
it needs more work. Models based on computational intelligence
techniques such as fuzzy logic, swarm intelligence, machine
learning, and evolutionary intelligence have shown promise.
When considering quality models for free software, community
aspects should be given high priority due to the influence
exerted by users in the community, during both, product
development and maintenance. In the future, we will choose one
of these intelligence techniques for component based software
system to build a reliability prediction model, in short we can
say a good reliable, fault free quality software.

REFERENCES

[1] IEEE. Standard for Software Maintenance, Software

Engineering Standards Subcommittee of the IEEE
Computer Society, 1998.

[2] D. Samadhiya, S. Wang and D. Chen, Quality Models:
Role and Value in Software Engineering, Second
International Conference on Software Technology and
Engineering (ICSTE’10), pp 320-324, Oct. 2010, doi:
10.1109/ICSTE.2010.5608852.

[3] J. P. Miguel, D. Mauricio and G. Rodriguez, A Review of
Software Quality Models for the Evaluation of Software
Products, International Journal of Software Engineering &
Applications (IJSEA), vol. 5, no. 6, pp. 31-53, Nov. 2014.

[4] S. Yadav and B. Kishan, Analysis and Assessment of
Existing Software Quality Models to Predict the
Reliability of Component-Based Software, International
journal of emerging trends in engineering research, vol. 8,
no. 6, 2020.[In Press]

[5] S. Yadav and B. Kishan, Reliability of Component-Based
Systems – A Review, International Journal of Advanced
Trends in Computer Science and Engineering, vol. 8, no. 2,
pp. 293-299, 2019.
doi.org/10.30534/ijatcse/2019/31822019

[6] S. Yadav and B. Kishan, Assessment of software quality
models to measure the effectiveness of software quality
parameters for Component Based Software (CBS),

Journal of Applied Science and Computations, vol. 6, no. 4,
pp. 2751-2756, 2019.

[7] K. S. Kaswan, S. Choudhary and K. Sharma, Software
Reliability Modeling using Soft Computing Techniques:
Critical Review, Journal of Information Technology &
Software Engineering, vol. 5, no. 1, pp. 1-9, Apr. 2015.

[8] K. Sheoran, P. Tomar and R. Mishra, Software Quality
Prediction using Hybrid Classifier based on Improved
PSO and ANN, Journal of Advanced Research in
Dynamical and Control Systems, vol. 9, pp. 3016-3029,
2017.

[9] G Rasool , N Asif , Software Architecture Recovery,
World Academy of Science, Engineering and Technology,
vol. 1, no. 4, pp. 939-944, Jan. 2007.

[10] D. Grosser, P. Valtchev and H. A. Sahraoui, An
analogy-based approach for predicting design stability
of Java classes, Proc. Ninth International Software Metrics
Symposium (METRICS’03), pp. 1-10, Oct. 2003,
doi: 10.1109/METRIC.2003.1232472.

[11] S. Bouktif, D. Azar, D. Precup, H. Sahraoui and B. K´egl,
Improving Rule Set Based Software Quality Prediction:
A Genetic Algorithm-based Approach, Journal of Object
Technology, vol. 3, no. 4, pp. 227-241, Apr. 2004.

[12] Ritu and O. P. Sangwan, Software Quality Estimation
Using Soft Computing Techniques, International Journal
of Innovations & Advancement in Computer Science, vol. 6,
no. 5, pp. 195-205, May 2017.

[13] W. Kuo and V.R. Prasad, An annotated Overview of
System- Reliability Optimization, IEEE Transaction on
Reliability, vol. 49, issue 2, pp. 176-187, Jun. 2000.

[14] F. Streichert, Introduction to Evolutionary Algorithms,
Workshop, University of Tubingen, 2002.

[15] P. D. Kumar, S. Shankar and M. V. Pandi, Soft Computing
Techniques For Enhancing Software Reliability,
International Journal of Latest Trends in Engineering and
Technology, e-ISSN: 2278-621X, pp. 133-140, Apr. 2018.

[16] M. Punia and A. Kaur, Software Maintainability
Assessment Using Soft Computing Techniques: Review,
International Journal of Research in Information
Technology, vol. 2, issue 8, pp. 52-56, Aug. 2014.

[17] K. Sheoran and O. P. Sangwan, An Insight of Software
Quality Models Applied in Predicting Software Quality
attributes: A Comparative Analysis, Pub. Fourth
International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO) (Trends and
Future Directions), pp. 1-5, Feb. 2015,
doi: 10.1109/icrito.2015.7359355

[18] M. Punia and A. Kaur Software Maintainability
Prediction using Soft Computing Techniques,
International Journal of Innovative Science, Engineering
& Technology, vol. 1, issue 9, Nov. 2014.

[19] D. Gupta, V. K. Goyal and H. Mittal, Comparative Study
of Soft Computing Techniques for Software Quality
Model, International Journal of Software Engineering
Research & Practices, vol.1, issue 1, pp. 33-37, Jan. 2011.

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3719

[20] S. F. Ahmad, A comparative study of software quality
models, International Journal of Science, Engineering and
Technology Research, vol. 2, issue 1, pp. 172-176, Jan.
2013.

[21] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc and T.
Gyimothy, A Probabilistic Software Quality Model,
Proc. Twenty seventh IEEE International Conference on
Software Maintenance (ICSM’11), pp. 243-252, 2011,
doi: 10.1109/ICSM.2011.6080791.

[22] M. Sibisi and C. C. V. Waveren, A Process Framework
for Customizing Software Quality Models, Pub.
AFRICON, IEEE, pp. 1-7, 2007,
doi: 10.1109/AFRCON.2007.4401495.

[23] A. B.Tomar and V. M. Thakare, A Systematic Study of
Software Quality Models, International Journal of
Software Engineering & Applications, vol.2, no.4, pp.
61-70, Oct.2011.

[24] C. Hsu, and C. Huang, “An adaptive reliability analysis
using path testing for complex component based
software systems”, IEEE Trans. Reliab., vol. 60, no. 1,
pp. 158-170, 2011.

[25] C. Diwaker and P. Tomar, Assessment of Ant Colony
using Component based Software Engineering Metrics,
Indian Journal of Science and Technology, vol. 9, no. 44,
pp. 1-5, 2016, doi:10.17485/ijst/2016/v9i44/105159

[26] M. A. Ali and Ng Keng Yap, Software Component
Quality Model, International Journal of Engineering and
Advanced Technology (IJEAT), vol. 9, issue 1, pp.
1758-1762, October 2019.

[27] O. Ajayi Olusola, Evaluating software components
reusability using genetic-fuzzy soft computing
approach, Australian Journal of Science and Technology,
vol. 3, issue 2, 2019.

[28] O. Bhardwaj and S. Kumar Jha, Quality assurance
through soft computing techniques in component based
software, International Conference On Smart
Technologies For Smart Nation (SmartTechCon), pp.
277-282, 2017. doi:10.1109/smarttechcon.2017.8358382

[29] Hai Hu, Chang-Hai Jiang, Kai-Yuan Cai, W. Eric Wong,
and Aditya P. Mathur, Enhancing software reliability
estimates using modified adaptive testin, Information and
Software Technology Journal Elsevier, vol. 55, issue 2, pp.
288–300, 2013. doi.org/10.1016/j.infsof.2012.08.012

[30] L. Fiondella, S. Rajasekaran, and S. Gokhale, Efficient
software reliability analysis with correlated component
failures, IEEE Transactions on Reliability, vol. 62, issue 1,
pp. 244-255, 2013.

[31] O. Dahiya and K. Solanki, S. Dalal, A. Dhankhar,
Regression Testing: Analysis of its Techniques for Test
Effectiveness, International Journal of advanced trends in
computer science and engineering, vol. 9, No. 1, pp.
737-744, 2020.

[32] O. Dahiya and K. Solanki, Comprehensive cognizance
of Regression Test Case Prioritization Techniques,
International journal of emerging trends in engineering
research, vol. 7 No. 11, pp. 638-646, 2019.

[33] O. Dahiya and K. Solanki, S. Dalal, A. Dhankhar, An
Exploratory Retrospective Assessment on the Usage of
Bio-Inspired Computing Algorithms for Optimization,
International journal of emerging trends in engineering
research, vol. 8 No. 2, pp. 414-434, 2020.

[34] O. Dahiya and K. Solanki, and A. Dhankhar, Risk-Based
Testing: Identifying, Assessing, Mitigating & Managing
Risks Efficiently In Software Testing, International
Journal of advanced research in engineering and
technology, vol. 11, Issue 3, pp. 192-203, 2020.

[35] K. Solanki, and S. Kumari, Comparative study of
software clone detection techniques, In 2016
Management and Innovation Technology International
Conference (MITicon), pp. MIT-152, IEEE, 2016

[36] O. Dahiya, and K. Solanki, A systematic literature study
of regression test case prioritization
approaches, International Journal of Engineering &
Technology, vol. 7, no. 4, pp.2184-2191, 2018.

[37] K. Solanki, Y. Singh, and S. Dalal, Experimental
analysis of m-ACO technique for regression
testing, Indian Journal of Science and Technology, vol. 9,
no. 30, pp.1-7, 2020.

[38] O. Dahiya, K. Solanki and S. dalal, Comparative
Analysis of Regression Test Case Prioritization
Techniques, International Journal of advanced trends in
computer science and engineering, vol. 8 no. 4, pp.
1521-1531, 2019.

[39] A. Dhankhar and K. Solanki, A Comprehensive Review
of Tools & Techniques for Big Data Analytics,
International journal of emerging trends in engineering
research, vol. 7, no. 11, pp. 556-562, 2019.

[40] M. Devi and N. S. Gill, Mobile Ad Hoc Networks and
Routing Protocols in IoT Enabled Smart Environment:
A Review, Journal of Engineering & Applied Science, vol.
14, issue 3,pp. 802-8011, 2019, DOI:
10.36478/jeasci.2019.802.811

[41] M. Devi and N. S. Gill, Comparison Analysis of MANET
Routing Protocols to identify their Suitability in Smart
Environment, International Journal of Engineering and
Technology (UAE), vol. 7, Issue 4, pp. 4844-4849,2018,
DOI: 10.14419/ijet.v7i4.27945

[42] M. Devi and N. S. Gill, Novel Algorithm for Enhancing
Bitrate in MANET for Topology based routing protocol,
International Journal of Engineering and Advanced
Technology, vol. 9, Issue 1, pp.2655-2662, 2019, DOI:
10.35940/ijeat.A9882.109119.

[43] D. Sehrawat, N. S. Gill and M. Devi, Comparative
Analysis of Lightweight Block Ciphers in IoT-Enabled
Smart Environment, in: Proc. 2019 6th International
Conference on Signal Processing and Integrated Networks
(SPIN), IEEE, pp. 915-920, 2019. Available:
https://doi.org/10.1109/SPIN.2019.8711697

[44] M. Devi and N. S. Gill, Performance Evaluation of
Dynamic Source Routing Protocol in Smart

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3720

Environment, International Journal of Advanced Trends
in Computer Science and Engineering, vol.8, issue 2, pp.
333-338,2019,https://doi.org/10.30534/ijatcse/2019/37822
019,

[45] M. Devi and N. S. Gill, Novel Algorithm for Enhancing
MANET Protocol in Smart Environment, International
Journal of Innovative Technology and Exploring
Engineering, vol. 8, issue 10, pp. 1830-1835, 2019,DOI:
10.35940/ijitee.J9214.0881019.

[46] M. Devi and N. S. Gill, Exploring Possibilities of MANET
Protocols for IoT Enabled Smart Environment,
International Journal of Computer Sciences and
Engineering, vol. 7, issue 3, pp. 684-688, 2019,
https://doi.org/10.26438/ijcse/v7i3.684688

[47] M. Devi and N. S. Gill, Study of Mobile Ad hoc Network
Routing Protocols in Smart Environment, International
Journal of Applied Engineering Research, vol. 13, no. 16,
pp. 12968-12975, 2018.

[48] M. Devi and N. S. Gill, Performance Analysis of
Enhanced Ad-Hoc On-Demand Distance Vector
Routing Protocol in Smart Environment, International
Journal of Recent Technology and Engineering, vol. 8,
issue 2, pp. 1548-1554, 2019, DOI:
10.35940/ijrte.B2227.078219

[49] M. Devi and N. S. Gill, Challenges for Smart
Environment: A Review, International Journal of
Academic Research and Development. vol. 3, issue 2, pp.
1277-1281, 2018.

[50] S. L. Ho, M. Xie and T. N. Goh, A Study of the
Connectionist Models for Software Reliability
Prediction, Computers and Mathematics with Applications
, vol. 46, pp. 1037-1045, 2003.

[51] S. H. Aljahdali and K. A. Buragga, Employing four ANNs
Paradigms for Software Reliability Prediction: an
Analytical Study, ICGST-AIML Journal, ISSN:
1687-4846, vol. 8, issue II, 2008.

[52] M. Bisi and N. K. Goyal, Software Reliability
Prediction using Neural Network with Encoded
Input, International Journal of Computer Applications
(0975 – 8887), vol. 47, no. 22, pp. 46-52, 2012.

[53] S. K. Jain and M. P. Singh, Estimation for Faults
Prediction from Component Based Software Design
using Feed Forward Neural Networks, IJARCCE, vol. 2,
issue 7, 2013.

[54] S. Chatterjee, S.Nigam, J.B.Singh, and L.N.Upadhyaya,
Application of Fuzzy Time Series in Prediction of Time
Between Failures& Faults in Software Reliability
Assessment, Fuzzy Information and Engineering, vol. 3,
no. 3, pp. 293-309, 2011.

[55] S. Aljahdali, Development of Software Reliability
Growth Models for Industrial Applications Using Fuzzy
Logic, Journal of Computer Science, vol. 7, no. 10, pp.
1574-1580, 2011.

[56] K. Khatatneh and T. Mustafa, Software Reliability
Modeling Using Soft Computing Technique, European
Journal of Scientific Research, ISSN 1450-216X, Vol.26
No.1, pp.147-152, 2009.

[57] E. O. Costa, A. T. R. Pozo, and S. R. Vergilio, A Genetic
Programming Approach for Software Reliability
Modeling, IEEE Transactions on Reliability, vol. 59, no. 1,
2010.

[58] Z. Al-Rahamneh, M. Reyalat, A. F. Sheta,
SuliemanBani-Ahmad, S. Al-Oqeili, A New Software
Reliability Growth Model: Genetic-
Programming-Based approach, Journal of Software
Engineering and Applications, vol. 4, pp. 476-481, 2011.

[59] R.S. Prasad., O. N. Raju and R. R. L. Kantam, SRGM with
Imperfect Debugging by Genetic Algorithms,
International Journal of Software Engineering &
Applications, vol. 1, no. 2, pp. 66-79, 2010.

[60] Q. Yuexia and G. Weijie, The Research on Reliability
Optimization of Software System Based on Niche
Genetic Algorithm, AASRI Conference on Computational
Intelligence and Bioinformatics, AASRI Procedia 1, pp.
404 – 409, 2012

[61] R. Satyaprasad, G. Bharathi, Assessing Software
Reliability Using Modified Genetic Algorithm:
Inflection SShaped Model, International Journal on
Future Revolution in Computer Science & Communication
Engineering, vol. 3, issue 11, pp. 136-141, 2017.

[62] L. Shanmugam and L. Florence, Enhancement and
comparison of ant colony optimization for software
reliability models, Journal of Computer Science, vol. 9,
no. 9, pp. 1232-1240, 2013.

[63] R. Mohanthy, V. Naik, and A. Mubeen, Software
Reliability Prediction by Using Ant Colony
Optimization Technique, Fourth International
Conference on Communication Systems and Network
Technologies, pp. 496-500, 2014,
doi:10.1109/csnt.2014.105

[64] Kiran Kumar B., J. Gyani and Narsimha G., Software
Defect Prediction using Ant Colony Optimization,
International Journal of Applied Engineering Research,
vol. 13, no. 19, pp. 14291-14297, 2018

[65] D. HemaLatha, and P. Premchand, Estimating Software
Reliability Using Ant Colony Optimization Technique
with Salesman Problem for Software Process,
International Journal of Advanced Trends in Computer
Science and Engineering, vol. 7, no. 2, pp. 20-29, 2018.

[66] H. Youssef, S. S. Sait, and H. Adiche, Evolutionary
algorithms, simulated annealing and tabu search: a
comparative study, Engineering Applications of Artifical
Intelligence, vol. 14, issue 2, pp. 167-181, 2001. DOI:
https://doi.org/10.1016/S0952-1976(00)00065-8

[67] M. Benaddy and M. Wakrim, Simulated Annealing
Neural Network for Software Failure Prediction,
International Journal of Software Engineering and Its
Applications, vol. 6, no. 4, pp. 35-46, 2012.

Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3708 – 3721

3721

[68] Y. K. Franty and B. Handoko, The Determination of
Preventive Maintenance using Simulated Annealing
Algorithm Based on Weighted Fitness Function,
JurnalTeknikIndustri, vol. 20, no. 1, pp. 53-61, 2019

[69] K. Tyagi and A. Sharma, An adaptive neuro fuzzy model
for estimating the reliability of component-based
software systems, Applied Computing and Informatics,
vol. 10, issues 1–2, pp. 38-51, 2014.

[70] Dhavakumar P, Shankar.S, and VikramPandi M, Soft
Computing Techniques For Enhancing Software
Reliability, International Journal of Latest Trends in
Engineering and Technology, Special Issue, pp. 133-140,
2018.

[71] B. Kotaiah, M V S Prasad and R. A. Khan, An Analysis of
Software Reliability Assessment with Neuro- Fuzzy
based Expert Systems, Procedia Computer Science, vol.
62, pp. 92-98, 2015

[72] NajlaAkram AL-Saati and MarwaAbd-AlKareem, The Use
of Cuckoo Search in Estimating the Parameters of
Software Reliability Growth Models, International
Journal of Computer Science and Information Security,vol.
11, no. 6, 2013.

[73] M. Dixit, P. Kundu and H. R. Jariwala, Assessment of
distribution system reliability using artificial bee colony
algorithm, Second International Conference on Electrical,
Computer and Communication Technologies (ICECCT),
pp. 1-6, 2017.

[74] H. J. Li, J. J. Li and F. Kang, Artificial Bee Colony
Algorithm for Reliability Analysis of Engineering
Structures, Advanced Materials Research, vol. 163-167,
pp. 3103-3109, 2010.
doi:10.4028/www.scientific.net/amr.163-167.3103

