
Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112 
 

105 
 

 

 
ABSTRACT 
 
In software engineering, formal methods allow the design, 
modelling and verification of hardware and software systems. 
Formal methods introduce preciseness, remove ambiguity in 
specifications, and support the verification of requirements 
and design properties. Methods and approaches are needed to 
manage the formal models and handle their complexity. 
Refinement has been carried out for system artefacts ranging 
from modelling and design levels like architectures, and state 
machines to implementation and programming levels like 
source code. Refinement is a significant way for building 
complicated systems starting from simple ones by adding 
features gradually. Refinement has to be understood carefully 
in the context of formal specification and verification. This 
article provides a survey on some refinement techniques and 
methods and in the context of formal methods and software 
engineering. We believe that this survey sheds a light on the 
research direction in regards to the refinement of formal 
methods. This survey also helps formal methods practitioners 
and users in observing and understanding the advantages and 
limitations of refinements methods and techniques of various 
studied formal methods. Accordingly, they can decide which 
formal method is to be used in modelling systems via 
refinement or which formal method is to be extended with 
new concepts and notions to support refinement.  
 
Key words: Refinement, Formal Methods, Object-Oriented 
Formal Methods  
 
1. INTRODUCTION 
 
In software engineering, formal methods [1], [2] allow the 
design, modelling and verification of systems. Formal 
methods introduce preciseness, remove ambiguity in 
specifications, and support the verification of requirements 
and design properties. The specifications in formal methods 
could be viewed as mathematical models, which represent the 
intended behaviour of the systems and they are used to model 
several safety critical systems [3] such as: railway control 
systems, nuclear power plant control systems, aircraft control 
systems, intelligent transport systems, and medical systems. 
There exist different kinds of formal specifications and each 
has its own advantages and limitations. Some formal 
specifications are considered at the system modelling like 
(B-Method [2], Event-B [1], Z-Method [4] and VDM [5]), 

while another type is viewed as part of the system 
implementation level, in other words, the formal specification 
is added as supportive statements to the source code like 
Larch [6] and JML [7]. In this work, we concentrate on 
refinement in formal methods that are considered at modelling 
level. 
 
Refinement is considered as obtaining a better version of 
software than the original one during the development process 
[8]. This is because refinement has been known as a familiar 
technique and methodology to deal with the changing and 
new requirements and to provide better concrete versions of 
the system artefacts at hand. This includes: vertical refinement 
in which the abstract requirements are refined into more 
detailed ones and horizontal refinement in which new 
requirements are handled in the refined model. Refinement 
has been carried out for system artefacts ranging from 
modelling and design levels like architectures, and state 
machines to implementation and programming levels like 
source code. Stepwise refinement is a powerful way for 
developing complicated systems using simple ones by adding 
features incrementally [9]. 
 
Several refinement methods and techniques have been 
introduced in formal methods and software engineering.  In 
this article, we provide an overview of some refinement 
methods and techniques in the context of software 
engineering, formal methods and some object oriented formal 
methods. We believe that the overview may help formal 
methods users in understanding the refinements methods and 
techniques of various studies formal methods.  
 
In this article, we deal with some well-known formal methods 
(B-Method, Event-B, Z-Method, VDM) and some 
object-oriented formal methods. The research questions that 
we handle in this work are: What are the main refinement 
methods and techniques proposed in software engineering and 
at which development phase/stage are they performed?, what 
are the refinement methods and techniques proposed for the 
formal methods studied in this work?. To answer these 
questions, we survey the research articles, technical reports, 
and theses from the known databases (ACM, IEEE Xplore, 
Science Direct) and universities repositories. We only focus 
on the sources that are related to the formal methods of 
interest to us. In future, we will extend our work to cover more 
formal methods and more refinement techniques.  
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This paper is organized as follows. Section 2 presents an 
overview on some formal methods (B-Method, Event-B, 
Z-Method, VDM) and some object-oriented formal methods. 
Section 3 presents some refinement methods in software 
engineering in general. Section 4 presents refinement methods 
and techniques in formal methods. Section 5 concludes the 
work. 
 
2. FORMAL METHODS 
 
 In this section we provide an overview of some formal 
methods (B-Method, Event-B, Z-Method, VDM) and some 
object-oriented formal methods. 
 

2.1. B-Method 
 
B-method [2], [10] is a widely used formal method that allows 
developing correct-by-construction systems through different 
levels of abstraction. Specific conditions are determined and 
must be preserved through refinement of the abstract 
specification into more concrete specifications. The 
specifications in B-Method are called machines where 
abstract machines provide an abstract system view while the 
refinement machines provide a more concrete view. 
B-method is based on the predicates, set theory and first order 
logic.  
 
Each B-Method machine consists of the following clauses: 
MACHINE, SETS, CONSTANT, PROPERTIES, 
VARIABLES, INVARIANT, INITIALIZATION, and 
OPERATIONS.   MACHINE defines the machine name. 
SETS introduces the used sets in the machine. CONSTANT 
introduces the used constants in the machine. PROPERTIES 
contains the constants definition. VARIABLES includes the 
variables that represent the machine state.  Variables are 
restricted by conditions called the invariants that are 
introduced in INVARIANTS. INITIALIZATION defines the 
machine initial state. OPERATIONS includes the operations 
that change the machine state. 
 

2.2. Event-B 
 
Event-B [1] is a variant of B-method and is based on action 
systems [11]. The mathematical notation used in Event-B is 
based on the set-theory [12]. One of the differences between 
B-Method and Event-B is that the latter differentiates the 
static and dynamic parts. An Event-B context contains the 
types, axioms and constants, while an Event-B machine 
represents the changes of the state variables via events. 
Machines contain variables, events and invariants. Variables v 
define the machine state, constrained by the invariants I(v). 
The events change the state of the machine. They are 
described by guards G(v,x), and actions A(v,x,v’). G(v,x) 
represent the conditions under which A(v,x,v’) changes the 
value of v to a new value v’. x represents the parameters that 
are local variables of the event. 
 

2.3. Z-Method 
 
Z-method [4], [13], [14] is a formal specification language 
initiated by the programming research group at Oxford 
university to specify systems based on algebra set theory and 
predicate calculus.  
 
Every specified system in Z is started with an abstract state 
and a sequence of operations which change the system state 
and result in the system evolution. The abstract state is 
represented by mathematical structures such as sets, relations, 
functions and sequences without considering the 
implementation mechanism, but focuses on making a system 
specification more readable to users. The abstract state and 
additional initial conditions should specify an initial state of 
the system.  Z specifications are structured as related schemas 
which are mainly used to specify system state space, 
operations and invariants. State space is represented by the 
combination of system variables. Operations change the 
system state leading to the existence of the before and after 
states. Invariants are the general conditions, which must be 
preserved and should relate the before and after states for all 
the possible operations. 
 

2.4. VDM 
 
Vienna Development method VDM [5], [15], [16] is a formal 
development method invented by the researchers of IBM 
laboratories in Vienna. VDM is used for specification, 
modelling, and design of computer based systems. VDM 
started as a definition language at 1970s and evolved to 
development method at 1980s. The specification language of 
VDM is called VDM-SL [17] which is considered as a 
notation for system specification.  
 
VDM-SL specification language is structured as modules. 
VDM-SL module consists of several basic clauses: types, inv, 
state, init and operations. types clause defines the basic types 
which are used for the system variables types definition. inv 
clause defines the general conditions which must be always 
preserved. state defines the system variables and their types 
which are defined in types clause. init initializes the system 
variables to their initial values. operations clause defines the 
several system functionalities which change the system state 
by changing the values of the system state variables. 
 

2.5. Object-Oriented Formal Methods 
 
Modelling systems using object oriented features benefits in 
the structuring, organizing and reuse. Many methods and 
languages are proposed to augment formal methods with 
object oriented features in order to get the advantages from 
both formal methods and object orientation.  
 
Several variants of the conventional Z language have been 
proposed to augment Z with the object-oriented structuring 
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features [18]. Some of these are Object-Z [19], [20], [21], Z++ 
[22], OOZE [23], Hall’s style [24], and Schuman and Pitt’s 
variant [25]. Object-Z is considered the most applicable and 
the most supporting for object-oriented features [18]. 
Object-Z introduces the class construct to the conventional Z 
that encapsulates the state and operations schemas, and allows 
their inheritance.  
 
VDM is extended in VDM++ [26] with class, object, 
inheritance, and a formalism feature to specify the methods 
invocation sequence. 
 
Several studies have been proposed in the literature to 
combine the formal preciseness of B-Method and the object 
oriented features of UML. In [27], transformation rules are 
proposed to translate the UML behavioural diagrams to 
formal B specifications. This work is extended in [28] to 
support mapping UML class operations to B operations where 
a class operation and its related data are mapped to the same B 
abstract machine. In addition, the automatic derivation from 
UML behavioural diagrams into B specifications is addressed 
in [28]. The integration of UML and B is extended in [29] to 
support the transformation of UML object constraint language 
OCL into B considering the class invariants, guard conditions 
in state-machines and the OCL specifications in class 
operations. In [30], a more extensive account is provided 
completing the work in [27]-[29] where the transformation 
rules are formalized and the formal verification is introduced 
for behavioural elements of UML models into B abstract 
machines. 
 
UML-B [31]-[34] is a graphical front end of Event-B. It 
shares similar properties with UML object oriented modelling 
language, but UML-B has its own meta-model. UML-B is 
supported by a tool which provides the user with an 
environment for drawing its diagrams. These diagrams are 
translated to Event-B in order to be verified using Rodin 
theorem provers. UML-B offers four types of diagrams which 
are package diagram, in which contexts and machines are 
represented with the interconnecting relationships, context 
diagram where static part of system is defined, class diagram 
where classes, variables, events and invariants are defined and 
state machine diagram which represents system state changes 
when executing transitions. 
 
3. REFINEMENT IN SOFTWARE ENGINEERING 
 
This section reviews some refinement techniques and 
methods in software engineering context covering different 
software development lifecycles. This section also compares 
the techniques and methods by their application level and the 
refinement proof type. The refinement proof is to prove that 
the refined model/ specification of the system refines 
correctly the abstract version. 
 
System models could be represented by state space in [35]. A 
refinement mapping [35] could be considered between low 
level specification state space Sm1 and high level 
specification state space Sm2. State machine behaviour is 

represented by transitions or steps allowed in different 
scenarios. Allowed behaviour by Sm1 is mapped to allowed 
behaviour by Sm2, this research answers the question on how 
to ensure that the low level specification represented by Sm1 
is a correct implementation of high level one Sm2. A complete 
practical hierarchical specification method has been resulted, 
and it showed that, under some assumptions and 
circumstances about specifications, if low level specification 
Sm1 is implementing high level specification Sm2, the 
existence of refinement mapping between the two 
specification levels is guaranteed by adding auxiliary 
variables.  
 
A refinement is considered as system classes and operations 
changes during evolution [36]. It has also a concept where 
features are added incrementally. These features encapsulate 
individual characteristics, where they are used to distinguish 
programs among other different related programs. Most 
systems nowadays are collaborating individual’s 
subcomponents with each other like: client-server 
architectures and tool-suites such as Microsoft Office. Several 
tools exist to compose feature refinements which are usually 
used to generate source code of individual programs. This 
study introduces AHEAD (Algebraic Hierarchical Equations 
for Application Design) model to show how step-wise 
refinement scales to synthesize several programs and 
non-code system representations and that software could have 
a mathematical structure represented as a set of equations. 
One individual program represented by source code is started 
with, and GenVoca model is used to show that this code 
representation could be expressed by an equation. Then, 
AHEAD model is introduced to handle multiple programs and 
generalize the equational specifications to their multiple 
representations. The proposed AHEAD model is related with 
other models like Aspect Oriented Programming and 
multidimensional separation of concerns. AHEAD model is 
supported by tools to show the applicability of this study.  
 
Refinement could be considered a way for handling system 
programming complexity [37]. Better programming tools are 
needed to overcome the complexity of integrating large 
systems, so a tool program development system (PDS) to 
support the overall program production is introduced. This 
software production is covering the several system lifecycle 
levels starting from requirement and ending with the 
implementation and coding. PDS tool is a programming 
environment supports stepwise refinement allowing changes 
from high level specifications to be reflected at lower 
specification levels. Different levels of specifications are not 
necessarily created from abstract high levels to more concrete 
lower ones, but the order is not important and any requirement 
of the system at hand could be reflected directly at its 
corresponding system level.  
 
As some refinement techniques focuses on specific 
implementation levels or the overall levels, other studies put 
the interest solely on software architectural level as base for 
creating the most concrete level later. Focusing on 
architecture refinement as in [38] ensures a good level of 
architectural integrity, consistency and quality.  Step-wise 
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refinement is also considered for software architecture to cope 
the complexity of architecture conversion process from its 
abstract version to concrete one. Component-based 
refinement method, called refinement pattern, is proposed 
which is a framework for refining architecture. This method 
concentrates on components refinements with several steps. It 
starts with defining the architecture style, describing the 
abstract component which needs refinement, refining the 
component, and it ends with defining the resulted refined 
architecture. Refinement pattern uses novel design language 
π-ARL for architecture refinement considering date, port and 
component refinements.  
 
Refinement may be used in model driven engineering context 
for object model [39]. An appropriate notation of object 
models refinement is discussed in this study. A formal support 
for model driven object oriented development is introduced in 
the objective of generation process for software artefacts from 
structural models and investigating applicability of data and 
refinement to object models. 
 
Table 1 presents a comparison between the different 
refinement methods and techniques considering factors like: 
the software development life cycle where refinement is 
applied and the type of refinement proof.  

Table 1: Refinement methods comparison 

Study Level/ Stage Refinement Proof  
"The existence 
of refinement 
mappings." [35] 

Modelling- State 
Machine  

Behavioural 
simulation of low 
level state machines 
to high ones 

"Scaling 
step-wise 
refinement.” 
[36] 

Specification(M
athematical) and 
implementation 
(source code) 

Source code 
automatic 
generation from 
mathematical 
specification 

"A system for 
program 
refinement." 
[37]  

several system 
lifecycle levels 

Problem 
understanding of the 
system at a specific 
level 

"A 
component-base
d method for 
software 
architecture 
refinement." 
[38] 

Architectural 
level 

Each level is 
decomposed to get a 
set of components 
which represents the 
later concrete level 
until no more 
component is 
decomposable  

"Compositionali
ty and 
refinement in 
model-driven 
engineering." 
[39] 
 

Modelling 
(Object Models) 

Formal proof 
support  

 
 

4. REFINEMENT IN FORMAL METHODS 
 
Several refinement methods and techniques are introduced in 
formal methods. In this section, we present refinement in 
formal methods (B-Method, Event-B, Z-Method, VDM) and 
object-oriented formal methods. 

4.1. Refinement in B-Method 
 
Refinement in B-Method [2], [10] allows capturing 
requirements in modelling gradually by a sequence of 
machines where an abstract machine may be refined by a 
refinement machine. This may have sets, concrete variables, 
constants and properties. Also, the refinement machine may 
include one or several machines.  
 
There are two refinement types: data refinement and 
algorithmic refinement. In data refinement, new variables 
may be added to the refinement machine and they are linked 
to the variables of the abstract machine by gluing invariants. 
In algorithmic refinement, the operations of the abstract 
machine may be refined by more deterministic operations in 
the refinement machine. 
 

4.2. Refinement in Event-B 
 
Refinement allows modelling in Event-B gradually through 
an ordered sequence of models where each model refines its 
preceding one [1], [40], as in Figure 1. Two refinement types 
exist for Event-B: super-position and data refinement.  
 

 
Figure 1: Refinement in Event-B 

 
Super-position or so-called horizontal refinement is to extend 
the model with new requirements that corresponds to the 
model spatial extension focusing on the mathematical 
representation using the set-theoretic notation specifying the 
state-space invariants and its transitions. The state is expanded 
by adding new variables, strengthening events guards, adding 
new guards, and new events. This type of refinement stops 
when there is no more new requirement to be taken into 
account in the model. 
 
Data-refinement or so-called vertical refinement is performed 
when no more new requirements are needed for consideration. 
The same state space variables and transitions are refined to 
more discrete details facilitating the model implementation 



Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112 
 

109 
 

 

using some programming languages. In data-refinement, 
variables could be replaced by new ones where gluing 
invariants are required to relate the abstract and refined states. 
An example of data-refinement is refining a variable of the 
type integer number to a new one of the type natural number. 
In both super-position, and data refinement, proofs are 
required to show that the refinement steps do not violate the 
invariants of the abstract steps. Generally speaking, machines 
are refined in terms of variables and events while contexts are 
extended in Event-B models. 
 
During the refinement, the state variables are extended by new 
super-position or data-refined variables. In the refinement 
machine, existing events are refined, new events that refines 
"skip" step are introduced using only the new variables.  
 
Event-B events could be refined by retaining them, renaming 
or splitting into several cases. In the case of retention or 
renaming, event parameters could be added or replaced 
provided that a witness is introduced for every removed 
parameter. Event guards could be changed or added provided 
that the event overall guards are not weakened. New event 
actions may be added provided that they only modify new 
variables. Existing event actions may be modified correctly 
provided that they simulate the same behaviour in the abstract 
event specification. Event splitting is done when more than 
one event in the refinement specification is refining one 
abstract event which does not show the detailed cases 
provided in its refining events. 
 

4.3. Refinement in Z-Method 
 
Refinement in Z [41], [42] includes: data refinement, 
operations schemas refinement, simulation and functional 
refinement. An operation schema in Z corresponds to a 
relation on the states of the specified system. An operation is 
correctly refined when the relation is correctly refined. A 
retrieve relation R is defined to represent the relationship 
between abstract and concrete schemas. To decide if R is a 
simulation, operations of the abstract and concrete schemas 
have to be compared.  Functional refinement is a special case 
that occurs when the relations used in refining Z 
specifications are functions. 
 

4.4. Refinement in VDM 
 
The refinement in VDM has been introduced in [43]. System 
development in VDM is a sequence of specifications starting 
from abstract specifications and gradually following with 
more concrete specifications. The concrete specification is a 
valid refinement of the abstract one if refinement proof 
obligations hold.  The refinement in VDM is defined as data 
reification in which data objects are refined to the level of the 
machine or the language constructs and at this stage operation 
decomposition is carried out. 
 

4.5. Refinement in Object-Oriented Formal Methods 
 
Refinement methods and techniques are introduced for 
Object-Z in [42]. A method of refinement is introduced in [44] 
for the integration notation Object-Z and CSP 
(Communicating Sequential Processes). The method has two 
approaches: First is the failures approach, and second the 
state-based approach. The former is based on CSP refinement 
where the failures and divergences are calculated for two 
processes/classes P1 and P2 and it is said that P2 is a 
refinement of P1 if failuresP2 ⊆ failuresP1 and 
divergencesP2 ⊆ divergencesP1. The state-based approach 
enables the refinement to be verified at the specification level 
when calculating the failures is a difficult task. Two 
simulation-based refinement relations are introduced, called 
upward and downward simulations, where an object-Z class C 
is a simulation of a class A if a retrieve relation exists such that 
every abstract relation in A is recast in a concrete one in C. 
The work in [44] does not consider the situation where classes 
contain objects as state-variables. This is extended and 
considered in [45]. Two refinement techniques are proposed 
in [45] for Object and operation in Object-Z specifications 
changing their granularity. This provides flexibility when 
refining specifications by supporting refinement to various 
language notions. A class C may be split during refinement 
into interacting classes C1,..Cn. A class operation C.Op may 
be split to a sequence of concrete operations C.Op1,...C.Opn. 
It is either the case that one concrete operation C.Opn refines 
the abstract one C.Op, and the rest refines the stuttering step 
called skip, or all the concrete operations C.Op1,...C.Opn 
refines C.Op. A methodology for class composition 
refinement is introduced in [45]. The methodology considers 
the conjunction of operations from different classes 
supporting the refinement of individual classes 
compositionally by isolating constraints that couple the 
classes.  
 
Refinement methods and techniques are proposed for 
VDM++. In [47], a method of sub-typing and sub-classing is 
proposed for VDM++. In [48], a method for annealing and 
data-decomposition is introduced. In this work, the main class 
may be decomposed into communicating classes. In [49], 
VDM++ is extended by VDM-R since VDM++ is limited in 
terms of the refinement consistency checking called 
inter-specification consistency verification. In this work, the 
relationships between specifications are formally verified by 
VDM-R annotations. 
 
UML-B refinement has been introduced in [50], [51] and is 
based on Event-B refinement notion. Class and state machine 
refinement has been covered in [50]. Two main features exist 
for UML-B refinement: Data-refinement and 
event-refinement. Data-refinement is reflected in class-types, 
classes, attributes, states and variables. Class-types are 
introduced in contexts and retained in the extended context, 
and only the new features that are added to the class type are 
introduced. Classes in refinement may be refined (retained), 
newly introduced (super-position), or data-refined where the 
gluing invariants are necessary. Attributes in refinement 
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maybe inherited, newly introduced (super-position), or 
data-refined.  
 
UML-B events refinement is similar. UML-B events are 
represented by: class events, state machines transitions and 
machine events. A class event may be retained, refined or 
split. Class event refinement may be done by adding or 
replacing event parameters, guards or actions to perform 
UML-B class data refinement. It is not necessary to preserve 
the containment feature for class event and they could be 
moved to different classes or to the machine level and the 
witness for the previous lost class instance parameter must be 
introduced. Considering the abstract class C that has class 
events: ce1, ce2, ce3, ce4 and ce5. Five different class event 
refinement cases exist: First, ce1 could be introduced in the 
refined class RC as refining event of abstract ce1 (ce1 refines 
ce1). Second, new namely event ce6 may introduced in RC as 
refining event of ce2 (ce6 refines ce2). Third, ce3a and ce3b 
class events could be introduced in RC as individual cases that 
refine the abstract event ce3 (ce3a refines ce3, ce3b refines 
ce3). Fourth, ce4 could be refined and transferred to another 
class D, but a witness must be provided in this case for the lost 
class RC instance parameter (Class D event ce4 refines ce4). 
Fifth, class event ce5 could be transferred to machine level as 
machine event, where an event parameter which reveals the 
event belonging of the abstract class and a witness for 
replacing the lost parameter are introduced (Machine event 
ce5 refines ce5). State machine transitions are refined 
similarly as class events, but with a small difference in that 
transition source state or target cannot be modified since this 
is related to state transition guards and actions respectively 
and must consistent with their abstract version. State 
machines could be refined by detailed elaborating models. 
State transition may be refined by splitting in which several 
transitions representing the abstract state transition individual 
cases may be introduced. A state may be elaborated by a 
nested state machine which represents a more detailed 
behaviour of its abstract version. 
 
 
5. CONCLUSION 
 
Refinement is considered as obtaining a better version of 
software than the original one during the development 
process. This is because refinement has been known as a 
familiar technique and methodology to deal with the changing 
and new requirements and to provide better concrete versions 
of the system artefacts at hand. 
 
Formal methods in the software engineering discipline allow 
the design, modelling, verification, and maintenance of 
hardware and software systems. Formal methods introduce 
preciseness, remove ambiguity in specifications, and support 
the verification of requirements and design properties. 
Several refinement methods and techniques have been 
introduced in formal methods and software engineering. 
Refinement has to be understood carefully in the context of 
formal specification and verification. In this article, we 

provide an overview of some formal methods and refinement 
methods and techniques in the context of software 
engineering, formal methods and some object oriented formal 
methods. We believe that this survey sheds a light on the 
research direction in regards to the refinement of formal 
methods. This survey also helps formal methods practitioners 
and users in observing and understanding the advantages and 
limitations of refinements methods and techniques of various 
studies formal methods. Accordingly, they can decide which 
formal method is to be used in modelling systems via 
refinement or which formal method is to be extended with 
new concepts and notions. 
 
In this article, we focus on refinement in formal methods at 
the modelling level. We intend to extend this work to cover 
more formal methods at other development levels such as 
implementation. 
 

6. ACKNOWLEDGEMENTS 

Thanks to the Faculty of Computer Science and Information 
Technology, UPM and the MOHE for the financial support 
via Fundamental Research Grant Scheme, Project Code: 
08-02-13-1368FR. 
 
 
REFERENCES 
 
[1] J. R.  Abrial. Modeling in Event-B: System And 

Software Engineering, Cambridge University Press, 
2010.  
https://doi.org/10.1017/CBO9781139195881 

[2] J. R.  Abrial. The B-book: Assigning Programs To 
Meanings, Cambridge University Press, 2005.  
https://doi.org/10.1109/INFOCT.2019.8711369 

[3] S. P. Nanda and E. S. Grant. A survey of formal 
specification application to safety critical systems, in 
Proc. 2019 IEEE 2nd International Conf. on Information 
and Computer Technologies (ICICT) IEEE, March 2019, 
pp. 296-302.  

[4] J.P. Bowen. Formal Specification and Documentation 
Using Z: A Case Study Approach, London: International 
Thomson Computer Press, 1996.  

[5] D. Bjørner. The Vienna Development Method (VDM), 
in Mathematical Studies of Information 
Processing,  Lecture Notes in Computer Science, vol. 
75, E.K. Blum, M. Paul and S. Takasu, Ed. Berlin, 
Heidelberg: Springer, 1979, pp. 326-359.  
https://doi.org/10.1007/3-540-09541-1_33 

[6] S. J. Garland, J. V. Guttag and J. J Horning. An 
Overview of Larch. in Functional Programming, 
Concurrency, Simulation and Automated Reasoning, 
Berlin, Heidelberg: Springer, 1993, pp.329-348. 
https://doi.org/10.1007/3-540-56883-2_15 

[7] G. T. Leavens, E. Poll, C. Clifton,  Y. Cheon, C. Ruby,  
D. Cok, and, W. Dietl. JML Reference Manual, 2008.  

[8] A. Cavalcanti, A. Sampaio, and J. Woodcock 
(Eds.). Refinement Techniques in Software 



Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112 
 

111 
 

 

Engineering: First Pernambuco Summer School on 
Software Engineering, PSSE 2004, November 
23-December 5, 2004, Revised Lectures, vol. 3167. 
Recife, Brazil: Springer, 2006.  
https://doi.org/10.1007/11889229 

[9] E. W. Dijkstra and E. U. Informaticien. A discipline of 
programming, vol. 1, Englewood Cliffs: Prentice-hall, 
1976.  

[10] K. Lano. The B language and method: a guide to 
practical formal development, London: Springe-Verlag, 
1996.  
https://doi.org/10.1007/978-1-4471-1494-9 

[11] R. J. Back and R. Kurki-Suonio. Decentralization of 
process nets with centralized control, Distributed 
Computing, vol. 3, no. 2, pp. 73-87, 1989.  

[12] J. R. Abrial. From Z To B And Then Event-B: 
Assigning Proofs To Meaningful Programs, 
in International Conference on Integrated Formal 
Methods, Berlin, Heidelberg: Springer, 2013, pp. 1-15. 

[13] J. P. Bowen. Comp. specification. Z and Z FORUM 
frequently asked questions, in International 
Conference of Z Users, Berlin, Heidelberg: Springer, 
1998, September, pp. 407-416.   
https://doi.org/10.1007/978-3-540-49676-2_25 

[14] J. P. Z. Bowen,: A formal specification notation, 
in Software specification methods, London: Springer, 
2000, pp. 3-19.  

[15] C. B. Jones. Scientific decisions which characterize 
VDM, in Formal Methods, FM’99, J.M. Wing, J. 
Woodcock and J. Davies, Ed. Berlin, Heidelberg: 
Springer, 1999, pp. 28-47.  

[16] C. B. Jones. Systematic Software Development Using 
VDM, Vol. 2, Englewood Cliffs: Prentice Hall, 1990.  

[17] V. S. Alagar and, K. Periyasamy. Specification of 
Software Systems. Springer Science & Business Media, 
2011. 

[18] S. Stepney, R. Barden, R. and D. Cooper. A survey of 
object orientation in Z. Software Engineering 
Journal, vol. 7, no.2, pp. 150-160, 1992.  

[19] G. Smith. An object-oriented approach to formal 
specification, Ph.D. dissertation, University of 
Queensland, 1992.  

[20] R. Duke, G. Rose and G. Smith. Object-Z: A 
specification language advocated for the description 
of standards, Computer Standards & Interfaces, vol. 
17, no. 5-6, pp. 511-533, 1995.  
https://doi.org/10.1016/0920-5489(95)00024-O 

[21] G. Smith. An Object-Oriented Development 
Framework for Z, in Z User Workshop, Cambridge 
1994,  J.P. Bowen, Ed. London: Springer, 1994. 

[22] K. Lano. Z++, An Object-Orientated Extension To Z, 
in Z User Workshop, Oxford 1990, J.E. Nicholls, Ed. 
London: Springer, 1991.  
https://doi.org/10.1007/978-1-4471-3540-1_11 

[23] A.J. Alencar and J.A. Goguen (1991) OOZE: An 
Object Oriented Z Environment. In: America P. 
(eds) ECOOP'91 European Conference on 
Object-Oriented Programming. ECOOP 1991. 
Lecture Notes in Computer Science, vol. 512. Berlin, 
Heidelberg: Springer, 1991. 

[24] A. Hall. Using Z as a specification calculus for 
object-oriented systems, in VDM '90 VDM and Z — 
Formal Methods in Software Development. VDM 
1990, Lecture Notes in Computer Science, vol. 428, D. 
Bjørner, C.A.R. Hoare and H. Langmaack, Ed. Berlin, 
Heidelberg: Springer, 1990, pp. 290-318.  

[25] D. Carrington. ZOOM Workshop Report, in Z User 
Workshop,  Workshop in Computing, J. E. Nicholls, Ed. 
London: Springer-Verlag,  1992, pp. 352-364.  
https://doi.org/10.1007/978-1-4471-3203-5_16 

[26] E. Durr and J. Van Katwijk. VDM++, a formal 
specification language for object-oriented designs, 
in Proc. Computer Systems and Software Engineering, 
The Hague, Netherlands, 1992, pp. 214-219.  

[27] H. Ledang and J. Souquieres. Formalizing UML 
behavioral diagrams with B, in Tenth OOPSLA 
Workshop on Behavioral Semantics: Back to Basics, 
Tampa Bay, Florida, USA, October, 2001.  

[28] H. Ledang and J. Souquières. Modeling class 
operations in B: application to UML behavioral 
diagrams, in Proc. 16th IEEE International Conference 
on Automated Software Engineering (ASE 2001), 2001, 
pp. 289-296.  

[29] H. Ledang and J. Souquières. Integration of UML and 
B specification techniques: Systematic 
transformation from OCL expressions into B. 
in Proc. Ninth Asia-Pacific Software Engineering 
Conference, 2002, pp. 495-504.  

[30] N. T. Truong and J. Souquieres. Verification of 
behavioural elements of UML models using B, 
in Proc. 2005 ACM symposium on Applied computing, 
2005, pp. 1546-1552.  
https://doi.org/10.1145/1066677.1067024 

[31] C. Snook and M. Butler. UML-B: Formal modeling 
and design aided by UML, ACM Transactions on 
Software Engineering and Methodology (TOSEM), vol. 
15, no. 1, pp. 92-122, 2006. 

[32] C. Snook and M. Butler.  UML-B and Event-B: an 
integration of languages and tools, in Proc. IASTED 
International Conference on Software Engineering (SE 
'08), Claus Pahl (Ed.), California, USA, 2008, 336-341. 

[33] C. Snook and M. Butler. UML-B: A plug-in for the 
Event-B tool set, in Abstract State Machines, B and Z. 
ABZ 2008, Lecture in Computer Science, vol. 5238: 
Springer-verlag, 2008. 

[34] C. Snook, I. Oliver and M. Butler. The UML-B profile 
for formal systems modelling in UML, in UML-B 
specification for proven embedded systems design, 
Boston: Springer, 2004, pp. 69-84. 

[35] M. Abadi and L. Lamport. The existence of refinement 
mappings, Theoretical Computer Science, vol. 82, no. 2, 
pp. 253-284, 1991.  

[36] D. Batory, J. N. Sarvela and A. Rauschmayer. Scaling 
step-wise refinement. IEEE Transactions on Software 
Engineering, vol. 30, no. 6, pp. 355-371, 2004.  
https://doi.org/10.1109/TSE.2004.23 

[37] T. E. Cheatham, J. A. Townley and, G. H. Holloway. A 
system for program refinement, in Proc. 4th 
international conference on Software engineering, NJ, 
USA: IEEE Press, 1979, pp. 53-62.  



Muhammed Basheer Jasser et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 105- 112 
 

112 
 

 

[38] J. Zhang, X. Ban, Q. Lv, J. Chen and D. Wu. A 
component-based method for software architecture 
refinement, in Proc. 29th Chinese Control Conference, 
Dalian, China, July 2010, pp. 4251-4256. 

[39] J. Davies, J. Gibbons, D. Milward and J. Welch. 
Compositionality and refinement in model-driven 
engineering. in Formal Methods: Foundations and 
Applications. SBMF 2012. Lecture Notes in Computer 
Science, vol. 7498, Berlin, Heidelberg:  Springer,  2012, 
pp. 99-114. 

[40] J. R. Abrial and S. Hallerstede Refinement, 
decomposition, and instantiation of discrete models: 
Application to Event-B.  Fundamenta 
Informaticae, vol. 77, no. 1-2, pp. 1-28, 2007. 

[41] J. Woodcock and J. Davies. Using Z: Specification‚ 
Refinement and Proof, UK: Prentice Hall, 1996.  

[42] J. Derrick and E. A. Boiten. Refinement in Z and 
Object-Z: foundations and advanced applications, 
London: Springer-Verlag, 2014.  

[43] C. B. Jones. Systematic software development using 
VDM, vol. 2, Englewood Cliffs: Prentice Hall, 1990.  

[44] G. Smith, and, J. Derrick. Refinement and verification 
of concurrent systems specified in Object-Z and CSP. 
In Proc. First IEEE international conference on Formal 
engineering methods, Hiroshima, Japan, 1997, pp. 
293-302. 

[45] J. Derrick and E. Boiten. Refinement of objects and 
operations in Object-Z. in Formal Methods for Open 
Object-Based Distributed Systems IV. FMOODS 2000. 
IFIP Advances in Information and Communication 
Technology, vol. 49, S.F. Smith and C.L. Talcott, 
Ed.  Boston, MA: Springer, 2000, pp. 257-277.  
https://doi.org/10.1007/978-0-387-35520-7_13 

[46] T. McComb and G. Smith. Compositional class 
refinement in Object-Z. In Formal Methods. FM 
2006, Lecture Notes in Computer Science, vol. 4085. 
J. Misra, T. Nipkow and E. Sekerinski, Ed. Berlin, 
Heidelberg: Springer, 2006, pp. 205-220. 

[47] K. Lano and S. J. Goldsack. Refinement, Subtyping 
and Subclassing in VDM++. in Theory and Formal 
Methods, pp. 341-363, 1994.  

[48] S. J. Goldsack and K. Lano. Annealing and data 
decomposition in VDM. ACM Sigplan Notices, vol. 31, 
no. 4, pp. 32-38, 1996.  

[49] Y. Kawamata, C. Sommer, F. Ishikawa and S. Honiden. 
Specifying and checking refinement relationships in 
VDM++, in Proc. Seventh IEEE International 
Conference on Software Engineering and Formal 
Methods, Vietnam, 2009, pp. 220-227.  

[50] M.Y. Said, M. Butler and C. Snook. Language and tool 
support for class and state machine refinement in 
UML-B. in FM 2009: Formal Methods. FM 2009, 
Lecture Notes In Computer Science, vol. 5850, A. 
Cavalcanti and D.R. Dams, Ed. Berlin, Heidelberg: 
Springer, 2009, pp 579-595. 
https://doi.org/10.1007/978-3-642-05089-3_37 

[51] M.Y. Said, M. Butler and C. Snook. A method of 
refinement in UML-B, Software & Systems 
Modeling, vol. 14, no. 4, pp. 1557-1580, October 2015.  
https://doi.org/10.1007/s10270-013-0391-z 


