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 
ABSTRACT 
 
Nowadays, with the incredible demographic explosion that 
we have witnessed in the last few decades, management of 
transport is of paramount importance. The reason for this is 
that we have to face the management of problems relating to 
traffic detection, traffic jams created by urban public 
transport, data on motorway tolls, meteorological data and 
traffic safety, etc. These types of traffic data are numerous and 
enormous. Traditional tools are now unable to solve these 
problems. With the rapid development of Big Data 
technologies, the new way of thinking about intelligent 
transport has become an obligation; as a result, new 
architectures are mainly needed to work with big data. . In 
order to overcome this problem, it is essential to create a Big 
Data modeling approach for ITS, which pays particular 
attention to the creation of multiple layers. Among these we 
find Management and Processing layer which in its turn 
contains three levels: processing, analyzing and storing. In 
this paper, we are interested in the processing level, which 
attracts the attention of researchers. In fact, we will propose a 
Big Data processing design applied to Intelligent 
Transportation Systems. We will adopt a data modeling 
approach that treats both the transmission and the processing 
data. 
Key words : Smart city, Data processing, Big Data, Internet 
of things, Intelligent Transportation Systems, and flink.  
 
1. INTRODUCTION 
 
Nowadays, cities are the common choice for living. In their 
proposed work, they represent a complicated system in which 
governments must respond properly to the needs of citizens 
and ensure economic, social and environmental sustainability 
challenges [1]. A smart city is based on the need to understand 
the citizens, mainly their relevance in government and their 
services using big data applications. Because of the growth of 
the population, the development of the Internet of things, the 
management of data faces so many challenges. Besides, the 
generated data from heterogeneous sources with different 
formats will complicate the data management, and fast time 
responding needed for real-time applications. So, many 
 

 

problems such as traffic services, the emergency systems, the 
faultiness of environment monitoring and so on are due to the 
low utilization of urban data.  In addition, intelligent 
transport systems play an essential role in the creation of an 
intelligent urban city. Today, many applications of ITS are 
deployed in smart cities, different devices generate a huge 
amount of data each day. These data are generated from 
multiple sources (smart phones, traffic monitoring, smart 
parking, information services on public transport [train, bus, 
taxi, GPS and people, surveillance, etc.]), the management of 
these data has now become a promising challenge because 
collecting the information present in the ITS environment in 
order to integrate it in the system and transmit it from one 
layer to another using middleware's technologies, will lead to 
feeding this data into applications that will help in 
decision-making or to launching actions. The extraction of 
useful information and hidden dependencies from these data 
is an issue that is of interest to researchers today, in order to 
provide better services To citizens and to support 
decision-making processes. However, to extract valuable 
information for the development of intelligent Transportation 
Systems at the city level, we need to set up a data modeling 
platform which will integrate and analyze the huge amount of 
ITS data, to produce useful information to help 
decision-makers plan for any expansion of Smart City 
services. To model these data, we can distinguish between 
three layers: Collection layer, Management and Processing 
layer and Application layer. In this paper, we are interested in 
the data processing level, which aims to analyze and manage 
the data generated by the collection layer. We apply our 
approach on a case study of data simulation of traffic 
accidents. The remainder of this paper is structured as 
follows: Section II represents the design and implementation 
of a smart transportation big data processing platform, the 
proposed platform and the related articles in this field; the 
existing solutions are reviewed and reported in Section III. 
Trends of future research and open issues are presented in 
Section IV. 
2. DESIGN AND IMPLEMENTATION OF SMART 
TRANSPORTATION BIG DATA PROCESSING 
PLATFORM 

2.1.  Functional and Non-Functional Requirements of 
ITS Processing Design 

Smart transportation devices continuously generate sizable 
data, which is gathered from traffic. In addition, since the 
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rate of data generation varies according to the equipment, 
data processing with different generation rates is a major 
challenge. For example, frequency of GPS sensor sup dating 
is measured in seconds, while the frequency of updates for 
temperature sensors may be measured hourly. Whether the 
data generation rate is high or low, there always exists the 
danger of important information loss [14] . With the rapid 
development of the Internet of Things (IoT) and new 
Internet technologies in its context, a large amount of data is 
generated by, a large amount of data is generated from 
heterogeneous sources with different formats, a fact which 
complicates the data management, and fast time responding 
for real-time applications. This makes the development of a 
data processing platform more challenging. Considering all 
these aspects, the main purpose of this paper is to propose a 
data processing design for ITS. Our analytic architecture is 
based on the flow of the data generated by the data collection 
layer.  As shown in Fig 1, the use case diagram explains a 
set of scenarios that describing the interaction between the 
ITS user and our system. Our use case diagram captures the 
functional requirement of the system and its interaction 
between the actor and the system. 

 
Figure 1: Traffic actors use case diagram  

This paper presents a novel big data processing design for 
data flow handling specific to Smart Cities and applied on 
ITS. The design of this platform is based on answering the 
following research questions: What are the characteristics of 
big data processing frameworks and Big Data Transmission 
tools applied in ITS? What are the essential design 
principles that should guide this ITS architecture? In 
answering these questions, we adopted a systematic 
literature review on big data processing frameworks in ITS. 
The proposed platform introduces much functionality that 
makes good use of the collected data. We describe the 
functions and the components of each step and identify 
specific technologies. The value of the proposed platform is 
discussed in comparison to traditional knowledge discovery 
approaches supported by a comparative study of eac h 
functionality with an experimental test applied to traffic 

accident data. In doing so, our purpose is to check the 
efficiency of the proposed design. 
The functional requirement mentioned above requires that 
our platform must also meet the following non-functional 
requirements: 
- Management of a large size of traffic data increasing 
exponentially. 
- Management of traffic data in real time. 
- Providing low latency between the storage of traffic data 
and availability for treatment. 
Using data collection tools, the data collection layer 
monitors, vehicles, traffic data and roads data, etc., the 
transformed traffic data, which includes structured data, 
semi-structured and unstructured data, is transmitted to the 
data management layer via middleware's. 
As shown in Fig 2, the data collected by ITS sources can be: 
- Structured: data that have been organized in a formatted 
repository (road site, sensor, detector sensor, GPS); 
- Semi-structured: data that have not been organized into a 
specialized repository, as is the case in a database, but which 
nonetheless contain related information such as metadata, 
which makes them easier to process than raw data (radio 
station reports); 
- Unstructured: data that do not reside in rows and columns 
of a traditional database (traffic camera, social media).  
 

 
                                Figure 2:  Type of data in ITS. 

2.2. Big Data Processing Mode 
 
Big data processing mode can be divided into stream 
processing and batch processing [4],[5]. The former is 
store-then-process, and the latter is straight through 
processing. In stream processing, the value of data reduces as 
time goes by which demanding real-time; on batch 
processing, data is stored first and then processed online and 
offline[16].Hadoop is the most representative of the batch 
processing method [6]. 

A. Batch Processing 
Batch processing is the simultaneous processing of a large 
data flow. Data easily consists of millions of records for a day 
and can be stored in various ways (file, record, etc.) [18]. 
Operations are generally carried out in parallel in a sequential 
and uninterrupted chronological order. An example of a batch 
processing task is the set of transactions that a financial 
company can submit during a week. It can also be used in 
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payroll processes, line item invoices, supply chain and order 
management [18]. 

B. Stream Processing  
Continuous data processing is the process of analyzing data 
that moves from one device to another almost immediately 
[18]. This continuous calculation method occurs when data is 
transmitted through the system without a mandatory time 
limit on the output.  With the near instantaneous throughput, 
systems do not need to store large amounts of data [18]. 
 
3. THE PROPOSED PLATFORM 

3.1. Related Works 

Cities always demand services to enhance the quality of life 
and make services more efficient. In the last few years, the 
concept of smart cities has played an important role in 
academia and in industry, the purpose of building smart cities 
is to improve services like traffic management, as well as the 
quality of life for citizens. Researchers have invested a lot of 
efforts on smart transportation, focusing on the development 
of services and applications, in fact, there are a few studies 
that have already explored smart transportation data 
processing design. In this section, about 20 articles in the field 
of smart transportation platform architecture designs are 
reviewed, so we present some existing studies and related 
work: 
We indicate here research on developed architecture for Big 
Data processing in ITS, [13] proposed a cluster-based 
platform called "sipresk" to collect process and storage data 
for historical analysis.. Their platform is based on the 
Godzilla conceptual framework; the platform is a 
cluster-based and leverages the cloud to achieve reliability, 
scalability and adaptability to the changing operating 
conditions. It can be leveraged for both online and 
retrospective analysis; it is also validated in a case study 
where it is used to estimate the average speed and the 
congested sections of a highway.  
In another study [10] Spark was used to clean and 
synchronize data from different sources, MongoDB is used to 
manage different data in real time and in batches. The 
DATEX-II data model is adopted, in order to harmonize the 
traffic data provided by road operators [10] .Similarly, in[3], 
different ITS actors (drivers, detectors, actuators, operators, 
etc.) have a role as editors or subscribers to Kafka topics. 
Kafka is used as a layer that separates publishers and 
subscribers from the analysis engine. Once a publisher 
publishes a new data element, it is sent to Kafka and saved in 
a Hadoop Distributed File System (HDFS) data warehouse for 
later analysis.  
From the above, we can say that the literature applying Big 
Data processing approaches on ITS remains limited. In our 
work, we try to ameliorate this field by proposing architecture 
and a platform for Big-Data driven batch and real-time 
processing of ITS data and traffic control. However, before 
presenting the proposed approach, a comparison between 
these solutions in terms of performance is mandatory (as 
shown in table 1). 

 
Table 1 : Comparison of existing solutions 

 
3.2. Description of the ITS Platform 

The ITS data processing platform can process massive data 
coming from the collection layer. The requirements of the 
platform are: 
- To build a data transmission system; This system mainly 
makes it possible to move the data generated by the collection 
layer in real time. It must be evolutionary, reliable and 
fault-tolerant. 
 
- To build a data processing and analysis system; this system 
is used to process data in real time and offline by Apache 
Flink. 
- To build a streaming system; this system plays the role of an 
intermediary between the transmission system, the data 
processing and analysis system in order to deliver the data 
generated by our transmission system to the processing 
system in a continuous manner. It must be a real-time, 
scalable and fault-tolerant public service. 
 

 
3.3. The main functions of the platform 

Fig.3 illustrates the overall architecture of the proposed 
platform, which is the key element in the data management 
layer that acts as an intermediary between data sources and 

 Strong points Weak points 
Sipresk: A Big 
Data Analytic 
Platform for 

Smart 
Transportation 

Supports various types of 
analytics on different 

data sources 

- Inconsistency 
between sahara 

project and 
other 

components 
- No test for 

real-time 
processing 

An Architecture 
for Big Data 
Processing on 

Intelligent 
Transportation 

Systems 

Provides a unified 
mobility framework for 

data cleansing 
Enable the coupling of 

machine learning 
methods 

Provides a platform for 
heterogeneous merging 
and harmonization of 

dynamic flows of 
transport data 

- No test for 
real-time 

processing 

Big Data 
Analytics 

Architecture for 
Real-Time 

Traffic Control 

Supports data analysis in 
streaming mode Provides 
a simple way to specify a 

data analysis query 

Possibility of 
hardware data 

loss, 
disconnections 
problem with 
real time with 

high speed 
transmission 
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applications of the smart city. It comprises two components: 
real-time processing and batch processing: 
 
 

 
                 Figure 3:  Conceptual data processing architecture. 
 
Real-time processing module: allows us to process data in real 
time when it arrives and to quickly detect conditions in a short 
period of time from the receipt of the data. Real-time 
processing allows us to feed data into analytical tools as soon 
as they are generated and to obtain instant analytical results.  
We therefore read the data as it is generated from the data 
transfer module; with this approach, we can process the 
received data in real time almost any time. Real-time 
processing reads and writes data to different systems, 
including those that generate and use a constant data flow. 
The batch-processing  module: The batch processing module 
is the place where data blocks that have already been stored 
for a specified period of time are processed. This data contains 
millions of records for a day that can be stored as a file or 
record, etc. This particular file will undergo processing at the 
end of the day for various analyses that firm wants to do. 
Obviously, it will take a considerable amount of time for this 
file to be processed, which corresponds to batch processing. 
 

3.4. The Key Technologies 

Although the conceptual layer provides a coherent view of 
how data can be processed and made it available in an ITS 
environment, it is relevant to map potential technologies that 
may play a significant role in instantiating the proposed 
approach. A technological detail is recognized as one of the 
main contributions of the proposed architecture. 
But it should be note, that there are several technologies of big 
data processing, for that, and in answering this question, we 
adopted a systematic review of the literature on Big Data 
Frameworks and Big Data Transmission tools, the value of 
this part is to make a comparative study between existing 
technologies based on real simulations to extract the most 
appropriate and the most efficient technologies. 
 

A. Experimental Environment  

In this paper, experiments are based on a PC with the 
following hardware configuration: Intel (R) Core(TM) i7- 
6500U, CPU @3.0GHZ*8, 16.00GB RAM and 1TB hard 
disk, 64-bit Operating System. The software environment 
uses the same configuration: Linux operating system 
(Ubuntu 16.04). 

B. Data Set 

The data used in these experiments are taken from traffic 
accident statistics provided by the National Statistics Institute 
(NIS) for the Flemish region (Belgium)] (Bart Goethals, 
2014). 
A total of 340,184 road accident records are included in the 
data set. A total of 572 attribute values are represented in the 
data set. On average, 45 attributes are completed for each 
accident in the data set.  Traffic accident data contain a wide 
source of information on the different situations in which the 
accident occurred: Accident course (type of collision, road 
users, injuries), traffic conditions (maximum speed, priority 
control, environmental conditions (weather, lighting 
conditions, time of accident), road conditions (road surface, 
obstacles), human conditions (fatigue, alcohol) and 
geographical conditions (location, physical characteristics 
[7]. 

C. Big Data Frameworks Comparison 

-Apache Spark 
Apache Spark is a powerful processing framework that 
provides a user-freindly tool for efficient analytics of 
heterogeneous data. It was originally developed at UC 
Berkeley in 2009 [22]. Apache Spark is the next generation 
batch processing framework with stream processing 
capabilities. Built by using many of the same principles of 
Hadoop's MapReduce engine, Spark focuses primarily on 
speeding up batch processing workloads by offering full 
in-memory computation and processing optimization. Spark 
can be deployed as a standalone cluster (if paired with a 
capable storage layer) or it can hook into Hadoop as an 
alternative to the MapReduce engine [9].As shown in Fig 4, a 
Spark cluster is based on a master/slave architecture with 
three main components. 
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Figure 4: Spark Architecture [22] . 
-Apache Storm 
Storm [21] is an open source framework for processing large 
structured and unstructured data in real time. Storm is a fault 
tolerant framework that is suitable for real time data analysis, 
machine learning, sequential and iterative computation. 
Storm is geared for real time applications. As shown in Fig 5, 
a Storm program/topology is represented by directed acyclic 
graphs (DAG) [12]. The edges of the program DAG represent 
data transfer. The nodes of the DAG are divided into two 
types: Spouts and bolts. The spouts (or entry points) of a 
Storm program represent the data sources. The bolts represent 
the functions to be performed on the data. Note that Storm 
distributes bolts across multiple nodes to process the data in 
parallel. 

 
Figure 5:  Storm Architecture [21] 

 
-Apache Flink 
 
Flink [2] is an open source framework for processing data in 
both real time mode and batch mode. It provides several 
benefits such as fault-tolerant and large-scale computation. 
The programming model of Flink is similar to Map Reduce. 
By contrast, to Map Reduce, Flink offers additional high-level 
functions such as join, filter and aggregation. Flink allows 
iterative processing and real-time computation of flow data 
collected by various tools such as  

                                                                      
 
 

Table 2:. Comparison of big data processing frameworks 

 
 

 

 Data Type Data sources Processing 
mode 

Iterative 
computation 

Performance 

Flink Key values Kafka, kinesis Batch and 
streaming 

Yes  
Memory: 8 GB, 
CPU:4-8 Cores 

 
Spark RDD HDFS, DBMS and 

kafka 
Batch and 
streaming 

Yes  
Memory: 16 GB, 
CPU:8-16 Cores 

 
Storm Key values HDFS, DBMS and 

kafka 
streaming Yes  

Memory: 24 GB, 
CPU:8-16 Cores 
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Flume and Kafka. It allocates APIs to launch a distributed 
calculation in a clear and simple way. Flink ML is a 
machine-learning library that provides learning algorithms 
for 
creating fast and scalable Big Data applications. As shown in 
fig 6 there are different layers in the Flink ecosystem diagram. 
 

 
Figure 6: Flink ecosystem [2] 

 
-Discussion 
As shown in Table 2, iterative and incremental processing, 
micro-batch processing capabilities, and memory features are 
the highlights of spark. Spark-Shell is an interactive tool 
proposed by Spark which allows the exploitation of the Spark  
cluster in real time. After creating the interactive 
applications, they can then be interactively run in the cluster. 
Due to the Resilient Distributed Datasets (RDD) concept and 
DAG-based programming model, Spark is known to be very 
fast in certain types of applications. Flink shares many 
features with Spark. Complex Big Data structures, such as 
Flink graphics, offer great processing performance; they have 
APIs and specific tools for machine learning, predictive 
analytics, and graph flow analysis. Flink allows iterative 
processing and real-time computing on the flow of data 
collected by various tools such as Flume and Kafka. 
 To compare the three frameworks, we conducted three 
experiments using the data set presented below. The first 
experiment allows for comparing the performance as a 
function of time; Fig 7 shows that Flink and Storm have better 
processing rates compared to Spark, especially for large 
messages. 

 
 Figure 7:  Number of transaction test. 

 
 
In the second experiment, we compare the CPU consumption 
resources for the three frameworks. As shown in Fig. 8, Flink 
CPU consumption is low compared to Storm and spark. Flink 
uses about 18 of the available processors, while the use of the 
Storm processors varies between 35 and 41. This means that 
Flink can offer better results than other frameworks when 
CPU resources are more exploited. 
 

 
 

         Figure 8:  CPU consumption. 
 
For the third experiment, the data processing rate is compared 
with the number of nodes. As shown in Fig. 9, Apache Flink 
has a higher throughput than the others. Even for two Flink 
nodes already shows better results than Spark and Storm. 
Spark and Storm have almost linear growth. 
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          Figure 9:  Number of nodes. 
 

D. Big Data Transmission tools 
 
There are several tools for data transfer that offer almost the 
same task. In this case it is important to answer this question: 
how these tools transform the data from a source to another. 
In this section, we present a comparison of some tools for 
importing and exporting data in and out of our proposed 
platform, which depends on the nature of the data being 
processed, the mode of data transfer, hardware and operating 
system platforms, user interface, reliability and fault 
tolerance. However, providing a complete list of tools is out of 
reach of this article. Here we present the most used tools[15] 
These tools include Sqoop and Flume. 
   -Apache Sqoop 
Sqoop [20] and sqoop is a connection oriented, non-event 
based and open source software program for moving data 
between structured data stores and distributed file systems. 
Sqoop is mainly used for moving structured data (relational 
tables) stored in MySQL, Oracle or Microsoft SQL Server 
databases on a periodic basis as shown in Fig 10. 

 
 
Figure 10 : Sqoop ecosystem[20] and sqoop1. 
 
 

 
 

-Apache Flume 
Apache Flume [11] is used for importing event-based data 
into Hadoop Distributed File System (HDFS). Unlike Sqoop, 
it is a one-way data collection, i.e., importing only. Apache 
Flume is a standard, straightforward, robust and flexible tool 
for streaming data ingestion into Hadoop. This Apache 
project, originally developed by Cloudera, received the status 
of incubator in 2012. It mainly consists of a set of agents, each 
having an instance of the Java Virtual Machine (JVM), 
requiring at least three components such as Flume Source, 
Flume Channel and Flume Sink. (as shown in Fig 11). 

 
Figure 11:  Flume ecosystem [11]. 
 

Flume Source is responsible for collecting incoming streams 
as events that are passed on to the Flume Sink via Flume 
Channel. Flume Channel uses in-memory and disk queues for 
storing events. Flume Sink later removes events from the 
Flume Channel after writing data into HDFS files. Flume is 
robust, self-contained, reliable, fault tolerant and event-based 
tool, which also supports filtering events by enabling 
multi-hope events transmission. Flume has been developed to 
handle streaming logs and data. But the data is being changed 
in the system from time to time. It is difficult to batch the data 
due to its dynamic nature. Configuring flume agents is an 
easy task that can be written in Java programming language. 
We can build custom sources by using Facebook or Twitter 
APIs for receiving data from each end and having provisions 
for sending received data to the Flume Channel and Flume 
Sink [17]. 
-Discussion 
The summary of characteristics of the tools discussed above is 
shown in Table 3. Each tool is made for specific purposes. 
The similar characteristics are mainly due to the fact they are 
all playing with Hadoop ecosystem. Table 3 shows some use 
cases of the tools as discussed above. These tools help with 
migrating data from traditional data storage systems to 
HDFS. Sqoop is helpful in transferring structured data into 
HDFS. It can transfer bulk data and support bidirectional data 
transfer. Flume, on the other hand, is made for collecting 
different kind of log data and storing it into HDFS for further 
processing;  it can be useful for data generated from different 
services of smart cities. 
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Table 3: Comparison of big data transmission tools  

 

E. Other Tools 

Kafka [19] is a distributed messaging system. It has been used 
for collecting and delivering large volumes of log data with 
low latency [21]. Kafka provides the functionality of 
messaging system and it caters better throughput and fault 
tolerance. Kafka also performs some major tasks, which 
include monitoring operational data, log aggregation, website 
activity tracking, and event sourcing. Log aggregation 
collects log files from the web server and places them into a 
central storage area (HDFS). To prevent data loss, messages 
are stored on a disk and replicated within the cluster.  
 
As a result, and following the comparative study presented 
above, figure 12 illustrates the technological layer, 
highlighting the most appropriate and the most efficient 
technologies. 
 

 

 
 

3.5. Proposed Big Data Processing Platform for ITS 

The proposed architecture of the data processing platform for 
ITS has many advantages: reliability, scalability, high fault 
tolerance and high efficiency using technologies such as 
Flume, Kafka and Flink.  In this experimental part, we 
transported large amounts of accidents data using Flume, to 
the HDFS. The first step is to create an application and get the 
recordings using the experimental source provided by Apache 
Flume. then we use the memory channel to buffer these 
records and HDFS sink to push these DATA into the HDFS 
for batch mode processing. Finally, we send the data to kafka 
for streaming processing. The data generator (Accidents data 
generators), generates data that is collected by an 
intermediate node known as "Collector" that executes them. 
This data collector (which is also an agent) collects data from 
the Flume agent, which is aggregated and pushed into the 
HDFS. Our Flume Agent contains three main components, 
namely, the source, the channel and the sink (As shown in Fig 
13). 

 
 
 

Figure 12 : Technological data processing architecture. 
 
 

 Sqoop Flume 
 

Data Flow RDBMS, NoSQL DB, Hive, HDFS streaming data sources 
Type of Loading notdriven by events completelyevent-driven 

Used for parallel data transfers, collecting and aggregating collecting and aggregating data 
HDFS Link parallel For importing data, HDFS is the destination data generally flow to through HDFS channels 
Architecture Connector based architecture Agent based architecture 
Fetch Data structured data sources streaming data 

Performance It  reduces  the excessive storage and processing 
loads by transferring them to other system and has 

fast performance 

Flume is fault tolerant, robust and  has tenable reliability 
mechanism for failover and recovery.  

Use case transfer between RDBMS and HDFS. Data transfer 
is only required to analyze and gain some intuitions 

from the data. 

Analyzing huge amounts of log data helps identify 
unique threats or patterns. Flume helps collect, aggregate 

and moves this log data into HDFS. It is useful for 
sources, which generate a log and it can be useful for data 

generated from different services of smart cities. 
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                                                                      Figure 13: JVM Apache Flume Agent  
 

Figure 13: JVM Flame Agent 
 
 
Data on accidents is stored in Kafka messages as a 
character string in JSON format. To achieve this, a script 
that contains a producer and a Kafka consumer must be 
created. The producer will receive Flume information 
every second. Each piece of the information contained in 
the Flume's response will be redirected to the Kafka topic. 
The consumer will store the information of different 
accidents. Once Flink gets the records, it provides special 
Kafka connectors for reading and writing data; it is now 
ready to use DataStream with the Kafka connector, so we 
can send and receive messages from Apache Kafka. Flink 
is the heart of our data processing system; it can process 
either streams of streaming data through Stream Builder 
and DataStream API, or batch data sets with batch 
optimizer and DataSet API. Its execution engine is scalable 
and distributed, allowing for the processing of massive data 
(streaming or batch), The execution of iterative operations, 
memory management and optimization of processing 
costs. Flink has a cache for storing data during processing. 
In addition, Flink autonomously manages its internal 
memory using its own data extraction and serialization 
components. It also optimizes network transfer and disk 
writing. 

3.6. Experimental Results  

In this analysis, the goal was to test the performance of our 
architecture in real time processing and batch processing 
on different datasets. The datasets were synthetically 
generated, i.e., 1 Go, 2 Go ,8 Go  and run it on the platform 
cluster.  We use acceleration as criteria to measure the 
performance of the proposed platform in the two cases (real 
time  processing, Batch processing). When the size of the 
datasets increases by multiplying the number of 
transactions, as   shown in Figure 14, the platform is more 
efficient in real    time data processing. The reason real time 
processing is so fast is because it analyzes the data before it 
hits disk, so we can say that, in the point of performance, 
the latency of   batch processing will be in a minute to hours 
while the latency of real time processing will be in sec.  

 

                       Figure 14:  Experimental result. 

4. CONCLUSION 

In this paper, we have proposed a big data processing 
design for data flow specific to Smart Cities and applied on 
ITS.  This platform will make good use of the collected data 
by adopting a data modeling approach. We have described 
the functions and components for each step and identified 
specific technologies. the proposed architecture is 
implemented in three modules: data transmission system, 
data processing and analysis system and a data streaming 
system. Experimentally, the proposed technical tools led to 
convincing results in terms of performance and speed using 
technologies such as : Hadoop ,Flume, Kafka and Flink. 
Although the proposed design introduces new features to 
big data analytics for ITS, the present work remains 
limited, because it's still in progress, with the need to 
implement and validate the other layers of the proposed 
architecture, namely the data collection layer and the 
application layer, as well as the other components of the 
data processing layer. As further work, we will first 
complete the architecture proposed by the different 
remaining levels and layers, then we will develop 
applications using the model proposed in our architecture 
according to different analyses. The overall purpose is to 
have users just call this application, change some 
parameters, and then can conduct various statistical 
analyses of data. 
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