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ABSTRACT 
 
IoT applications are becoming widespread in monitoring and 
managing critical infrastructure. Many attacks have been 
demonstrated in the state-of-the-art on IoT resources. These 
attacks make use of vulnerabilities present in various 
connected systems and the Internet of Things (IoT). The 
state-of-the-art presents many approaches to detect and 
mitigate such attacks on IoT resources.  The early attack 
detection mechanism is essential to prevent damage to the IoT 
system and human.  This paper presents an algorithm for early 
detection of attacks on IoT resources through use of predictive 
descriptor tables. Effectiveness of the proposed algorithm is 
evaluated through experimental setup built using Google 
cloud platform. Experimental results show that the proposed 
algorithm is efficient in the detection of attacks in real-time.  
 
Key words: IoT, IoT Security, Cloud Computing, Early 
Detection. 
 
1. INTRODUCTION 
 

The Internet of Things (IoT) is being accepted in every 
business domain including but not limited to energy, 
healthcare, construction, oil and gas, manufacturing, 
transportation and agriculture. These widespread applications 
are motivated by the capability of IoT systems to interconnect 
and communicate without human intervention. This capability 
of the IoT system makes it an attractive solution for 
continuous monitoring, taking autonomous decisions and 
controlling connected systems. These solutions reduce 
dependency on human intervention and human errors.  Such 
IoT systems provided real-time surveillance, support and 
helped to keep critical infrastructure functioning during recent 
COVID-19 outbreak when most of the human were locked 
down. Applications of IoT devices during outbreak includes 
connected thermometers for identifying COVID-19 hotspots, 
connected wearable for monitoring health status and 
connected robots for disinfecting the high-risk area.  

An Autonomous nature of IoT systems communications 
and widespread unattended use makes it open to various ways 
of exploits. Any malicious modification to data collected by 

 
 

IoT devices may result in critical failures of the connected 
system impacting business as well as human lives. In some 
applications, if data is captured by an unauthorized person 
may lead to privacy concerns. Attacks on IoT devices results 
in unavailability of timely data from critical cyber-physical 
systems. Such unavailability data for critical decision making 
may result in a catastrophic situation. This highlights the need 
for security of data communication within IoT systems as well 
as security of IoT resources. 

The need of real-time analytics and basic experimental 
demonstration of IoT security is presented in [1]. This paper 
presents a detailed algorithm for identifying inter-system 
attacks in IoT systems. This paper also presents a comparative 
analysis of the performance of the proposed system in terms 
of detection accuracy. This paper also includes an analysis of 
datasets and presents feature importance along with the 
impact of feature engineering on it.      

The next section presents a review of the state-of-the-art of 
IoT security needs and implementation mechanisms. Section 
III presents the proposed mechanism for real-time detection of 
attacks on IoT resources along detailed algorithm Section IV 
demonstrates the experimental setup used for the 
implementation of real-time security attack detection using a 
Google cloud platform. Section V presents an analysis of the 
results of the proposed algorithm and its comparison with the 
state-of-the-art. 
 
2. LITERATURE REVIEW 
Challenges in implementing security measures like 
authentication, authorization and access control in IoT 
devices include low computing power, heterogeneity of 
devices and vulnerabilities in deployment platforms [2]. 
These vulnerabilities in devices and platforms are exploited to 
launch an attack against IoT resources. Irrespective of the 
presence of attack prevention mechanisms in IoT devices, the 
resource-constrained nature of device and casual approach by 
device owner can still make it vulnerable to attacks. The 
vulnerability assessment of consumer IoT devices is presented 
in [3] highlights that 10% of consumer devices had critical 
risk vulnerabilities. It further highlights that 40% of the 
assessed devices had high-risk vulnerabilities present. The 
devices included in the assessment include a webcam, smart 
TV and printers from a wide range of manufacturers. This 
highlights the importance of detection of the presence of 
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attack/vulnerability even though preventive measures are 
taken.  

Security attack detection mechanisms and their effectiveness 
are evaluated in various scenarios like a single attacker, 
multiple attackers and collaborative attackers in [4]. The 
attacks on the IoT devices are broadly classified according to 
target vulnerabilities in a) Device-based b) Network-based 
and c) Software-based.  The detailed study on ways attackers 
can exploit IoT devices, mitigation approaches is presented in 
[5]. 

Behaviour-based analysis of the vulnerability of drone-based 
IoT system along with detection of vulnerability using Petri 
net is presented in [6]. Attackers exploit vulnerabilities in IoT 
devices and protocols to enter into the IoT networks. The 
approach based on modelling relationship between 
vulnerabilities as a graph and using the graph-theoretic 
approach for detecting attack is presented in [7]. 

A game theory-based approach is for attack detection along 
with reputation model is presented in [8], which is capable of 
detecting various attacks on IoT systems. A review Game 
theory-based approach for detection of attacker considering 
conflicting goals of attackers and detection engines is 
presented in [9] to detect security attacks in IoT systems. 

Intrusion detection in IoT trough traffic filtering is presented 
in [10]. This work also highlights several open challenges in 
attack detection using traffic filtering which includes complex 
traffic characterization, difficulties in preparing blacklist and 
white list for traffic filtration, traffic sampling, building 
realistic attack models and impact of false positives. Deep 
packet inspection based attack detection mechanism is 
presented in [11]. This mechanism makes use of regular 
expression in terms of DFA to represent the rule. 
Representation of rules in regular expression makes it easy to 
implement in the hardware through Field Programmable Gate 
Arrays (FPGAs) which make it faster than software 
approaches. The number of states in regular expression 
required to represent all possible attack signatures is very 
large, and there are always chances of changing signature by 
new attacks. 

A review of machine learning-based approaches for 
enhancing the security of IoT system is presented in [12]. 
These approaches include authentication based on the 
prediction of communication parameters, machine learning 
algorithms for access control, secure offloading and machine 
learning-based attack detection methods. This paper further 
concluded that machine learning needs intensive computing 
power and high communication overhead. Also, the need for a 
large amount of training data and complex feature extraction 
process makes these algorithms non-attractive for 
resource-constrained devices.  

Random Neural Network-based approach for detection of 
attackers in IoT systems is presented in [13]. This approach 
learns anomalies in the performance of the system using the 
Random neural network and relates it to the failure of IoT 
node or attacker's presence. Deep learning-based approach for 
attack detection in IoT is presented in [14]. A framework for 

DDoS attack detection in IoT systems based on cosine 
similarities within the traffic is presented in [15]. Artificial 
neural network-based architecture for detection of DDoS/DoS 
attack is presented in [16]. This architecture makes use of both 
forward and backward learning mechanisms to train and 
identify malicious traffic. 

The BAT model with multiple convolutional layers is 
presented in [17] combines attention and bidirectional long 
short-term memory to obtain key features from packet stream 
to identify an attack.  Another deep learning-based model 
includes recurrent neural network-based model called 
RNN-IDS presented in [18] and Convolution Neural 
Networks (CNN) based model is presented in [19]. Offline 
machine learning-based methods usually perform well 
because they have access to the entire dataset during the 
training phase and can perform multiple iterations over the 
data for better training. However, they are not effective when 
computational power and memory are limited. 

Hidden Markov model-based classifier is proposed in [20] to 
detect anomalies in data, which is used to alert about security 
attack. This method makes use of multiple knowledge 
domains like physical process knowledge and control system 
knowledge to identify an attack. This approach is suitable for 
implementation in an industrial control system, but may not 
be suitable for resource-constrained IoT systems. Machine 
learning-based mechanism using inference and predicting 
states of the system is presented in [21] to detect anomalies 
and attacks in the IoT systems. 

The model for distributed detection of security attack on IoT 
system is presented in [22] along with proof of the concept 
implementation, which make use of fog computing nodes to 
deploy extreme learning machine based mechanism for attack 
detection at local. Further security state information collected 
from fog computing node is summarized at a cloud node to 
identify the next action of the attacker. 

The key difference between the implementation of security in 
IoT systems and other conventional systems is the 
heterogeneity in IoT resources and network protocols along 
with a big volume of data being generated. Public cloud 
platforms are being extensively used in IoT systems to deal 
with big data [23], [24]. The need for building real-time attack 
detection mechanism using public cloud-hosted big data 
platforms and using data stream-based machine learning 
algorithms for timely and accurately detect attack is the need 
of the time[25], [26].  

Mechanisms for detection of security attacks on IoT resources 
presented in the state-of-the-art are evaluated with batch 
processing on the dataset. For real-time and early attack 
detection, we need to process a live data stream from IoT 
devices. Attack detection mechanism on such real-time data 
stream is missing in the state-of-the-art to the best of author’s 
knowledge.  The need for End-to-End live attack detection 
mechanism for IoT devices is highlighted in the 
state-of-the-art, but the demonstration of such End-to-End 
deployment and evaluation of its effectiveness is missing in 
the state-of-the-art to the best of author’s knowledge. This 
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motivated authors to design a real-time mechanism for 
detection of attacks on IoT resources and analyze its 
efficiency.  
 
3.  DATASET ANALYSIS  
 

KDD-99 is one of the first benchmark datasets in network 
security research domain. This dataset consists of network 
traffic from attack and normal scenario. Several pieces of 
research in state of the art question its effectiveness for 
building network attack detection models because of the lack 
of the presence of recent attacks [27]. It also has a more 
skewed distribution of the traffic. NSL-KDD is a subset of 
KDD-99 data set designed to overcome challenges presents in 
the KDD-99 data set. This dataset removes a large portion of 
redundant records present in KDD-99 to avoid skewed 
distribution. This dataset still lacks the presence of traffic 
traces from attacks recently demonstrated [28].  

The ISCX-IDS [29] dataset consists of real network traffic 
captured which includes traffic class labels and the complete 
network packet payload. CICIDS2017 [30] dataset consist of 
synthetically created network traffic which includes records 
from normal and recent attacks scenario. ISCXTor2016 [31] 
designed by collecting real network traffic from real users, 
while users were using browser-based applications, FTP, P2P 
applications and email systems. 

The BoT-IoT dataset[32] is built by collecting traffic traces 
from testbed deployed in the laboratory, which consists of 
traffic from normal nodes and botnets. A UNSW-NB15 [33] 
is built by collecting traffic traces from experimental setup in 
the laboratory consist of attacks and legitimate nodes. 
N-BaIoT[34] is another dataset build by collecting network 
traffic traces from laboratory testbed. This testbed includes 
traffic from IoT devices demonstrating. This dataset consists 
of attacks specifically on IoT devices.  

NSL-KDD and N-BaIoT are selected for experimental 
setup further as the most cited dataset and most recent dataset 
respectively. Further NSL-KDD is transformed into JSON 
and AVRO format from exiting text format because JSON 
and AVRO are recommended formats for big data processing. 
IoT devices send data in JSON format, so using dataset in 
JSON format makes experimental setup closer to real life. 
Dataset generated as part of this experimental setup are 
available at [35] and [36]. 

Figure 1 Shows feature importance for top 20 important 
features in terms of weight coefficients of attack detection 
generated using NBaIoT dataset without feature engineering. 
Figure 2 and Figure 3 shows the frequency distribution of 
HH_L3_pcc and HH_jit_L0_01 mean respectively, during 
normal and anomaly situation. From Figure 3 and Figure 4, it 
is evident that HH_jit_L0_01 is more useful for 
differentiating attacker from normal nodes. Feature 
importance presented in Figure 1 simply indicates that 
HH_jit_L0_01 is not significant. Similarly, HH_L3_pcc is 
shown in Figure 1 as a highly important feature, but its 
frequency distribution presented in Figure 2 shows it is not 
significant for classification. These figures highlight that 

weight coefficient and real importance of feature are not 
correlated unless features are normalized. 

 
Figure 1: Feature Importance on N-BaIoT dataset without feature 

normalization 

 
Figure 2: Frequency distribution off HH_L3_PCC in normal and attack 

scenario 

 
Figure 3: Frequency distribution off HH_jit_L0_01_mean in normal and 

attack scenario 
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Figure 4: Feature Importance on N-BaIoT dataset after feature normalization 

 
  Figure 4 shows feature weight coefficients after 

normalization of all features. This shows clear importance of 
features and also in-line with frequency distribution. Figure 5 
shows the feature importance from NSL-KDD dataset. This 
motivates us to normalize features generated in real-time 
before using them for attack detection. The detailed algorithm 
for real-time feature normalization is presented in the next 
section. 

4. PROPOSED SOLUTION 
Figure 6 shows the block diagram of the proposed 
architecture. In the proposed architecture, Gateway node is 
the entry point for the IoT network in case of multi-hop IoT 

system. In the case of single-hop IoT devices, every device 
will act as a gateway node. Gateway node holds additional 
responsibility of forwarding headers of all packets received to 
stream processor using MQTT protocol [37]. The stream 
processor works as a publish-subscribe broker and responsible 
for queue management and reliability. The stream processor is 
also responsible for maintaining the list of topic 
corresponding to fields in the packet. The stream processor is 
responsible for handling backpressure if any. Real-time 
feature generators subscribe to topics on stream processor.  
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Figure 5: Feature Importance on NSL-KDD dataset after feature normalization 

 
 
Every feature generator takes some predefined part of the 
packet header based on the topic of subscription and generates 
features based on it in real-time. These real-time features are 
used to building a predictive descriptor table. Predictive 
descriptor tables hold current and past values for every 
feature. Values for the feature in future are predicted based on 
the trend of changes in values. Predictive descriptor tables   
used to calculate score called PSAS (Packet source 
abnormality score), which indicate the probability of the 
source being attacker. This PSAS score is used as a measure 
for predicting the behaviour of the source of the packet. The 
detailed algorithm for early attack detection is presented in 
Algorithm 2.  

The formula for calculation of PSAS score is defined in “(1)”   

ܵܣܵ = 	 ܿ ∗ ( ݂௧ +( ݂



ୀ



ୀ

− ݂௧(ିଵ)



Where, m indicates the number of features in descriptor table, 
Cj indicate the coefficient of jth feature, fjti indicate a value of 
jth feature at the time i and n indicate the number of records 
present in the descriptor table. Here coefficient reflects feature 
importance values presented in Figure 3 and Figure 4.  

PSAS is compared with the threshold value to detect the 
attacker. The default value of the threshold is 0.5. Value of 
threshold will be decided based on a tradeoff between false 
positive rate and false-negative rate.  The detailed algorithm 
for run time feature generation is shown in Algorithm 1. 
Every Real-time feature generator subscribes to a certain set 
of topics from the MQTT broker. Every categorical column is 
label encoded to convert it to numeric values, and it is further 
one hot encoded to use in calculating PSAS.  All numerical 
features, including one, converted from categorical to 
numerical go through normalization to convert them in the 
standard range. This avoids PSAS value being wrongly 
influenced by certain feature with broader domain range. 
Mean and standard deviation used for normalization 
calculations are updated at the run time. 
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Figure 6:  Block diagram of the proposed solution 

 

Algorithm 1: Real-time feature Generation 
Result: Real-time features values V 
Let C is set of columns ; 
for   each  column c in C do 
   Let μ mean of  c; 

  Let σ standard deviation of c; 
  Let v value of  column c in V; 

  

   if  v is categorical  then   
  v LabelEncoder(v);    
  v OneHotEncoder(v);    
  end    
 c=(v- μ)/ σ;    
 Update μ;    
 Update σ;    
End    
 
 
 
 
 

Algorithm 2: Early Attack Detection Algorithm 
Result: Attack detection 
Let F is set of Features; 
PSAS 0; 
for   each  Feature f in F do 
 Let H is set of historical values; 

Vcurrent value of feature f 
 for   each  h  in H do 
    if  v(h-1)  is exist  then 
   V V+(v(h) –v(h-1) 
    else  
   V V+(v(h)) 
   end 
 end 
 PSAS PSAS +w(f)*V 
 end  
if  PSAS > = threshold then 
 return attack 
else 
 return normal 
end 
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5.  RESULT ANALYSIS 
The experimental setup for performance analysis of the 
proposed method is implemented using tools available on the 
public cloud platform on Google. Google Cloud Platform 
(GCP) tools used the setup includes Cloud Pub/Sub, Cloud 
Dataflow and BigQuery. Cloud Pub/Sub is the 
publish-subscribe broker and has high scalability, availability 
and throughput. Cloud Pub/Sub is responsible for managing 
topics and their subscribers. Cloud Dataflow in the 
experimental setup will act as a real-time feature generator 
and connector between Cloud pub/sub and BigQuery. Cloud 
Dataflow is a fully managed and serverless parallel processing 
engine. This parallel processing helps generate features in 
parallel and to avoid latency. Combination of Cloud Pub/Sub 
and Cloud Dataflow helps handle big volume and velocity of 
data from a large number of devices in parallel with low 
latency and no data loss.  

BigQuery is another fully managed serverless service from 
GCP platform. In the experimental setup, BigQuery is 
responsible for building predictive descriptor table, 
calculating PSAS score and detecting attacker in real-time. 
BigQuery also has its machine learning libraries called 
BigQuery Machine Learning (BQML). This makes use of 
SQL for training and evaluating machine learning models 
though numbers of algorithms are limited.  

Accuracy of attack detection of the proposed method based on 
traffic generated using NSL-KDD dataset is evaluated. 
Accuracy of the proposed algorithm is compared with other 
algorithms presented in the state-of-the-art on the same 
dataset and presented in Figure 7.  The comparative analysis 
shows that the proposed method outperforms the other 
algorithm presented in the state-of-the-art.  

 
Figure 7: Comparison of accuracy of the proposed algorithm with CNN [19], 

RNN [18] BAT-MC [17] and DL [18] on NSL-KDD dataset 
 

6. CONCLUSION 
This paper highlighted the need for early attack detection on 
IoT resources. This paper presented the mechanism for early 
attack detection and its implementation on the public cloud 
platform.  The result analysis of the proposed method shows 

improvement in performance through the use of parallel 
feature generation and application of predictive descriptor 
tables. Our future work includes designing an algorithm for 
detecting collaborative attacks in early stage.  
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