
Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1099


ABSTRACT

Nowadays, with the incredible demographic explosion that
we have witnessed in the last few decades, management of
transport is of paramount importance. The reason for this is
that we have to face the management of problems relating to
traffic detection, traffic jams created by urban public
transport, data on motorway tolls, meteorological data and
traffic safety, etc. These types of traffic data are numerous and
enormous. Traditional tools are now unable to solve these
problems. With the rapid development of Big Data
technologies, the new way of thinking about intelligent
transport has become an obligation; as a result, new
architectures are mainly needed to work with big data. . In
order to overcome this problem, it is essential to create a Big
Data modeling approach for ITS, which pays particular
attention to the creation of multiple layers. Among these we
find Management and Processing layer which in its turn
contains three levels: processing, analyzing and storing. In
this paper, we are interested in the processing level, which
attracts the attention of researchers. In fact, we will propose a
Big Data processing design applied to Intelligent
Transportation Systems. We will adopt a data modeling
approach that treats both the transmission and the processing
data.
Key words : Smart city, Data processing, Big Data, Internet
of things, Intelligent Transportation Systems, and flink.

1. INTRODUCTION

Nowadays, cities are the common choice for living. In their
proposed work, they represent a complicated system in which
governments must respond properly to the needs of citizens
and ensure economic, social and environmental sustainability
challenges [1]. A smart city is based on the need to understand
the citizens, mainly their relevance in government and their
services using big data applications. Because of the growth of
the population, the development of the Internet of things, the
management of data faces so many challenges. Besides, the
generated data from heterogeneous sources with different
formats will complicate the data management, and fast time
responding needed for real-time applications. So, many

problems such as traffic services, the emergency systems, the
faultiness of environment monitoring and so on are due to the
low utilization of urban data. In addition, intelligent
transport systems play an essential role in the creation of an
intelligent urban city. Today, many applications of ITS are
deployed in smart cities, different devices generate a huge
amount of data each day. These data are generated from
multiple sources (smart phones, traffic monitoring, smart
parking, information services on public transport [train, bus,
taxi, GPS and people, surveillance, etc.]), the management of
these data has now become a promising challenge because
collecting the information present in the ITS environment in
order to integrate it in the system and transmit it from one
layer to another using middleware's technologies, will lead to
feeding this data into applications that will help in
decision-making or to launching actions. The extraction of
useful information and hidden dependencies from these data
is an issue that is of interest to researchers today, in order to
provide better services To citizens and to support
decision-making processes. However, to extract valuable
information for the development of intelligent Transportation
Systems at the city level, we need to set up a data modeling
platform which will integrate and analyze the huge amount of
ITS data, to produce useful information to help
decision-makers plan for any expansion of Smart City
services. To model these data, we can distinguish between
three layers: Collection layer, Management and Processing
layer and Application layer. In this paper, we are interested in
the data processing level, which aims to analyze and manage
the data generated by the collection layer. We apply our
approach on a case study of data simulation of traffic
accidents. The remainder of this paper is structured as
follows: Section II represents the design and implementation
of a smart transportation big data processing platform, the
proposed platform and the related articles in this field; the
existing solutions are reviewed and reported in Section III.
Trends of future research and open issues are presented in
Section IV.
2. DESIGN AND IMPLEMENTATION OF SMART
TRANSPORTATION BIG DATA PROCESSING
PLATFORM

2.1. Functional and Non-Functional Requirements of
ITS Processing Design

Smart transportation devices continuously generate sizable
data, which is gathered from traffic. In addition, since the

Big Data Processing Platform on Intelligent Transportation Systems

Saida EL MENDILI 1, Younès EL BOUZEKRI EL IDRISSI 2, Nabil HMINA 3

1 Systems Engineering Laboratory,National School of Applied Sciences Ibn Tofail University of Kenitra,
Morocco, elmendili.saida@uit.ac.ma

 2 Systems Engineering Laboratory,National School of Applied Sciences Ibn Tofail University of Kenitra,
Morocco y.elbouzkeri@gmail.com

3 Systems Engineering Laboratory, National School of Applied Sciences Ibn Tofail University of Kenitra,
Morocco, hmina@univ-ibntofail.ac.ma

 ISSN 2278-3091
Volume 8, No.4, July – August 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse16842019.pdf

https://doi.org/10.30534/ijatcse/2019/16842019

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1100

rate of data generation varies according to the equipment,
data processing with different generation rates is a major
challenge. For example, frequency of GPS sensor sup dating
is measured in seconds, while the frequency of updates for
temperature sensors may be measured hourly. Whether the
data generation rate is high or low, there always exists the
danger of important information loss [14] . With the rapid
development of the Internet of Things (IoT) and new
Internet technologies in its context, a large amount of data is
generated by, a large amount of data is generated from
heterogeneous sources with different formats, a fact which
complicates the data management, and fast time responding
for real-time applications. This makes the development of a
data processing platform more challenging. Considering all
these aspects, the main purpose of this paper is to propose a
data processing design for ITS. Our analytic architecture is
based on the flow of the data generated by the data collection
layer. As shown in Fig 1, the use case diagram explains a
set of scenarios that describing the interaction between the
ITS user and our system. Our use case diagram captures the
functional requirement of the system and its interaction
between the actor and the system.

Figure 1: Traffic actors use case diagram

This paper presents a novel big data processing design for
data flow handling specific to Smart Cities and applied on
ITS. The design of this platform is based on answering the
following research questions: What are the characteristics of
big data processing frameworks and Big Data Transmission
tools applied in ITS? What are the essential design
principles that should guide this ITS architecture? In
answering these questions, we adopted a systematic
literature review on big data processing frameworks in ITS.
The proposed platform introduces much functionality that
makes good use of the collected data. We describe the
functions and the components of each step and identify
specific technologies. The value of the proposed platform is
discussed in comparison to traditional knowledge discovery
approaches supported by a comparative study of eac h
functionality with an experimental test applied to traffic

accident data. In doing so, our purpose is to check the
efficiency of the proposed design.
The functional requirement mentioned above requires that
our platform must also meet the following non-functional
requirements:
- Management of a large size of traffic data increasing
exponentially.
- Management of traffic data in real time.
- Providing low latency between the storage of traffic data
and availability for treatment.
Using data collection tools, the data collection layer
monitors, vehicles, traffic data and roads data, etc., the
transformed traffic data, which includes structured data,
semi-structured and unstructured data, is transmitted to the
data management layer via middleware's.
As shown in Fig 2, the data collected by ITS sources can be:
- Structured: data that have been organized in a formatted
repository (road site, sensor, detector sensor, GPS);
- Semi-structured: data that have not been organized into a
specialized repository, as is the case in a database, but which
nonetheless contain related information such as metadata,
which makes them easier to process than raw data (radio
station reports);
- Unstructured: data that do not reside in rows and columns
of a traditional database (traffic camera, social media).

 Figure 2: Type of data in ITS.

2.2. Big Data Processing Mode

Big data processing mode can be divided into stream
processing and batch processing [4],[5]. The former is
store-then-process, and the latter is straight through
processing. In stream processing, the value of data reduces as
time goes by which demanding real-time; on batch
processing, data is stored first and then processed online and
offline[16].Hadoop is the most representative of the batch
processing method [6].

A. Batch Processing
Batch processing is the simultaneous processing of a large
data flow. Data easily consists of millions of records for a day
and can be stored in various ways (file, record, etc.) [18].
Operations are generally carried out in parallel in a sequential
and uninterrupted chronological order. An example of a batch
processing task is the set of transactions that a financial
company can submit during a week. It can also be used in

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1101

payroll processes, line item invoices, supply chain and order
management [18].

B. Stream Processing
Continuous data processing is the process of analyzing data
that moves from one device to another almost immediately
[18]. This continuous calculation method occurs when data is
transmitted through the system without a mandatory time
limit on the output. With the near instantaneous throughput,
systems do not need to store large amounts of data [18].

3. THE PROPOSED PLATFORM

3.1. Related Works

Cities always demand services to enhance the quality of life
and make services more efficient. In the last few years, the
concept of smart cities has played an important role in
academia and in industry, the purpose of building smart cities
is to improve services like traffic management, as well as the
quality of life for citizens. Researchers have invested a lot of
efforts on smart transportation, focusing on the development
of services and applications, in fact, there are a few studies
that have already explored smart transportation data
processing design. In this section, about 20 articles in the field
of smart transportation platform architecture designs are
reviewed, so we present some existing studies and related
work:
We indicate here research on developed architecture for Big
Data processing in ITS, [13] proposed a cluster-based
platform called "sipresk" to collect process and storage data
for historical analysis.. Their platform is based on the
Godzilla conceptual framework; the platform is a
cluster-based and leverages the cloud to achieve reliability,
scalability and adaptability to the changing operating
conditions. It can be leveraged for both online and
retrospective analysis; it is also validated in a case study
where it is used to estimate the average speed and the
congested sections of a highway.
In another study [10] Spark was used to clean and
synchronize data from different sources, MongoDB is used to
manage different data in real time and in batches. The
DATEX-II data model is adopted, in order to harmonize the
traffic data provided by road operators [10] .Similarly, in[3],
different ITS actors (drivers, detectors, actuators, operators,
etc.) have a role as editors or subscribers to Kafka topics.
Kafka is used as a layer that separates publishers and
subscribers from the analysis engine. Once a publisher
publishes a new data element, it is sent to Kafka and saved in
a Hadoop Distributed File System (HDFS) data warehouse for
later analysis.
From the above, we can say that the literature applying Big
Data processing approaches on ITS remains limited. In our
work, we try to ameliorate this field by proposing architecture
and a platform for Big-Data driven batch and real-time
processing of ITS data and traffic control. However, before
presenting the proposed approach, a comparison between
these solutions in terms of performance is mandatory (as
shown in table 1).

Table 1 : Comparison of existing solutions

3.2. Description of the ITS Platform

The ITS data processing platform can process massive data
coming from the collection layer. The requirements of the
platform are:
- To build a data transmission system; This system mainly
makes it possible to move the data generated by the collection
layer in real time. It must be evolutionary, reliable and
fault-tolerant.

- To build a data processing and analysis system; this system
is used to process data in real time and offline by Apache
Flink.
- To build a streaming system; this system plays the role of an
intermediary between the transmission system, the data
processing and analysis system in order to deliver the data
generated by our transmission system to the processing
system in a continuous manner. It must be a real-time,
scalable and fault-tolerant public service.

3.3. The main functions of the platform

Fig.3 illustrates the overall architecture of the proposed
platform, which is the key element in the data management
layer that acts as an intermediary between data sources and

 Strong points Weak points
Sipresk: A Big
Data Analytic
Platform for

Smart
Transportation

Supports various types of
analytics on different

data sources

- Inconsistency
between sahara

project and
other

components
- No test for

real-time
processing

An Architecture
for Big Data
Processing on

Intelligent
Transportation

Systems

Provides a unified
mobility framework for

data cleansing
Enable the coupling of

machine learning
methods

Provides a platform for
heterogeneous merging
and harmonization of

dynamic flows of
transport data

- No test for
real-time

processing

Big Data
Analytics

Architecture for
Real-Time

Traffic Control

Supports data analysis in
streaming mode Provides
a simple way to specify a

data analysis query

Possibility of
hardware data

loss,
disconnections
problem with
real time with

high speed
transmission

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1102

applications of the smart city. It comprises two components:
real-time processing and batch processing:

 Figure 3: Conceptual data processing architecture.

Real-time processing module: allows us to process data in real
time when it arrives and to quickly detect conditions in a short
period of time from the receipt of the data. Real-time
processing allows us to feed data into analytical tools as soon
as they are generated and to obtain instant analytical results.
We therefore read the data as it is generated from the data
transfer module; with this approach, we can process the
received data in real time almost any time. Real-time
processing reads and writes data to different systems,
including those that generate and use a constant data flow.
The batch-processing module: The batch processing module
is the place where data blocks that have already been stored
for a specified period of time are processed. This data contains
millions of records for a day that can be stored as a file or
record, etc. This particular file will undergo processing at the
end of the day for various analyses that firm wants to do.
Obviously, it will take a considerable amount of time for this
file to be processed, which corresponds to batch processing.

3.4. The Key Technologies

Although the conceptual layer provides a coherent view of
how data can be processed and made it available in an ITS
environment, it is relevant to map potential technologies that
may play a significant role in instantiating the proposed
approach. A technological detail is recognized as one of the
main contributions of the proposed architecture.
But it should be note, that there are several technologies of big
data processing, for that, and in answering this question, we
adopted a systematic review of the literature on Big Data
Frameworks and Big Data Transmission tools, the value of
this part is to make a comparative study between existing
technologies based on real simulations to extract the most
appropriate and the most efficient technologies.

A. Experimental Environment

In this paper, experiments are based on a PC with the
following hardware configuration: Intel (R) Core(TM) i7-
6500U, CPU @3.0GHZ*8, 16.00GB RAM and 1TB hard
disk, 64-bit Operating System. The software environment
uses the same configuration: Linux operating system
(Ubuntu 16.04).

B. Data Set

The data used in these experiments are taken from traffic
accident statistics provided by the National Statistics Institute
(NIS) for the Flemish region (Belgium)] (Bart Goethals,
2014).
A total of 340,184 road accident records are included in the
data set. A total of 572 attribute values are represented in the
data set. On average, 45 attributes are completed for each
accident in the data set. Traffic accident data contain a wide
source of information on the different situations in which the
accident occurred: Accident course (type of collision, road
users, injuries), traffic conditions (maximum speed, priority
control, environmental conditions (weather, lighting
conditions, time of accident), road conditions (road surface,
obstacles), human conditions (fatigue, alcohol) and
geographical conditions (location, physical characteristics
[7].

C. Big Data Frameworks Comparison

-Apache Spark
Apache Spark is a powerful processing framework that
provides a user-freindly tool for efficient analytics of
heterogeneous data. It was originally developed at UC
Berkeley in 2009 [22]. Apache Spark is the next generation
batch processing framework with stream processing
capabilities. Built by using many of the same principles of
Hadoop's MapReduce engine, Spark focuses primarily on
speeding up batch processing workloads by offering full
in-memory computation and processing optimization. Spark
can be deployed as a standalone cluster (if paired with a
capable storage layer) or it can hook into Hadoop as an
alternative to the MapReduce engine [9].As shown in Fig 4, a
Spark cluster is based on a master/slave architecture with
three main components.

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1103

Figure 4: Spark Architecture [22] .
-Apache Storm
Storm [21] is an open source framework for processing large
structured and unstructured data in real time. Storm is a fault
tolerant framework that is suitable for real time data analysis,
machine learning, sequential and iterative computation.
Storm is geared for real time applications. As shown in Fig 5,
a Storm program/topology is represented by directed acyclic
graphs (DAG) [12]. The edges of the program DAG represent
data transfer. The nodes of the DAG are divided into two
types: Spouts and bolts. The spouts (or entry points) of a
Storm program represent the data sources. The bolts represent
the functions to be performed on the data. Note that Storm
distributes bolts across multiple nodes to process the data in
parallel.

Figure 5: Storm Architecture [21]

-Apache Flink

Flink [2] is an open source framework for processing data in
both real time mode and batch mode. It provides several
benefits such as fault-tolerant and large-scale computation.
The programming model of Flink is similar to Map Reduce.
By contrast, to Map Reduce, Flink offers additional high-level
functions such as join, filter and aggregation. Flink allows
iterative processing and real-time computation of flow data
collected by various tools such as

Table 2:. Comparison of big data processing frameworks

 Data Type Data sources Processing
mode

Iterative
computation

Performance

Flink Key values Kafka, kinesis Batch and
streaming

Yes
Memory: 8 GB,
CPU:4-8 Cores

Spark RDD HDFS, DBMS and

kafka
Batch and
streaming

Yes
Memory: 16 GB,
CPU:8-16 Cores

Storm Key values HDFS, DBMS and

kafka
streaming Yes

Memory: 24 GB,
CPU:8-16 Cores

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1104

Flume and Kafka. It allocates APIs to launch a distributed
calculation in a clear and simple way. Flink ML is a
machine-learning library that provides learning algorithms
for
creating fast and scalable Big Data applications. As shown in
fig 6 there are different layers in the Flink ecosystem diagram.

Figure 6: Flink ecosystem [2]

-Discussion
As shown in Table 2, iterative and incremental processing,
micro-batch processing capabilities, and memory features are
the highlights of spark. Spark-Shell is an interactive tool
proposed by Spark which allows the exploitation of the Spark
cluster in real time. After creating the interactive
applications, they can then be interactively run in the cluster.
Due to the Resilient Distributed Datasets (RDD) concept and
DAG-based programming model, Spark is known to be very
fast in certain types of applications. Flink shares many
features with Spark. Complex Big Data structures, such as
Flink graphics, offer great processing performance; they have
APIs and specific tools for machine learning, predictive
analytics, and graph flow analysis. Flink allows iterative
processing and real-time computing on the flow of data
collected by various tools such as Flume and Kafka.
 To compare the three frameworks, we conducted three
experiments using the data set presented below. The first
experiment allows for comparing the performance as a
function of time; Fig 7 shows that Flink and Storm have better
processing rates compared to Spark, especially for large
messages.

 Figure 7: Number of transaction test.

In the second experiment, we compare the CPU consumption
resources for the three frameworks. As shown in Fig. 8, Flink
CPU consumption is low compared to Storm and spark. Flink
uses about 18 of the available processors, while the use of the
Storm processors varies between 35 and 41. This means that
Flink can offer better results than other frameworks when
CPU resources are more exploited.

 Figure 8: CPU consumption.

For the third experiment, the data processing rate is compared
with the number of nodes. As shown in Fig. 9, Apache Flink
has a higher throughput than the others. Even for two Flink
nodes already shows better results than Spark and Storm.
Spark and Storm have almost linear growth.

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1105

 Figure 9: Number of nodes.

D. Big Data Transmission tools

There are several tools for data transfer that offer almost the
same task. In this case it is important to answer this question:
how these tools transform the data from a source to another.
In this section, we present a comparison of some tools for
importing and exporting data in and out of our proposed
platform, which depends on the nature of the data being
processed, the mode of data transfer, hardware and operating
system platforms, user interface, reliability and fault
tolerance. However, providing a complete list of tools is out of
reach of this article. Here we present the most used tools[15]
These tools include Sqoop and Flume.
 -Apache Sqoop
Sqoop [20] and sqoop is a connection oriented, non-event
based and open source software program for moving data
between structured data stores and distributed file systems.
Sqoop is mainly used for moving structured data (relational
tables) stored in MySQL, Oracle or Microsoft SQL Server
databases on a periodic basis as shown in Fig 10.

Figure 10 : Sqoop ecosystem[20] and sqoop1.

-Apache Flume
Apache Flume [11] is used for importing event-based data
into Hadoop Distributed File System (HDFS). Unlike Sqoop,
it is a one-way data collection, i.e., importing only. Apache
Flume is a standard, straightforward, robust and flexible tool
for streaming data ingestion into Hadoop. This Apache
project, originally developed by Cloudera, received the status
of incubator in 2012. It mainly consists of a set of agents, each
having an instance of the Java Virtual Machine (JVM),
requiring at least three components such as Flume Source,
Flume Channel and Flume Sink. (as shown in Fig 11).

Figure 11: Flume ecosystem [11].

Flume Source is responsible for collecting incoming streams
as events that are passed on to the Flume Sink via Flume
Channel. Flume Channel uses in-memory and disk queues for
storing events. Flume Sink later removes events from the
Flume Channel after writing data into HDFS files. Flume is
robust, self-contained, reliable, fault tolerant and event-based
tool, which also supports filtering events by enabling
multi-hope events transmission. Flume has been developed to
handle streaming logs and data. But the data is being changed
in the system from time to time. It is difficult to batch the data
due to its dynamic nature. Configuring flume agents is an
easy task that can be written in Java programming language.
We can build custom sources by using Facebook or Twitter
APIs for receiving data from each end and having provisions
for sending received data to the Flume Channel and Flume
Sink [17].
-Discussion
The summary of characteristics of the tools discussed above is
shown in Table 3. Each tool is made for specific purposes.
The similar characteristics are mainly due to the fact they are
all playing with Hadoop ecosystem. Table 3 shows some use
cases of the tools as discussed above. These tools help with
migrating data from traditional data storage systems to
HDFS. Sqoop is helpful in transferring structured data into
HDFS. It can transfer bulk data and support bidirectional data
transfer. Flume, on the other hand, is made for collecting
different kind of log data and storing it into HDFS for further
processing; it can be useful for data generated from different
services of smart cities.

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1106

Table 3: Comparison of big data transmission tools

E. Other Tools

Kafka [19] is a distributed messaging system. It has been used
for collecting and delivering large volumes of log data with
low latency [21]. Kafka provides the functionality of
messaging system and it caters better throughput and fault
tolerance. Kafka also performs some major tasks, which
include monitoring operational data, log aggregation, website
activity tracking, and event sourcing. Log aggregation
collects log files from the web server and places them into a
central storage area (HDFS). To prevent data loss, messages
are stored on a disk and replicated within the cluster.

As a result, and following the comparative study presented
above, figure 12 illustrates the technological layer,
highlighting the most appropriate and the most efficient
technologies.

3.5. Proposed Big Data Processing Platform for ITS

The proposed architecture of the data processing platform for
ITS has many advantages: reliability, scalability, high fault
tolerance and high efficiency using technologies such as
Flume, Kafka and Flink. In this experimental part, we
transported large amounts of accidents data using Flume, to
the HDFS. The first step is to create an application and get the
recordings using the experimental source provided by Apache
Flume. then we use the memory channel to buffer these
records and HDFS sink to push these DATA into the HDFS
for batch mode processing. Finally, we send the data to kafka
for streaming processing. The data generator (Accidents data
generators), generates data that is collected by an
intermediate node known as "Collector" that executes them.
This data collector (which is also an agent) collects data from
the Flume agent, which is aggregated and pushed into the
HDFS. Our Flume Agent contains three main components,
namely, the source, the channel and the sink (As shown in Fig
13).

Figure 12 : Technological data processing architecture.

 Sqoop Flume

Data Flow RDBMS, NoSQL DB, Hive, HDFS streaming data sources
Type of Loading notdriven by events completelyevent-driven

Used for parallel data transfers, collecting and aggregating collecting and aggregating data
HDFS Link parallel For importing data, HDFS is the destination data generally flow to through HDFS channels
Architecture Connector based architecture Agent based architecture
Fetch Data structured data sources streaming data

Performance It reduces the excessive storage and processing
loads by transferring them to other system and has

fast performance

Flume is fault tolerant, robust and has tenable reliability
mechanism for failover and recovery.

Use case transfer between RDBMS and HDFS. Data transfer
is only required to analyze and gain some intuitions

from the data.

Analyzing huge amounts of log data helps identify
unique threats or patterns. Flume helps collect, aggregate

and moves this log data into HDFS. It is useful for
sources, which generate a log and it can be useful for data

generated from different services of smart cities.

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1107

 Figure 13: JVM Apache Flume Agent

Figure 13: JVM Flame Agent

Data on accidents is stored in Kafka messages as a
character string in JSON format. To achieve this, a script
that contains a producer and a Kafka consumer must be
created. The producer will receive Flume information
every second. Each piece of the information contained in
the Flume's response will be redirected to the Kafka topic.
The consumer will store the information of different
accidents. Once Flink gets the records, it provides special
Kafka connectors for reading and writing data; it is now
ready to use DataStream with the Kafka connector, so we
can send and receive messages from Apache Kafka. Flink
is the heart of our data processing system; it can process
either streams of streaming data through Stream Builder
and DataStream API, or batch data sets with batch
optimizer and DataSet API. Its execution engine is scalable
and distributed, allowing for the processing of massive data
(streaming or batch), The execution of iterative operations,
memory management and optimization of processing
costs. Flink has a cache for storing data during processing.
In addition, Flink autonomously manages its internal
memory using its own data extraction and serialization
components. It also optimizes network transfer and disk
writing.

3.6. Experimental Results

In this analysis, the goal was to test the performance of our
architecture in real time processing and batch processing
on different datasets. The datasets were synthetically
generated, i.e., 1 Go, 2 Go ,8 Go and run it on the platform
cluster. We use acceleration as criteria to measure the
performance of the proposed platform in the two cases (real
time processing, Batch processing). When the size of the
datasets increases by multiplying the number of
transactions, as shown in Figure 14, the platform is more
efficient in real time data processing. The reason real time
processing is so fast is because it analyzes the data before it
hits disk, so we can say that, in the point of performance,
the latency of batch processing will be in a minute to hours
while the latency of real time processing will be in sec.

 Figure 14: Experimental result.

4. CONCLUSION

In this paper, we have proposed a big data processing
design for data flow specific to Smart Cities and applied on
ITS. This platform will make good use of the collected data
by adopting a data modeling approach. We have described
the functions and components for each step and identified
specific technologies. the proposed architecture is
implemented in three modules: data transmission system,
data processing and analysis system and a data streaming
system. Experimentally, the proposed technical tools led to
convincing results in terms of performance and speed using
technologies such as : Hadoop ,Flume, Kafka and Flink.
Although the proposed design introduces new features to
big data analytics for ITS, the present work remains
limited, because it's still in progress, with the need to
implement and validate the other layers of the proposed
architecture, namely the data collection layer and the
application layer, as well as the other components of the
data processing layer. As further work, we will first
complete the architecture proposed by the different
remaining levels and layers, then we will develop
applications using the model proposed in our architecture
according to different analyses. The overall purpose is to
have users just call this application, change some
parameters, and then can conduct various statistical
analyses of data.

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1108

REFERENCES

1. Al Nuaimi, E., Al Neyadi,H., Mohamed,N.,&
Al-Jaroodi,J.(2015). Applications of big data to
smart cities, J. Interne,t Serv. Appl, vol. 6 no 1, 1-15.
https://doi.org/10.1186/s13174-015-0041-5

2. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.,
Hueske, F., Heise, A., Kao, O., Leich, M., Leser, U.,
Markl, V., Naumann, F., Peters, M., Rheinländer, A.,
Sax, M., Schelter, S., Höger, M., Tzoumas, K.,
&Warneke, D. (2014). The Stratosphere platform
for big data analytics. The VLDB Journal, 23,
939-964.
https://doi.org/10.1007/s00778-014-0357-y

3. Amini, S., Gerostathopoulos, I., &Prehofer, C. (2017).
Big data analytics architecture for real-time traffic
control. 2017 5th IEEE International Conference on
Models and Technologies for Intelligent
Transportation Systems (MT-ITS).
doi:10.1109/mtits.2017.8005605

4. CHANG, Ray.M., Kauffman,R.J.,KWON,YO. (2014).
Understanding the paradigm shift to
computational social science in the presence of big
data, Research Collection School Of Information
Systems, Volume 63, 67-80.
https://doi.org/10.1016/j.dss.2013.08.008

5. Chen,J., Chen,Y., Du,X.,Li,C.,Lu,J(2013). Big
dataallenge: a data management perspective.
Frontiers of Computer Science, Volume 7(2), 157-164.
https://doi.org/10.1007/s11704-013-3903-7

6. Dean,J.,Ghemawat,S.(2008)MapReduce:Simplified
data processing on large clusters.
COMMUNICATIONS OF THE ACM January, Vol.
51, No. 1, 137-150.
https://doi.org/10.1145/1327452.1327492

7. EL Mendili,S., EL Bouzekri EL IDRISSI,Y.,
Hmina,N. (2017).Association rules mining on
MapReduce, BDCA’17 Proceedings of the 2nd
international Conference on Big Data, Cloud and
Applications Article No. 58 ,Tetouan, Morocco aˆ
March, ACM New York, NY, USA.
https://doi.org/10.1145/3090354.3090414

8. ELMENDILI, s., el BOUZEKERI, y. and HMINA, N.
(2019). Big Data Processing Platform for Smart
City, IEEE - International Symposium on Advanced
Electrical and Communication Technologies
(ISAECT2018), 21-23 november, 2018, Morocco
IEEE Conference Publication. [online]
Ieeexplore.ieee.org. Available at:
https://ieeexplore.ieee.org/document/8618812
[Accessed 2019].
https://doi.org/10.1109/ISAECT.2018.8618812

9. Ellingwood,I.(2016).Hadoop, Storm, Samza, Spark,
and Flink: Big Data Frameworks Compared.
Retrieved from

https://www.digitalocean.com/community/tutorials/h
adoop-stormsamza-spark-and-flink-big-data-framewo
rks-compared.

10. Guerreiro, G., Figueiras, P., Silva, R., Costa, R., &
Jardim-Goncalves, R. (2016). An architecture for
big data processing on intelligent transportation
systems. An application scenario on highway traffic
flows. 2016 IEEE 8th International Conference on
Intelligent Systems (IS). doi:10.1109/is.2016.7737393

11. Hoffman,S.(2015) Apache Flume: Distributed Log
Collection for Hadoop.Retrieved
fromhttps://www.packtpub.com/big-data-and-busines
s-intelligence/apache-flume-distributed-logcollection-
hadoop.

12. Inoubli,W., Aridhi,S., Mezni, H., & Jung, A. (2016).
Big Data Frameworks: A Comparative Study.
CoRR, abs/1610.09962.

13. Khazaei, H., Zareian, S., Veleda, R., Litoiu, M.
(2016). Sipresk: A Big Data Analytic Platform for
Smart Transportation, Retrieved from
https://doi.org/10.1007/978-3-319-33681-7.

14. Mahdavinejad,M.S.,Rezvan,M., Barekatain,M.,
Adibi,P., Barnaghi,P., Sheth,A.P.(2017) Machine
learning for Internet of Things data analysis: A
survey, Journal of Digital Communications and
Networks.vol.4,161-175.
https://doi.org/10.1016/j.dcan.2017.10.002

15. Marjit, U., Sharma, K., & Mandal, P. (2015). Data
Transfers in Hadoop: A Comparative Study. Open
Journal of Big Data(OJBD), (Issue 2 ed., Vol. 1, Ser.
2015).doi:ISSN 2365-029X.

16. Meng,X., Ci,X.(2013) Big Data Management:
Concepts, Techniques and Challenges. Journal of
Computer Research and Development., Volume 50(1),
146-169.

17. Rathee,S. (2013). Big Data and Hadoop with
components like Flume, Pig,Hive and Jaql.
International Conference on Cloud, Big Data and
Trust ,78-82,RGPV.

18. Shiff,L.(2018).Real Time vs Batch Processing vs
Stream Processing: What’s The Difference?.
Retrieved from https://www.bmc.com/blogs/
batch-processing-stream-processing-real-time.

19. Thein,K.M.M.(2014). Apache Kafka: Next
Generation Distributed Messaging System.
International Journal of Scientific Engineering and
Technology Research, Vol.03, Issue.47, 9478-9483.

20. Ting,K.,&Cecho,J. J. (2013).Apache Sqoop
Cookbook. O’Reilly Media.Retrieved
fromhttp://shop.oreilly.com/product/0636920029519.
do

21. Toshniwal,A., Taneja,S., Shukla,A., Ramasamy,K.,
Patel,J. M.,.Kulkarni,S., Jackson,J., Gade,K., Fu,M.,
Donham,J., Bhagat,N., Mittal,S., &Ryaboy,D.(2014).
Storm@twitter. In Proceedings of the ACM
SIGMOD International Conference on Management

Saida EL MENDILI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1099 - 1109

1109

of Data, volume 14,147-156,New York, NY, USA,
ACM.
https://doi.org/10.1145/2588555.2595641

22. Zaharia,M., Chowdhury,M., Franklin,M. J.,
Shenker,S., &Stoica,I. (2010).Spark: Cluster
computing with working sets. In Proceedings of the
2Nd 40 USENIX Conference on Hot Topics in Cloud
Computing, HotCloud10(pp. 10-17), Berkeley, CA,
USA, 2010. USENIX Association.

