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 
ABSTRACT 
 
Steepest descent (SD) method is the basic and simple algorithm for 
minimizing function of n variables. Although this method is said 
to lead to very slow convergence, the small change of the search 
direction for each line can improved the method. Therefore, in this 
paper, we propose new steepest descent (SD) method which 
focused on the modification of the direction that possesses 
sufficient descent conditions and global convergence properties as 
our first objective. The second approach is that we present the 
implementation of the proposed modification of SD method into 
the regression analysis for the real life problems.  
 
Key words: ordinary differential equation, least square method, 
steepest descent method.  
 
1. INTRODUCTION 
 
One of the simplest and very well-known methods to find the 
minimum value of function for unconstrained optimization is 
gradient method. This method is also known as steepest descent 
(SD) method. Better understanding of this method can lead for a 
more sophisticated method in order to overcome the drawback of 
the standard SD due to its slow convergence rate [1]. 
 
The standard and oldest SD method was first proposed in 1847 by 
Cauchy [2]. Unfortunately, this method is not widely used because 
of the main drawback, quite slow in the rate convergence in most 
real-world problems. Recently however, several attempts from 
both theoretical and practical viewpoint have been presented in 
order to improve the efficiency of SD method [3]–[9]. These 
modifications have led to a fresh interest in this method and 
proved that the gradient direction itself is not a bad choice.  
 
Therefore, in this paper, we presented a new modification in the 
gradient direction of the SD method which possesses both 
sufficient descent directions and global convergence properties as 
our main objective and we also proved that this modification can 

 
 

be implemented in the regression analysis to solve the function 
from the real-world problems. 
 
The overall structure of the study takes the form of six sections, 
including this introductory section. The remaining part of the 
paper proceeds as follows: new modification of SD method, the 
convergence analysis, the numerical results and discussions and 
the application of the new proposed SD method in the real-world 
problems. Finally, the conclusion gives a brief summary and a 
little bit recommendations for future research.  
 
2. NEW MODIFICATION OF STEEPEST DESCENT 
METHOD 
 
The general minimization problem of a function is given by 

 which has the following iterative form 
1k k k kx x d    

where k is the step size which in this research we calculate using 
exact line search procedures and kd is the search direction. The 
standard method to determine the search direction is the SD 
method which defined as 

k kd g  . 
Here and throughout, we use kg to denote the gradient of f at kx . 

We will also use kf as the abbreviation of  kf x . The superscript 
T signifies the transpose. 

In this section, we propose new modification on the direction of 
SD method known as MSD abbreviated of modification of SD. The 
formula of MSD is given by 

1k k k kd g g           (1) 

where 1
2

1

T
k k

k
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The algorithm is given as follows: 
 
Algorithm: Steepest Descent (SD) Method 
Step 1: Initialization. Some initial value is chosen and set 0k   
Step 2: Compute the search direction, kd , by using (1)  
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Step 3: Compute the step size, k , by using exact line search 
procedure 
Step 4: Update new point of iteration, 1k k k kx x d    
Step 5: Test the convergent and stopping criteria: 
 If 1  and k k kx x g    then stop 
 Otherwise go to Step 1 with 1k k  . 
 
3.  CONVERGENCE ANALYSIS 
 
The convergence analysis based on (5) has been discussed 
carefully in this section. In order to prove that an algorithm will 
converge, it must possess the sufficient descent and global 
convergence properties. 

3.1 Sufficient descent condition 

For the sufficient descent condition to hold, let sequence  kd and 

 kx be generated by (5) and (1), then  

      2  for 0T
k k kg d g k   .      (6) 

 
Theorem 1. Consider the three-term SD method with the search 
direction (5) and the step size determined by exact procedure (2). 
Then condition (6) holds for all 0k  . 
 
Proof. Obviously, if 0k  , then the conclusion is true.  
Now, we need to show that for 1k  , condition (6) will also hold 
true. 
Multiply (5) by kg  and note that 1 0T

k kg d    for exact line search, 
and we get 

                

2
1

2
12
2

1
2

T T
k k k k k k

T
k k

k
k

k

g d g g g

g g
g

g

g

 





  

  

 

 

Hence condition (6) holds and the proof is complete, which 
implies that kd  is a sufficient descent direction. 

3.2 Global convergence  
The following assumptions and lemma are needed in the analysis 
of global convergence of SD methods. 
 
Assumption 1. 

(i) The level set   0| ( )nx R f x f x    is bounded where 

0x  is the initial point. 
(ii) In some neighborhood N of  , the objective function is 

continuously differentiable, and its gradient is Lipchitz 
continuous, namely, there exists a constant 0l   such that 

( ) ( )g x g y l x y    for any ,x y N . 
These assumptions yield the following Lemma 1, which was 
proven by Zoutendijk [10]. 
 

Lemma 1. Suppose that Assumption 1 holds true. Let kx  be 
generated by Algorithm 1 and kd  satisfies (6), then the exists a 
positive constant h such that 

2
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k
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and one can also have, 
4
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This property is known as Zoutendijk condition. 
 
Theorem 2. Suppose that Assumption 1 holds true. Consider kx  
generated by Algorithm 1, k  is obtained by using exact line 
search and the sufficient descent condition is satisfied. Then, 
either 

 2
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Proof. The proof is obtained by using contradiction. Assume that 
Theorem 2 is not true, that is, lim 0.kk

g


  Then, there exists a 

positive constant 1 , such that 1kg   for all value of k . From 
(5), we have 
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The above inequality implies  
4 4

1
2 2

0 0
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k kk
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        (7) 

 
This contradicts Zoutendijk condition in Lemma 1. 
 
Therefore from (7), it follows that,  

 2
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k k

k k
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
   

Hence, the proof is completed. 
 
4. RESULTS AND DISCUSSION 
 
In this section, we investigate the effectiveness of our new 
modification of SD by comparing our method with the standard 
direction of SD and previous modification of direction in SD 
proposed by [11], [12]. We evaluate the methods using same set of 
27 standard test functions with different vales of initial points. We 
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also assumed this as solving large-scale problems as we used up to 
1,000 number of variables. 
 
The program was written in the MATLAB 2017a and run on the 
computer with Intel® Core™ i5 with CPU 2.5GHz and 6.4-bit 
Operating System. A list of all standard test functions used in this 
research is given in Table 1. 
 

Table 1: A list of standard test functions 
N Functions Initial Points 

F1 Extended White & Holst (0,0,…,0), (2,2,…,2), 
(5,5,…,5) 

F2 Extended Rosenbrock (0,0,…,0), (2,2,…,2), 
(5,5,…,5) 

F3 Extended Freudenstein & 
Roth 

(0.5,0.5,…,0.5), (4,4,…,4), 
(5,5,…,5) 

F4 Extended Beale (0,0,…,0), (2.5,2.5,…,2.5), 
(5,5,…,5) 

F5 Raydan (1,1,…,1), (20,20,…,20), 
(5,5,…,5) 

F6 Extended Tridiagonal 1 (2,2,…,2), (3.5,3.5,…,3.5), 
(7,7,…,7) 

F7 Diagonal 4 (1,1,…,1), (5,5,…,5), 
(10,10,…,10) 

F8 Extended Himmelblau (1,1,…,1), (5,5,…,5), 
(15,15,…,15) 

F9 Fletcher (0,0,…,0), (2,2,…,2), 
(7,7,…,7) 

F1
0 

Nonscomp (3,3,…,3), (10,10,…,10), 
(15,15,…,15) 

F1
1 

Extended Denschnb (1,1,…,1), (5,5,…,5), 
(15,15,…,15) 

F1
2 

Shallow (-2,-2,…,-2), (0,0,…,0), 
(5,5,…,5) 

F1
3 

Generalized Quartic (1,1,…,1), (4,4,…,4), 
(-1,-1,…,-1) 

F1
4 

Power (-3,-3,…,-3), (1,1,…,1), 
(5,5,…,5) 

F1
5 

Quadratic 1 (-3,-3,…,-3), (1,1,…,1), 
(10,10,…,10) 

F1
6 

Extended Sum Squares (2,2,…,2), (10,10,…,10), 
(-15,-15,…,-5) 

F1
7 

Extended Quadratic Penalty 
1 

(1,1,…,1), (10,10,…,10), 
(15,15,…,15) 

F1
8 

Extended Penalty (1,1,…,1), (5,5,…,5), 
(10,10,…,10) 

F1
9 

Hager (1,1,…,1), (5,5,…,5), 
(10,10,…,10) 

F2
0 

Extended Quadratic Penalty 
2 

(5,5,…,5), (10,10,…,10), 
(15,15,…,15) 

F2
1 

Maratos (1.1,1.1,…,1.1), (5,5,…,5), 
(10,10,…,10) 

F2 Three Hump (3,3), (20,20), (50,50) 

2 
F2
3 

Six Hump (10,10), (15,15), (20,20) 

F2
4 

Booth (3,3), (20,20), (50,50) 

F2
5 

Trecanni (-5,-5), (20,20), (50,50) 

F2
6 

Zettl (-10,-10), (20,20), (50,50) 

In the experiments, the termination condition is 2 510kg  . We 
also forced the routine stopped if the total number of iteration 
exceeds 10,000. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Performance profile for the SD methods used based on the 
number of iterations 

 
We applied performance profile introduced by [13] in order to 
emphasize the proposed direction and to make a clear comparison 
which showing the effectiveness of our proposed method. Figure 1 
and 2 show the comparison based on the number of iterations and 
number of central processing unit (CPU) times of all the methods, 
respectively. From Figure 1, the left side of the graph showed that 
MSD is the fastest method on solving all of the test problems and 
from the right side, MSD gives the highest percentage of the test 
problems that are successfully solved compared to other methods. 
Therefore, in numerical experiments we can say that MSD 
outperforms the other methods. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Performance profile for the SD methods used based on the 
central processing units (CPU) time 
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Table 2: CPU time per iteration and successful percentage in solving all 
the functions 

Method
s 

Total 
number of 
iterations 

Total 
number 
of CPU 
times 

CPU 
time per 
iteration 

Successful 
functions 
solved (%) 

SDC 329978 11312.45 0.0343 74.45 
ZMRI 106316 13811.25 0.1299 75.18 
RRM 155271 14053.22 0.0905 72.01 
MSD 224744 10282.76 0.0458 81.27 

 
Table 2 shows the results for an average CPU time per single 
iteration for each method used using an exact line search. 
Although, MSD took the second place after the standard SD, the 
total iterations and total CPU times overcome the standard SD. In 
fact, MSD gives the highest percentage with 81.27% in solving all 
of the standard test functions followed by other methods. 
 
5. APPLICATION IN REGRESSION ANALYSIS 
 
Recently researchers have examined the application of the 
optimization method for solving real-data problems that have been 
transformed into minimization of a function [14]–[16]. Thus in 
this paper, we test the capability of our proposed method in solving 
the real-data problems. Data for this study were collected from 
world data bank by focusing on the data of government 
expenditure on education in Malaysia from 2006 until 2016. 
 

Table 3: Government expenditure on education based on the total 
government expenditure for 2006 until 2016. 

Number of data, 
x 

Years Government 
expenditure on 
education (% of 
government 
expenditure), y 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

 

2006 
2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 
2016 

 

16.74556923 
16.12466049 
14.03864002 
18.46463013 
18.40623093 
20.97702026 
19.92865944 
19.45430946 
19.80056 
19.84806061 
20.63970947 

 

 
From the data given in Table 3, we can observe that there is a 
linear relationship between the year and the expenditure on 
education made by government with the regression equation 
define as 1 2y a a x  , where 1 2 and a a are the regression 
parameters. In order to solve the regression problems, one have to 

find the parameter values and one of the method to find the 
parameters is least square method (LSM) that minimized the 
problem and can be transformed into unconstrained optimization 
problems define as 

    2
1 2

1

min
n

i ia
i

f a y a a x




    
�

 

The steps of the LSM method to solve the minimization problem is 
given below: 
 
Algorithm: Least Square Method (LSM) 
Step 1: Assume the solution is in the cubic form and find the 
derivative of  and y y   

2 3
0 1 2 3y a a x a x a x     

Step 2: Substituting ,  and y y y   into the general ODE 

Step 3: Finding the error and compute   2E x  

         2 1

0

1
n

i i i
i

i

E x a i i x ix P x x Q x R x 



 
         

  

Step 4: Find partial derivatives with respect to 1 2 and a a then 

compute the definite integral from  to a b  

  0
a

bi

F E x dx
a


 
   

Step 5: Solve the system of linear equation Ax b , 

1 2 1 1

3 4 2 2

A A x b
A A x b
     

     
    

 using direct inverse. 

 
However, step 5 in the LSM algorithm will lead to solve an inverse 
matrices and there will be a problem if the matrices involving 
singular or nearly singular matrices where the inverse does not 
exist. Hence, to overcome this problem, the SD method is applied 
to solve the system of linear equation as shown in Table 4. 
 
Table 4: Approximation functions from the numerical experiments used. 

Method Approximation function 
Linear least 

square 
0.5013804455 15.57608551y x   

Standard SD 0.5013803914 15.57608591y x   

ZMRI 0.5013803184 15.57608646y x   

RRM 0.5013804979 15.57608504y x   

MSD 0.5013804113 15.57608576y x   

 
 



Siti Farhana Husin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 90 - 95 

94 
 

 

Table 5: Approximate values of government expenditure on education based on the numerical experiments. 
Years Government 

expenditure 
on education 

Approximate Values 
LSM SDC ZMRI RRM MSD 

2006 16.74556923 16.07746596 16.07746630 16.07746678 16.07746554 16.07746617 
2007 16.12466049 16.57884640 16.57884669 16.57884710 16.57884604 16.57884658 
2008 14.03864002 17.08022685 17.08022708 17.08022742 17.08022653 17.08022699 
2009 18.46463013 17.58160729 17.58160748 17.58160773 17.58160703 17.58160740 
2010 18.40623093 18.08298774 18.08298787 18.08298805 18.08298753 18.08298782 
2011 20.97702026 18.58436818 18.58436826 18.58436837 18.58436803 18.58436823 
2012 19.92865944 19.08574863 19.08574865 19.08574869 19.08574852 19.08574864 
2013 19.45430946 19.58712907 19.58712904 19.58712901 19.58712902 19.58712905 
2014 19.80056 20.08850952 20.08850943 20.08850933 20.08850952 20.08850946 
2015 19.84806061 20.58988996 20.58988982 20.58988964 20.58989002 20.58988987 
2016 20.63970947 21.09127041 21.09127022 21.09126996 21.09127052 21.09127028 

 
Based on the approximation functions evaluated as shown in 
Table 5, the percentage of relative error is calculated using 
the formula stated below and tabulated in Table 6.  

Exact value Approximate value
Percentage error 100%

Exact value


   

 
Table 6: Error calculations for each methods from the numerical experiments 

Years Error calculations (%) 
LSM SDC ZMRI RRM MSD 

2006 
2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 
2016 

3.989731617 
2.816716112 
21.66582251 
4.782239524 
1.756161765 
11.40606268 
4.229641299 
0.682725903 
1.454249375 
3.737540733 
2.187826048 

3.989729587 
2.81671791 

21.66582415 
4.782238495 
1.756161059 
11.4060623 

4.229641199 
0.682725749 
1.45424892 

3.737540028 
2.187825127 

3.98972672 
2.816720453 
21.66582657 
4.782237141 
1.756160081 
11.40606178 
4.229640998 
0.682725595 
1.454248415 
3.737539121 
2.187823868 

3.989734125 
2.816713879 
21.66582023 
4.782240932 
1.756162906 
11.4060634 

4.229641851 
0.682725646 
1.454249375 
3.737541035 
2.187826581 

3.989730363 
2.816717228 
21.66582351 
4.782238928 
1.756161331 
11.40606245 
4.229641249 
0.682725801 
1.454249072 
3.73754028 

2.187825418 
Sum of relatives 
error 

58.70871757 58.70871453 58.70871074 58.70871996 58.70871562 

 
The LSM is the form of mathematical regression analysis 
that finds the line of best fit for a data set, providing a visual 
demonstration of the relationship between the data points. 
However, in order to solve the second order linear ODE using 
LSM, there will be a problem when one’s dealing with the 
solution that involves inverse matrix. 
 
Taking this problem into a consideration it is possible to 
implement the optimization method into the LSM especially 
the SD method as focused in this paper.  As can be seen in the 
Table 6, error calculations tabulated and all of the SD 
methods tested are compatible. 
 
5. CONCLUSION AND RECOMMENDATIONS 
 
In this study, the aim was to introduce the new modification 
of the direction of SD method that possesses the sufficient 

descent conditions and global convergence properties. As a 
result of experiment, among all the competitors MSD method 
has demonstrated the best efficiency. And also we have 
proved that the proposed method is compatible to be 
implemented into the real-world problems that have been 
transformed to unconstrained optimization problems. 
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