
Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4285

ABSTRACT

Mobile applications (apps) have become widely adopted, and

the need for fast development tools has significantly

increased. Apple iOS is one of the worlds’ most popular

mobile platforms, still it has received much less research

achievements compared to that for the Android platform.

Mobile app development is a tedious process and requires

special experience and skills by developers; not to mention

that a large portion of mobile app developers are novice or

come from non-computing background. Most mobile apps

need to persist their data locally. However, persisting iOS

apps’ data using existing tools and frameworks can be a

tedious task for novice developers.

In this paper, we present an approach and a tool named

CDGenerator to assist novice developers in persisting their

iOS application’s data locally. Our approach utilizes Model-

To-Model and Model-To-Code transformation methods, as

well as, leveraging the Domain Specific Visual Language

(DSVL) and Domain Specific Textual Language (DSTL) to

create iOS data persistence components. We have evaluated

CDGenerator using a preliminary experiment conducted on a

group of developers with different levels of experiences and

from different backgrounds. The experiment results show that

our approach can be more effective and usable even by novice

developers.

Key words: Model driven development, mobile code

generation, iOS data persistence.

1. INTRODUCTION

Smartphones have become widely adopted and the

development of mobile apps has exploded [1]. The number of

mobile phone users reached 6.8 billion by the end of 2019 and

the statistics shows that it is forecasted to reach 7.26 billion by

2023 [2], in addition, the number of smartphone users

surpassed three billion users by 2020 [3]. This expansion is

due to the advancement of mobile hardware parts including

processors, memories and sensors, just to mention a few [4].

There are millions of mobile apps through the various

marketplaces and app stores including iOS, Android and

Windows phone stores. Apple’s app store is the second largest

store for mobile applications, in the first quarter of 2020 it

reached 1.85 million apps while in the first place was the

Android store with 2.56 million apps [5][6].

Although iOS is one of the most popular platforms with a large

share in the mobile market [7]; it has received much less

research achievement compared to Android platform [8]. The

mobile apps development process is a tedious task, it requires

a lot of work to be done and a lot of code to be written with

tools that poorly support high level abstractions [1].

Moreover, most mobile apps need to save their data locally

using mobile’s database or caching backend data locally [9].

It is true that several frameworks support local data

persistence for iOS applications such as SQLite database and

Core Data framework. However, developing with these

frameworks can be intimidating even for experienced

developers [10]. Meanwhile, many mobile developers are

novice, non-computing or students with less experience and

skills needed [9][11].

Model-based techniques abstract the development details,

simplify the development process and improve developers’

productivity [1]. Thus, employing model-based techniques on

a tedious development task would help novice developers

finish their tasks easily without the need to exhaust themselves

with the development details.

This paper provides a model-based approach and a tool that

automatically generates the iOS application’s data persistence

components including models, models’ mappers, shared

managers, and data persistence queries’ interfaces from a

provided data schema created using existing Xcode model

editor. It also leverages the Domain Specific Visual Language

(DSVL) and Domain Specific Textual Language (DSTL) to

provide a customizable way for automatically generate data

fetch queries. Our approach aims to assist novice developers

who don’t have advanced computing skills. This approach has

been implemented as a tool called CDGenerator, it has been

evaluated using a preliminary experiment using a set of novice

and skills developers. Our initial results show that our

approach can be usable and effective even for novice

developers.

The rest of the paper organized as follows: Section 2 presents

the literature review and related work. Next we present our

solution approach in Section 3. In Section 4 we describe the

implementation and design of CDGenerator followed by an

overview of our approach’s modeling language. In Section 5

we present the evaluation method, experiment setup,

experiment procedure and participants. We provide and

Model-Based Approach for Supporting Quick Caching

at iOS Platform

Ahd Radwan1, Samer Zein2

1Master of Software Engineering, Birzeit University, Palestine, radwanahd@gmail.com

2 Master of Software Engineering, Birzeit University, Palestine, szain@birzeit.edu

ISSN 2278-3091

Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse17942020.pdf

https://doi.org/10.30534/ijatcse/2020/17942020

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse17942020.pdf
https://doi.org/10.30534/ijatcse/2020/17942020

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4286

discuss and the experiment results in Section 6. Finally, in

Section 7 we conclude the paper and present the avenues for

the future work.

2. LITRETUR REVIEW

2.1. Model Driven Development

Model-driven development provides a higher level of

abstraction for application development, leaving the technical

details separated from the model [12]. Applying model-driven

development in the software development process accelerates

the development of a software application [13].There are a lot

of studies discussing the importance of applying model-based

techniques with mobile application development. These

Studies cover varied fields within the development process of

mobile applications such as application prototyping, GUI code

generating, GUI testing, and test cases automatic generating.

A. Textual and Visual modeling

There are several studies employed modeling techniques

using textual or visual models. Thu et al. [14] introduced a

mobile applications rule-based model driven engineering

approach that considers Umple model programming language

as a main artifact for generating mobile apps. Umple is a

textual model-oriented programming language that uses
textual notation to support modeling techniques completely

like high level programming languages. The model

transformation is based on a business rule management system

called Drools knowledge based. The result of the model

transformation using enhanced Drools transformation rules

are the Models, Views and controller classes (MVC) for

Android APP.

On the other hand, Barnett et al. [1] modeled Domain Specific

Visual Language (DSVL), and Domain Specific Textual

Language (DSTL), to build a framework called RAPPT which

helps novice and experienced developers with rapidly

developing mobile applications. With RAPPT developers can

define their app characteristics using high level visual

notations. The framework provides multiple views to

developers, abstract and detailed views including page

navigations. First, developers use the DSVL to provide a high-

level structure of the app, then by using DSTL they can

provide extra details about the app, which could not be

provided with DSVL. Then the DSVL and DSTL used to

generate the App Model which then transformed to Android

Model using model-to-model transformation. Android Model

then used to generate the Android mobile application code.

The approach acceptance was demonstrated by using user

study with 20 developers and researchers with different

backgrounds and level of experiences. The result shows the

acceptance of RAPPT and the researcher approach among

mobile application and software developers.

Erraissi et al. [15] proposed meta-models for the Big Data

layers, in order to create standardized concepts at the Big Data

level. They also support using independent Domain Specific

Language when modeling meta-models.

Moreover, a series of studies [13], [16], [17] comes to support

employing domain specific modeling language in the field of

mobile application development. They considered the

domain-specific modeling language as the soul and heart of

domain driven development. Following the credo: “Model as

abstract as possible and as concrete as needed” they suggest

modeling the (create, read, update and delete) functionalities

while keeping application behavior in the level of usual

control structures. Which supports this paper approach by

modeling the functionalities beyond mobile app data

persistence. Their approach used modeling language as well

as variability modeling to support generating role-based

native Android and iOS [13]. They proved their approach

effectiveness with different applications including a

conference app, a Smart Plug, and augmented reality museum

guide.

Our solution approach benefits from both textual and visual

modeling techniques to provide a highly efficient modeling

approach that abstracts the details of tedious development

tasks.

B. Model Based Testing (MBT)

Besides mobile applications code generations, there are many

studies that support using model-based techniques in mobile

app testing [18]–[22]. Including test cases generation, GUI

testing and GUI input generations.

Firstly, Stoat (STOchastic model App Tester) [18], [22]

applied stochastic model-based testing on Android

applications. Stoat improves the Android apps functionality

testing by enforcing various user/system interactions and

validating the app behavior from the generated GUI model.

The model in Stoat is a finite state machine (FSM) which was

used early in MobiGuitar [19]. Stoat uses both static and

dynamic analysis to generate an effective model by exploring

app behavior, this model then mutated and used to generate

test cases for Android app GUI testing. In addition, AMOGA

[21] comes to support this approach. It also used the static-

dynamic approach and model-based testing with FSM model

to generate test cases for Android mobile apps. Moreover,

Baek, Y.-M et. al. [20] supports the effectiveness of model-

based testing by using MBT with multilevel GUICC (GUI

Comparison Criteria), which achieved higher effectiveness

compared with other testing approaches in terms of code

coverage.

C. Mobile Data Persistence Generation

There are few studies that focused on automatic generation of

mobile native database components. For example, I. Mosleh

and S. Zein [9] built an automation tool that generates Android

database components. They presented the Android SQLite

Creator (ASQLC) tool which generates Android SQLite

database and its operator classes that manage the read/write

operation. The tool generates an XML file representing the

application SQLite schema by transforming a visual

representation of database tables schema entered using the

tool user interface, then the tool validates the generated XML

file and generates the SQLite database of the Android

application. They demonstrate their approach using a

preliminary experiment with a group of students, who built a

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4287

sample database using the implemented tool [9]. Despite that

this area is still in its infancy and needs further contribution.

D. Model based automatic generation for REST APIs

Fischer, M. et al. [23] presented an approach to apply model

driven development in designing and automatic generation of

REST APIs application code. Which comes to solve the

problem of developers’ mistakes that violate the REST

development constraints. It mainly uses the already existing

REST APIS meta model and by model-to-model

transformation it transforms the meta-model to the platform

specific meta-model which then transformed to the

application code. The platform specific meta-model is a

formal model that represents a basis to REST project code

generation. This tool provides an easy way to generate the

REST application since it integrates to the already existing

modeling tools. Our solution approach met this approach in

using an already existing model and doing a model to model

transformation followed by a model to code transformation to

provide a data query APIs. It also met in integrating the tool

into the existing modeling tool to provide the highly

accessibility of it and to fully benefit from the existing

modeling techniques. On the other hand, our approach is

different in generating the data persistence components for

iOS application, these components including all related code
for iOS app data persistence not only the data queries APIs,

it also leverage the DSVL and DSTL modeling tools in its

approach to provide a highly usable customizations for data

fetch queries for novice developers.

2.2. iOS Data Persistence Existing Solutions

There are several ways to save user data in iOS apps, the

simplest one is to save data in the user preferences (called

NSUserDefaults in iOS) [24]. With user defaults the user can

save only primitive types such as floats, doubles, integers, and

Boolean values, or a property list type which instance or

collection of (NSData, NSString, NSNumber, NSDate,

NSArray, or NSDictionary), but using user defaults is not

recommended to be used to store large amount of data, since

read/write operation will decrease application performance. In

addition, it’s not ideal to store sensitive data [25].

SQLite database is one of the most popular data persistence

approaches for mobile applications. It's a relational database

embedded in the C-library that comes with the iOS

application. SQLite is a lighter version of complex relational

database management systems (DBMSs) such as MySQL or

SQL Server. Its engine is configured for independent

processes, e.g. a server-less, zero-configuration and self-

contained and embedded in the same app, while other DBMSs

configure Client-server database engine. SQLite is less

powerful for client-server architecture; it has been designed

for mobile and independent process [26]. There are many

studies such as [27], [28] recommend using SQLite because it

is easy to use, reliable, portable compact and efficient. Both

[27], [28] studies overviewed the SQLite database including

its architecture, functionality, features, and its main interfaces.

The most common way to persist app data locally is by using

iOS Core Data Framework [29] which is a native object graph

and data persistence framework integrated with iOS and

MacOS operating systems. Core Data framework allows data

representation as entity-attribute model, that is serialized into

XML, SQLite, or binary stores. The user can represent the

database entities and relationships between them using a high

level of abstraction representation. With this high-level

abstraction representation Core Data can communicate

directly with SQLite database, and encapsulates the SQLite

integration and insulates the developer from them. It's a fast

way to persist data, good for large amounts of data. But it's

Difficult to learn and needs an effective architecture design

and data structure [25] which makes it an exhausting task for

novice developers. In Addition, there are many tasks to be

done and an amount of code to be written with Core Data such

as files management, context control, threads management,

data managers, and data queries and APIs. Moreover, there are

rules and fundamentals that must be considered when dealing

with Core Data; And missing these fundamentals leads to

unexpected hard to detect mistakes. [30]

From this point we stand to provide the novice developers a

way to persist their iOS application data locally without the

need to exhaust themselves with the technical details.

3. SOLUTION APPROACH

The main goal of this paper is assisting novice developers with

persisting their iOS applications' data locally. Our solution

approach design is based on both Fischer, M. [23] and Barnett

et al. [1] modeling approaches. The approach leverages the

Model-driven software development techniques to

automatically generate the data persistence components for

iOS application using model to model transformation and

model to code transformation for models that specified using

Domain Specific Visual Language (DSVL) and Domain

Specific Textual as generating the data queries APIs for iOS

application using model to code transformations, which was

covered by Fischer, M. [23]. In this paper the aim is to employ

these concepts by creating a tool that will assist novice

developers to cache their local data on iOS applications.

Figure 1 below shows a high-level representation of our

approach. It works in two main steps. First, the developer

needs to specify the data schema using Xcode data schema

editor. Then our tool (CDGenerator) evaluates the schema

provided, and by model to model (MTM) transformation it

creates a representative model for the data, the Schema meta-

model. Which will be used to generate the data persistence

files components that include Swift models’ files, models’

mappers, data queries’ interfaces and shared managers, and

main data operation queries’. Second, CDGenerator will use

the generated Schema Meta-Model and transform it to a

representative GUI, so that developers can select to auto

generate a custom data fetch query by specifying its details

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4288

using DSVL and DSTL modeling. The DSVL and DSTL

notations will be transformed to a QueryModel, which is a

representative model for data fetch query, the QueryModel

then will be used to generate a Query Meta-Model by Model-

to-Model (MTM) transformation, then by Model-To-Code

transformation (MTC) the tool will use the generated Query

Meta-Model to generate the code for the custom data fetch

query. See the Figure 1 below.

3.1. How CDGenerator Works

This section describes a detailed flow of how the developer

can use the tool to generate iOS data persistence components

as shown in Figure 1. The implemented tool worked in two

main steps, First generating data persistence components

based on the provided data schema. Second, creating data

fetch queries’ using Domain specific visual and textual

modeling languages DSVL and DSTL. The full flow details

are described here:

A. Generating data persistence components

1. The developer uses the already existing Xcode Core Data

schema editor to generate data schema using visual UML

and Key-Value UI editor. Xcode then generates the Data

schema xcdatamodeld model which represents the entities,

entities attributes as well as relationships between entities.

2. The user then attaches the xcdatamodeld file to the

CDGenerator tool, and triggers it to generate the data

persistence classes.

3. CDGenerator reads xcdatamodeld schema file, evaluates it

and generates a Schema Meta-model using a model-to-

model transformation. Schema Meta-model is a

representative model for the data schema, containing all

data related to entities, attributes and relationships between

entities such as xcdatamodeld, but the difference is that it

has additional info related to code that will be generated.

4. The generated Domain Specific Meta-model then used to

automatically generate data persistence components for

iOS application, these components contains the Swift

models’ classes that represents the data entities, model

mappers which are the utilities that map data entities

instances to their corresponding Swift models, object

context management code, database files management

code, shared data managers, and basic data operations

queries (CRUD operations)

5. Now basic Core Data components are ready to be used,

developers can use shared data managers with basic API

and queries to save, delete, update and fetch data records.

B. Generating data persistence components

The developer can generate custom data fetch query by

specifying its details using visual and textual modeling

notations DSVL and DSTL. By doing the following steps:

1. Developer selects a Build Query tab screen,

2. Once the Build Query tab appears, the Schema Meta-Model

that generated in step ِ A.3 above, applies a model to GUI

transformation to provide a representative GUI. This GUI

represents the data schema. In a simple easily usable way,

so that developers can easily use it to specify their data

queries.

3. Developers use the GUI to specify their data queries they

want to generate, they can view the data schema, select the

entities and properties related to their queries, specify

methods and functions to be applied, or conditions. The

developer specifies his query by selecting relevant GUI

elements that represent the query specifications, and the

developer also can edit or add extra textual notations to the

Figure 1: A high level representation of the approach

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4289

query condition. The developer can select data properties by

selecting the entity then choose the propriety from a drop-

down menu.

4. Once the developer finishes adding his/her specification to

the query, the tool serializes the DSVL and DSTL

specifications to a Query Model which then transforms to

Query Meta-model using Model-To-Model transformation

(MTM). The generated Query Meta-model contains all data

related to the query needed for code generation.

5. The generated Query Meta-model is then used to

automatically generate data queries and displays its code to

the developer in a simple usable GUI.

6. The developer can easily copy and paste the generated

query’s code and attach it to his/her project.

7. Any time the developer wants to add more queries or edit

them he/she can, simply by repeating step 1-6.

8. Now all data components are available, developers can

simply use them to persist, manage, or fetch data records.

4. IMPLEMENTATION OF CDGENERATOR

The tool was implemented as an OSX app that runs on mac

devices so that the developers can easily use the tool while

developing iOS applications using Xcode IDE which is the

only available IDE for developing iOS applications and only

available for mac devices. It has been developed using OSX

SDK [31], which is a software development kit that is used for

developing Mac OS applications.

CDGenerator designed to obey the OOP paradigm as well as

SOLID principle, in order to provide maintainable, reusable

and easy testable code for the implemented tool. In addition,

it employs relevant design patterns in its implementation, for

example the main managers used for code generation such as

code generator, schema manager and files manager are

Singleton managers implemented using the Singleton design

pattern. Also, the project architecture confirms the Model

View Controller (MVC) architecture style. Applying these

principles would help to provide reusable, understandable and

modifiable code.

4.1. CDGenerator Design

CDGenerator implemented in a highly cohesive and loosely

coupled design. The code generation algorithm applied using

four main components (SchemaManager,

MetaModelsManager, CodeGenerator, FilesManager), these

components contact with each other in a loosely coupled

manner. Each manager responsible for doing specific related

functionalities, they have a list of specialized functions each

one is responsible to do a specific functionality, and those

functions together complete the manager main functionality,

which introduces the highly cohesive design for our approach.

The CDGenerator’ class diagram is shown in Figure 2.

Here is a brief description for each manager and its

functionalities:

SchemaManager: This manager is implemented using a

Singleton design pattern, it holds, validates, and parses data

schema. It was implemented using a Singleton manager in

order to hold schema data in its shared instance, so it would

be shared, unique, and controlled in the entire app.

MetaModelsManager: A static manager that transforms the

data models to meta-models.

Figure 2: CDGenerator class diagram

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4290

CodeGenerator: A Singleton manager that generates the data

persistence components from meta-models. It takes a schema

meta-model and generates from it the Core Data persistence

components (models, model mappers, core data managers,

and CRUD operations query). It also generates custom data

query from QueryMetaModel which represents the user’s

specific query using DSTL and DSVL modeling languages. It

contacts the FilesManager to get the classes and files’

templates, it also passes the generated code to the

FilesManager to save them to the target directory.

CodeGenerator has a set of methods and utilities, each one is

responsible for generating code component (query, model,

attribute, or manager).

FilesManager: A Singleton manager that is responsible for

files storage operations. It reads the files templets from the

application resources bundle and provides template content to

CodeGenerator. It also takes a generated code string and

writes it on its related file in the target directory.

CodeUtils: This class provides a set of utility functions, that

used by CodeGenerator to generate code, these utilities

implement as static functions, each function provide a specific

utility, e.g. attribute declaration line code for given attribute,

mapping attribute line code, relationship line code for given

relation, string code for data type … etc.

4.2. DSVL & DSTL Modeling Language

This section presents the design of our (DSVL) and (DSTL),

which have been designed based on Barnett et al. [1] DSVL

and DSTL modeling languages.

The DSVL & DSTL are visual/textual languages that

represent and abstracts the details of data fetch query.

Developers can use them to specify the details of a custom

data fetch query using a relative visual or textual notation to

the data query. DSVL & DSTL isolate the developer from the

tedious development tasks by abstracting code details in a

higher abstraction level.

4.2.1. Our Domain Specific Visual Language

The domain specific visual language consists of GUI visual

elements and components, each one represents a specific

concept in the data fetch query, these notations are

corresponding to the QueryModel, which acts as the base of

QueryMetaModel. The visual notations are shown in Table 1.

4.2.2. Our Domain Specific Textual Language

The domain specific visual language consists of a set of

textual notations, using these notations developers can add or

edit specific aspects to the target query. Mainly specifying the

compare code shown in Table 1. And setting the ‘compare

with’ value.

Concept Notation Values Description

Return value

List of data schema’s entities The return value type of the query.

Condition attribute

List of selected entity’ attributes An attribute to compare/filter values with.

Compare

{>, <, ==, <=, >=, Contains, Begins

with, Ends with, regex, in array}

A set of radio buttons, each represents a compare

code.

Compare code

DSTL condition A compare code that compares values and

conditions with e.g. ‘==’.

Compare with

Any value e.g. {Number, String,

Array, Boolean, ..}

Optional value to compare value with. If it didn’t

set, the compare will be to a query parameter.

Invert condition
 Invert

{ On(invert), Off } A switch determines whether a query condition is

inverted or not.

Compare case
 Case Insensitive

{ On (case insensitive),

Off (case sensitive) }

A switch determines whether the compare case is

sensitive or insensitive.

Sort descriptors

List of selected entity’ attributes An attribute for sorting the query return data by it.

Sort method

,

Sort method ascending descending.

Table 1: Custom query visual language

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4291

The CDGenerator DSTL is designed to use the same iOS

predicate notations, since iOS developers are aware of them,

 and used to use predicates to fetch, sort or filter any set of

models. So that they developers who will use CDGenerator

don’t need to learn extra notations or query codes. Moreover,

DSTL comes as an optional feature with CDGenerator, so

novice developers who don't have knowledge of Predicates

and their notations, still can specify their query details using

some visual notations, which include most of the basic

notations. An example of these Predicate notations:

{CONTAINS, LIKE, MATCHES, avg, count, max, min, key

IN , =[c], =[d], Mapbox-specific functions, … }

5. EVALUATION

We evaluated our approach using a preliminary experiment

which was conducted on a group of 6 participants with

different levels of experiences. The aim of the experiment was

to prove the user acceptance as well as the effectiveness of our

approach. All of evaluation resources including survey

questions, results and the sample project are available online1.

5.1. Experiment Setup

 The experiment was conducted on Mac devices using macOS

operating systems with version 10.15 or later. With at least 8G

RAM, using Xcode 11.1 or later, and iOS 13 simulator. It was

conducted using the implemented tool (CDGenerator2) and a

sample iOS app project called CDGeneratorDemo 3 , which

was prepared for the experiment, it has a simple Core Data

schema that represents Countries and their Cities. It also has

the UI components and actions needed to display a list of cities

and countries, search for cities or countries, and delete a city.

Both projects are available online.

1 https://github.com/a-radwan/CDGenerator-evaluation
2 https://bitbucket.org/AhdRadwan/cdgenerator/src/master/

5.2. Experiment Procedure

First the participants were asked to fill the first part of the

questionnaire which focused on the participants' experience

and their development backgrounds. Then, the implemented

tool has been presented with a tutorial showing how to use its

main functionalities. Then the participants were asked to use

the tool to do a specific set of tasks on a sample iOS project

that was prepared for the experiment. The participants used

the tool to automatically generate iOS data persistence

components, integrate them with the sample project, and do a

set of data operations including save records, delete records,

and fetch data. They also used the tool to automatically

generate a custom data fetch query specified using DSVL and

DSTL modeling notations, attach it, and use it to fetch data

queries. Meanwhile we were observing participants activities,

to figure out their mistakes, or tool failures, and measure the

time need each required task. Finally, participants were asked

to fill the second part of the questionnaire which focused on

the user acceptance and their feedback of the CDGenerator.

The experiment was designed as a controlled experiment, so,

the environment variables were identical, for example the

sample project UI was prepared to be integrated with a data

persistence framework, so that building UI will not be part of
the experiment, which avoids the UI development skills from

affecting the experiment results. In addition, the data schema

and the set of required tasks were identical for all participants,

to avoid any change on the independent variable which might

affect the results and lead to a threat to internal validity.

5.3. Participants:

The experiment was conducted on a group of software

developers from Palestine, they were 6 participants (3 males,

3 females). With different level of experience, some of them

were novice developers, others were experienced developer.

3 https://github.com/a-radwan/CDGeneratorDemo

Participant/

Question

Years’

experience in

development

field

Experience

background

Years’

experience in

iOS development

iOS

language

experience

Number of

iOS apps

you worked

Average size

for apps

worked on

Did use Core

data framework

on a real app

Have

experience

with Core

data

1 2 - 5 years Mobile 2 - 5 years Both 2 -3 1- 2 years No No

2 2 - 5 years Mobile 6 months to 2

years

Objective-C 4-5 Less than or

equal 1 year

No No

3 5-10 years. Mobile 6 months to 2

years

Objective-C 1 2 - 5 years No No

4 6 months to 2

years

Mobile Less than 6

months

Swift 1 Less than or

equal 1 year

No No

5 Less than 6

months

Mobile Less than 6

months

Objective-C 0 - No Yes

6 6 months to 2

years

Mobile Less than 6

months

Swift 1 Less than or

equal 1 year

No Yes

Table 2: Participants’ demographic questions and their responses.

≈

https://github.com/a-radwan/CDGenerator-evaluation
https://bitbucket.org/AhdRadwan/cdgenerator/src/master/
https://github.com/a-radwan/CDGeneratorDemo

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4292

Working on large outsourcing projects. Our demographics

questioner included 8 questions focused on participants

background, and their level of experience on mobile

development field. The results are shown in Table 2.

6. RESULTS AND DISCUSSION

All 6 participants were able to finish the experiment tasks. All

of them were able understand how the tool works, generate

data persistence files, generate custom data fetch query,

understand the generated code, and use it to insert records,

delete records and fetch data, even the developers who don’t

have Swift experience which are 50% of the participants were

able to use the generated Swift code to do the required tasks,

which clearly confirms that CDGenerator can effectively be

used by developers with different levels of experience, also

the generated code is usable, clear, simple and understandable

even for fresh developers or those who come from different

backgrounds.

 shows a list of tasks and time spent doing them by each

participant. The results shows that the average time for each

task appear to be small, for example the first task has average

1:55 minutes, which means that developers can automatically

generate their data models, models mappers, core data
connectors, main APIs managers and their data basic

operations queries as well as build and run, with about 2

minutes. Which is certainly a very short time. Thus,

4 https://github.com/a-radwan/CDGeneratorParticipantWork.

CDGenerator can absolutely reduce the development time and

increase developer productivity.

A sample of a participant is project available online.4

Table 4 shows the questionnaire’s part 2 results which has 8

questions. First 4 questions targeted the user usability and the

learnability of CDGenerator. The other 4 focused its user

acceptance.

Most of participants (5/6) confirmed that they didn’t face

problems while using the tool, only one participant mentioned

that he didn’t figure out the effect of the invert toggle button.

His question has been answered that the invert means the

complement or the opposite of the query condition. All of the

participants confirmed that they didn’t have any problem

understanding how the tool works and understanding the

generated code. Moreover, all of them gave positive answers

for the usability level questions, (4/6) marked it as easy to use

and (2/6) marked it as very easy to use. These results indicate

the high usability and understandability of this tool.

In addition, all participants provided positive feedback on

generated code complexity’s question. (3/6) marked it as

Normal and the other (3/6) marked it as Simple. Also, all

participants provided positive feedback for code quality

questions, (2/6) participants answered that the generated code

has a good code quality, the other (4/6) participants answered

that the code has very good quality. All of participants

confirmed that they prefer to use this CDGenerator next time

to generate Core Data components. Also, all of them prefer to

use CDGenerator to generate a custom data fetch query

instead of typing it manually. Which confirms a highly user’s

acceptance of the implemented approach.

6.1. Comparison with Existing Framework.

In background chapter we presented the existing approaches

for iOS development data persistence are SQLite database,

and Core Data framework, which will be compared here with

the implemented tool (CDGenerator).

Participant/

Question

 Did you face

problems while

using this tool?

How do you

rate the

usability level

of this tool?

Do you face a

problem

understandin

g how the tool

works?

Do you have

any problems

understanding

the generated

code?

How do you

rate the

generated code

complexity of

this tool

How do you

rate the

generated

code quality

of this tool?

Will you

prefer to type

data query

manually or

with this tool,

next time?

If you used a

Core Data

framework

before, how did

you find this

tool?

Will you prefer

using this tool

again?

1 No Easy No No Simple Very good Using this tool Simpler Yes

2 No Very easy to
use

No No Normal Very good Using this tool - Yes

3 No Easy No No Normal Very good Using this tool - Yes

4 Yes Easy No No Simple Good Using this tool Simpler Yes

5 No Very easy to
use

No No Normal Very good Using this tool Simpler Yes

6 No Easy No No Simple Good Using this tool Simpler Yes

Participant/ Task (time in

minutes)

P1 P2 P3 P4 P5 P6 Average

Task 1: Generate data

persistence files

1:20 1:00 2:30 1:30 3:00 2:10 1:55

Task 2: Get list of records 1:02 0:40 3:00 1:30 5:00 1:23 2:05

Task 3: Get another list of

records.

0:23 0:20 0:31 0:35 1: 00 0:41 0:35

Task 4: Delete record. 0:30 0:29 1:00 2: 30 0:37 0:22 0:54

Task 5: First query 2:58 2:40 4:55 6:00 4:20 2:50 3:57

Task 6: Second query 1:00 0:50

1:15 1:40 2:02 2:30 1:32

Table 3: Participants’ answers on questionnaire’s part 2 questions

Table 4: Participants tasks and time to do them

https://github.com/a-radwan/CDGeneratorParticipantWork

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4293

The key strength of SQLite is that it is a lightweight

component that is suitable for mobile limited resources, with

embedded SQL engine with most of its functionalities, it's fast

and very reliable. But with SQLite, developers need to handle

database management and operations such as creating

databases, creating tables, writing CRUD operations and

queries, and database files management and indexing.

Therefore, there is amount of code to be written and amount

of work to be done, which makes it a tedious and exhausting

task for novice and non-computer developers.

Core Data framework comes to ease local data persistence in

iOS apps. With Core Data framework developers can

represent the database entities and relationships between them

using a high level of abstraction representation. Developers

also can generate data models class and control them

automatically. With this high-level abstraction representation

Core Data can communicate directly with SQLite database,

and encapsulates the SQLite integration and insulates the

developer from them. Therefore, Core Data has eased the data

persistence for novice developers while developing iOS

applications.

But with Core Data developers there are still tedious tasks to

be done and code to be written. Developers need to manage
Core Data graph models, model context, and persistence

coordinator. Developers also need to write code to fetch data,

and control data records, moreover developers might produce

mistakes and failures while managing context threading, or

while using KVC for data queries. In addition, developers

need to take time to learn the fundamentals of the framework

including rules, ins and outs. And missing these fundamentals

leads to unexpected hard to detect mistakes.

CDGenerator completely separates novice developers from

data persistence coding and tedious tasks. CDGenerator

generates core data components for iOS applications based on

data schema specified with the Core Data schema editor. With

CDGenerator most coding tasks needed to be done with Core

Data are generated automatically, including models, model

mapping, object context management, files management,

shared API’s managers, and basic data operations queries

(CRUD operations). Moreover, CDGenerator provides a way

for novice developers to create a custom data fetch query by

specifying its details with Visual and Textual notations from

a simple GUI. Therefore, CDGenerator allows novice

developers to use Core Data framework to cache and save

their apps’ local data without a need to write a single line code

except method calling, or a need to waste time learning its

Core Data framework fundamentals.

6.2. Threats to Validity.

The presented tool was evaluated using a preliminary

experiment conducted on a group of 6 participants. The results

clearly proved the effectiveness and efficiency as well as the

user acceptance of the presented and implemented approach

in helping novice developers persisting their data locally while

developing iOS applications. To provide more reliable

experimental results, an experiment with a large group of

participants should be conducted, to cover a wider range of

developers’ experiences and backgrounds, which will avoid

selection bias and reduce any possible threat to internal and

external validity.

7. CONCLUSION

In this paper we present a new fully automation code

generation approach that aims to help non-computing and

novice developers to persist their iOS application data locally.

Our solution approach is employing a model-based technique

that automatically generates the data persistence components

for iOS application as well as data operation queries, based on

existing data schema. This approach applies model to model

transformation followed by model to code transformation, to

automatically generate iOS app’s data persistence

components. It also leverages the Domain Specific Visual

Language (DSVL) and Domain Specific Textual Language

(DSTL) to automatically generate custom data fetch queries

for iOS applications.

In order to prove the effectiveness and user acceptance our
approach, we implemented a proof of concept tool called

CDGenerator. Which was implemented as an OSX application

that runs on mac devices. The tool has been evaluated using a

preliminary experiment conducted on a group of 6 developers

from different levels of experiences who used the

CDGenerator to automatically generate core data components

for a sample iOS app that was prepared for this experiment.

Then they automatically generate a data fetch query by

specifying its details using the designed DSVL and DSTL.

The results proved the effectiveness and efficiency as well as

a highly user acceptance of the implemented approach in

helping novice developers persist their data locally in iOS

apps.

REFERENCES

1. S. Barnett, I. Avazpour, R. Vasa, and J. Grundy,

“Supporting multi-view development for mobile

applications,” Journal of Computer Languages, vol. 51,

pp. 88–96, Apr. 2019, doi: 10.1016/j.cola.2019.02.001.

2. “Forecast number of mobile users worldwide 2019-

2023,” Statista.

https://www.statista.com/statistics/218984/number-of-

global-mobile-users-since-2010/ (accessed Jul. 11,

2020).

3. “Number of smartphone users worldwide from 2016 to

2021,” Statista.

https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/ (accessed Jul. 11, 2020).

4. S. Zein, N. Salleh, and J. Grundy, “Static analysis of

android apps for lifecycle conformance,” in 2017 8th

International Conference on Information Technology

Ahd Radwan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4285 – 4294

4294

(ICIT), May 2017, pp. 102–109, doi:

10.1109/ICITECH.2017.8079982.

5. “Number of apps available in leading app stores as of 1st

quarter 2020,” Statista.

https://www.statista.com/statistics/276623/number-of-

apps-available-in-leading-app-stores/ (accessed Jul. 11,

2020).

6. D. Rimawi and S. Zein, “A Model Based Approach for

Android Design Patterns Detection,” in 2019 3rd

International Symposium on Multidisciplinary Studies

and Innovative Technologies (ISMSIT), Ankara, Turkey,

Oct. 2019, pp. 1–10, doi:

10.1109/ISMSIT.2019.8932921.

7. Master Of Code Global, “App Store vs Google Play:

Stores in Numbers,” Medium, Jan. 31, 2018.

https://medium.com/master-of-code-global/app-store-vs-

google-play-stores-in-numbers-fd5ba020c195 (accessed

Jun. 04, 2020).

8. S. Zein, N. Salleh, and J. Grundy, “A systematic mapping

study of mobile application testing techniques,” Journal

of Systems and Software, vol. 117, pp. 334–356, Jul.

2016, doi: 10.1016/j.jss.2016.03.065.

9. I. Musleh, S. Zain, M. Nawahdah, and S. Norsaremah,

“Automatic generation of Android SQLite database

components,” 2018.
10. “How To Use SQLite to Manage Data in iOS Apps,”

AppCoda. https://www.appcoda.com/sqlite-database-ios-

app-tutorial/ (accessed Jun. 04, 2020).

11. D. Rimawi and S. Zein, “A Static Analysis of Android

Source Code for Design Patterns Usage,” studies, vol. 6,

p. 11.

12. H. Tufail, F. Azam, M. W. Anwar, and I. Qasim, “Model-

Driven Development of Mobile Applications: A

Systematic Literature Review,” in 2018 IEEE 9th Annual

Information Technology, Electronics and Mobile

Communication Conference (IEMCON), Nov. 2018, pp.

1165–1171, doi: 10.1109/IEMCON.2018.8614821.

13. S. Vaupel, G. Taentzer, R. Gerlach, and M. Guckert,

“Model-driven development of mobile applications for

Android and iOS supporting role-based app variability,”

Softw Syst Model, vol. 17, no. 1, pp. 35–63, Feb. 2018,

doi: 10.1007/s10270-016-0559-4.

14. E. E. Thu and N. Nwe, “Model driven development of

mobile applications using drools knowledge-based rule,”

in 2017 IEEE 15th International Conference on Software

Engineering Research, Management and Applications

(SERA), Jun. 2017, pp. 179–185, doi:

10.1109/SERA.2017.7965726.

15. Hassan II University, Faculty of sciences Ben M’Sik,

Casablanca, Morocco, and A. Erraissi, “Meta-Modeling

of Big Data visualization layer using On-Line Analytical

Processing (OLAP),” IJATCSE, vol. 8, no. 4, pp. 990–

998, Aug. 2019, doi: 10.30534/ijatcse/2019/02842019.

16. S. Vaupel, G. Taentzer, J. P. Harries, R. Stroh, R.

Gerlach, and M. Guckert, “Model-Driven Development

of Mobile Applications Allowing Role-Driven Variants,”

in Model-Driven Engineering Languages and Systems,

Cham, 2014, pp. 1–17, doi: 10.1007/978-3-319-11653-

2_1.

17. S. Vaupel, D. Strüber, F. Rieger, and G. Taentzer, “Agile

Bottom-Up Development of Domain-Specific IDEs for

Model-Driven Development.,” in FlexMDE@ MoDELS,

2015, pp. 12–21.

18. T. Su et al., “Guided, stochastic model-based GUI testing

of Android apps,” in Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering,

Paderborn, Germany, Aug. 2017, pp. 245–256, doi:

10.1145/3106237.3106298.

19. D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta,

and A. M. Memon, “MobiGUITAR: Automated Model-

Based Testing of Mobile Apps,” IEEE Software, vol. 32,

no. 5, pp. 53–59, Sep. 2015, doi: 10.1109/MS.2014.55.

20. Y.-M. Baek and D.-H. Bae, “Automated model-based

Android GUI testing using multi-level GUI comparison

criteria,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software

Engineering, Singapore, Singapore, Aug. 2016, pp. 238–

249, doi: 10.1145/2970276.2970313.

21. I. A. Salihu, R. Ibrahim, and A. Usman, “A Static-

dynamic Approach for UI Model Generation for Mobile

Applications,” in 2018 7th International Conference on

Reliability, Infocom Technologies and Optimization

(Trends and Future Directions) (ICRITO), Aug. 2018, pp.

96–100, doi: 10.1109/ICRITO.2018.8748410.
22. T. Su, “FSMdroid: Guided GUI Testing of Android

Apps,” in 2016 IEEE/ACM 38th International

Conference on Software Engineering Companion (ICSE-

C), May 2016, pp. 689–691.

23. M. Fischer, “Model-driven code generation for REST

APIs,” Modellgetriebene Code Generierung für REST

APIs, 2015, doi: http://dx.doi.org/10.18419/opus-9803.

24. Apple Inc, “NSUserDefaults - Foundation | Apple

Developer Documentation.”

https://developer.apple.com/documentation/foundation/n

suserdefaults?language=objc (accessed Jun. 04, 2020).

25. H. Chan, “NSUserDefaults Vs CoreData,” Medium, Feb.

12, 2017.

https://medium.com/@chan.henryk/nsuserdefaults-vs-

coredata-aa70d3c23b30 (accessed Jun. 04, 2020).

26. “What Is SQLite.” https://www.sqlite.org/index.html

(accessed Jun. 04, 2020).

27. C. Bi, “Research and application of SQLite embedded

database technology,” wseas transactions on computers,

vol. 8, no. 1, pp. 83–92, 2009.

28. M. Owens, The definitive guide to SQLite. Apress, 2006.

29. “Core Data Programming Guide: What Is Core Data?”

https://developer.apple.com/library/archive/documentati

on/Cocoa/Conceptual/CoreData/ (accessed Jun. 04,

2020).

30. B. Jacobs, “Three Common Core Data Mistakes to

Avoid,” cocoacasts, Nov. 15, 2017.

https://cocoacasts.com/three-common-core-data-

mistakes-to-avoid (accessed Jun. 04, 2020).

31. “About Developing for Mac.”

https://developer.apple.com/library/archive/documentati

on/MacOSX/Conceptual/OSX_Technology_Overview/

About/About.html (accessed Jun. 04, 2020).

	1. INTRODUCTION
	2. LITRETUR REVIEW
	2.1. Model Driven Development
	A. Textual and Visual modeling
	2.2. iOS Data Persistence Existing Solutions

	3. SOLUTION APPROACH
	3.1. How CDGenerator Works

	4. IMPLEMENTATION OF CDGENERATOR
	4.1. CDGenerator Design
	4.2. DSVL & DSTL Modeling Language
	4.2.1. Our Domain Specific Visual Language
	4.2.2. Our Domain Specific Textual Language

	5. EVALUATION
	5.1. Experiment Setup
	5.2. Experiment Procedure
	5.3. Participants:

	6. RESULTS AND DISCUSSION
	6.1. Comparison with Existing Framework.
	6.2. Threats to Validity.

	7. CONCLUSION
	REFERENCES

