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 
ABSTRACT 
 
The quality of task scheduling plays vital role towards the 
trust to use the services of cloud computing. Large numbers of 
tasks are submitted to the cloud environment in each moment 
and these tasks are executed on the virtualized resources that 
can be provisioned dynamically by the cloud.  Optimal 
allocation of resource to a set of tasks follows a workflow 
schedule and it is an important step to improve the overall 
performance of the cloud. Ant Colony Optimization (ACO) is 
a meta heuristic approach that imitates the foraging 
behaviour of real ants. It is a probabilistic technique that can 
be used to solve the combinatorial optimization problems like 
workflow scheduling. In this research work, a novel ACO 
algorithm and its variant Improved ACO (IACO) performs  
workflow scheduling through multi objective optimization 
process is put forwarded. The IACO incorporates with a new 
heuristic information value based on the processing cost and 
execution time to achieve the desired objectives. These meta 
heuristics are simulated on the benchmark scientific 
workflows Montage, CyberShake and Ligo Inspiral. The 
simulation results of IACO were compared with ACO and 
Genetic Algorithm (GA), IACO reports an optimal schedule 
which results into the reduction of makespan and total 
execution cost. 
 
Key words : DAG scheduling, workflow scheduling, ACO, 
IACO, metaheuristic. 
 
 1.INTRODUCTION 
 

Cloud computing can be considered as a distributed 
system that offers computer services over the internet. It 
provides infrastructure, platform and software as services and 
clients pay only for the resources expended [1]. Cloud 
computing gained a heap of attention in both academia and 
industry fields as it affords many benefits for users and 
organizations with the support of virtualization[2]. Virtual 
machines (VMs) are deployed in cloud environment, it is 
difficult to assign tasks to resources especially when many 
users submit their applications at the same time to the cloud 

 
 

environment [3]. Therefore, cloud computing needs an 
efficient task scheduling strategy to assign tasks to the 
appropriate resources. 

The task scheduler finds out the better virtual machine 
(VM) for a particular task and assigns that task to VM. Task 
scheduler must  adapt an efficient scheduling algorithm to the 
changing environment and to the type of tasks [4].  Recently 
many algorithms are promoted to have task scheduling deal 
with challenges. Nevertheless the problem still exists with 
complex applications like workflows [5]. A workflow is a 
group of tasks that processes a data set that is represented as a 
directed acyclic graph (DAG) [6]. The workflow comprises 
thousands of tasks and deals with huge amount of data. 
Scheduling a workflow application in a cloud requires a 
streams of steps to be executed in a specific sequence. 
Workflow tasks also have certain dependencies like parent 
child relationship during execution [7]. A dynamic random 
search workflow scheduling algorithm is needed for clouds. 
Therefore an efficient scheduling of workflow is necessary to 
meet the best total execution time and cost incurred.   

The meta heuristic approach includes scheduling 
algorithms which are based on iteration method to seek out 
the solution to optimization problems.  Ant Colony 
Optimization (ACO) is a nature-inspired algorithm to find 
solutions for NP-hard related combinatorial optimization 
problems like scheduling workflows. The ACO is a 
metaheuristic, multi-agent approach in which every single 
artificial ant’s behaviour is inspired from real ants [8].  When 
ants travel in search of food the ants secrete a chemical trail 
called pheromone and the ants prefer to travel along the trails 
that have the strongest pheromone scent. In ACO, the role of 
the trail of pheromone is to share their experience regarding 
the journey for solving an optimization problem efficiently. 

Meta-heuristic algorithms for task scheduling have been 
proposed to carry out the optimization of workflow 
scheduling in the recent years. There have been some popular 
meta heuristic algorithms such as genetic algorithm(GA), 
nature-inspired algorithms like ACO algorithm, particle 
swarm optimization(PSO) algorithm, artificial bee colony 
algorithm etc., are gaining popularity in the workflow 
scheduling problem. Numerous updates and improvements 
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made in these meta heuristic algorithms in the literature 
which are working well in one or the other way.  
 Pandey et al.[9] put forwarded a dynamic workflow 
scheduling algorithm that optimizes the cost of the 
task-resource mapping using PSO and takes into account the 
computation and transmission costs. Wu et al. [10] presented 
a Revised Discrete PSO (RDPSO) algorithm to reduce the 
high volume of data transfers in cloud environment. The main 
goal of this scheme is to reduce the computation cost under a 
deadline constraint. The tasks are taken sequentially, during 
PSO mapping update in this algorithm. Amandeep verma et 
al. proposed [11] a Bi-Criteria Priority based PSO (BPSO) to 
schedule workflow tasks over the available cloud resources. 
This algorithm minimized the execution cost and the 
execution time under given the deadline and budget 
constraints while considering the confirmed reservation of 
resources. This scheduling technique is a hybrid of HEFT 
(Heterogeneous Earliest Finish Time) heuristic and PSO 
meta-heuristics. 
 Gu et al. [12] proposed algorithm to resolve scheduling 
problem in the field of stochastic job shop scheduling based 
on GA with a competitive co-evolution scheme. According to 
experiments, their method outperforms standard widely 
applied GA and some of its modifications. Barrett et al. [13] 
employed a novel scheduling approach that adopts Markov 
Decision Process and GA to ensure the workflow execution 
process for reducing costs and adhering to the makespan 
criterion. 
  R.G. Babu karthik et al. [14] presented a Hybrid algorithm 
based on ACO and Cuckoo search to solve the task scheduling 
problem and the results shows that the algorithm can reduce 
the total executing time. Shengjun Xue et al.[15] proposed 
ACO Loab Balancing (ACO-LB) algorithm that can adapt to 
the dynamic cloud environment. It will not only shorten the 
makespan of task scheduling, but also maintain the load 
balance of virtual machines in the data center. Medhat 
Tawfeek  et al.[16] used ACO algorithm to find the optimal 
resource allocation for tasks in the dynamic cloud system to 
minimize the makespan of tasks on the entire system.  
      Vinothina et al.[17] proposed  an ACO based algorithm 
that  maps workflow  tasks to cloud resources which attempts 
to minimize the makespan, resource cost and maximize the 
resource utilization. Liyun Zuo et al. [18] presented an 
improved multi-objective ACO to optimize both performance 
and cost. Two constraint functions were used to adjust the 
quality of the solution in a timely manner based on feedback 
in order to achieve the optimal solution. The algorithm is 
designed to evaluate the makespan, cost, deadline violation 
and resource utilization. Gogy Reddy et al. [19] amends a 
Modified Ant Colony Optimization (MACO) algorithm. The 
main contribution of recommended method is to minimize 
makespan and degree of imbalance. The different alterations 
of GA, PSO, ABC and ACO have been proposed by various 
researchers to schedule the workflow tasks in cloud with 

different objectives such as minimal makespan, minimal cost 
and maximal resource utilization, load balancing etc.  
      In this research work, we model ACO as a multi-objective 
meta heuristic approach to solve the workflow scheduling 
problem that minimizes the makespan and cost. We also 
applied Genetic Algorithm, an evolution based meta heuristic 
approach to compute the desired objectives in multi-objective 
domain for workflow scheduling problem. The proposed 
IACO is an improved version of ACO to solve the 
multi-objective workflow scheduling problem.  Simulation 
experiments were carried on to validate the benchmark 
scientific workflows Montage, Cybershake and Ligo Inspiral. 
The novel IACO algorithm yields an optimal allocation of 
virtual machines to the workflow scheduling of tasks.  
 
2. PROBLEM DEFINITION 
 

This section describes the workflow application model, 
definitions of evaluated meta heuristic algorithms IACO, 
ACO and GA with their pseudo codes and the characteristics 
of the scientific workflow applications used in this work . 
 
2.1 System model 
The workflow application is modeled as a DAG WA = (WT, 
WE). Let n be the number of tasks in the workflow. The set of 
nodes WT = {WT1, WT2 …WTm} corresponds to the tasks of 
the workflow. The set of edges WE represent precedence 
constraints that specify the execution order of tasks. An edge 
is in the form of (WTi, WTj ), where WTi is called the parent 
task of WTj and WTj is the child task of WTi, means that WTi  
and WTj has data dependency.  
      Normally, a child task can only be executed until all of its 
parent tasks have been completed. The set of parent tasks of 
WTi is denoted by Pred(WTi), and the set of child tasks by 
Succ(WTi). A task without parents is called an entry task 
denoted by WTentry and a task with no children is called an end 
task denoted by WTend.  
      Let VM = {VM1, VM2… VMn} be the set of available 
virtual machines. The selection of a virtual machine VMi to 
schedule a workflow task depends on its processing capacity 
P(VMi) and defined as 
  P(VMi)  = MIPS (VMi)  * PEs (VMi)                          
(1)  
Where  

MIPS (VMi)   -   processing speed of VMi 
PEs (VMi)     -    processing elements in VMi 

The execution time ET(WTi) of task WTi executed by 
VMj  is calculated in (2), where SIZE(WTi)  is the size of task 
WTi and P(VMj) is the processing capacity of VMj. The data 
transfer time TTei,j between a parent task WTi and its child 
task WTj is given in (3), where OUTSIZE(WTi) is the output 
data size produced by task WTi, BW is the bandwidth between 
each virtual machine. 
    ET(WTi) = SIZE(WTi) / P(VMj)                                  (2) 
 
    TTei,j =  OUTSIZE(WTi)/ BW                               (3) 
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      Scheduling workflows in this work is treated as a multi 
objective problem (MOP). The objective function of the 
scheduling problem is to find an optimal solution which can 
minimize the makespan as well as the total execution cost. It 
is also known as Pareto optimization that is concerned with 
mathematical optimization problems involving more than 
one objective function to be optimized simultaneously.  

 
     The important notations used in this manuscript are given 
in Table 1. 

 
 

Table 1: Notations and descriptions 
Notations Descriptions 

WT Set of workflow tasks 
WE Set of  workflow edges 
WTi   ith workflow task,i=1,2,3,…m 
VM Set of virtual machines 
VMi jth virtual machine,j=1,2,3,…n 

P(VMi) Processing capacity of VMi 
ET(WTi) Execution time of  ith workflow task  

TTei,j Data transfer time between  WTi and   WTj 

Pr(WTi) Task priority of  ith workflow task 
SIZE(WTi) Length of ith workflow task 
ƞ(WTi, VMj ) Heuristic desirability of mapping WTi to 

VMj 
TP(WTi,VMj) Transition probility for assigning WTi to 

VMj 
  Local pheromone evaporation parameter 

τ0 Initial pheromone value 
  Global pheromone evaporation parameter 

TEC Total execution cost 
 

2.2 Genetic Algorithm  
     Genetic Algorithm (GA) is a meta heuristic algorithm 
based totally on the mechanisms of natural selection and 
genetic science. This optimization method has been 
confirmed to be very efficient and stable in searching out 
global optimium solutions [20]. The basic idea of GA is to 
start with a group of solutions and to generate a set of new 
solutions by applying some well-defined operators on the 
recent ones. Then, some solutions are selected to form a new 
set with which another iteration is started, and so forth till 
some stopping criterion is met. In general, a GA consists of 
the subsequent steps:  
(1) Initial Population Generation: The first step of GA 

would be defining the population. The set of individuals 
used in finding the optimal solution is considered as the 
initial population. In GA, each chromosome (individual 
within the population) represents a possible solution to a 
problem and consists of a string of genes. The initial 
population is taken randomly to serve as the starting 
point for the algorithm. 

(2) Fitness function: Fitness value is the basis for 
productivity. A fitness function is defined to check the 

suitability of the chromosome for the environment. The 
fitness function evaluates the quality of each offspring. 

(3)  Selection: The parent chromosomes are selected from 
the population to produce their off springs according to 
their fitness value.  

(4) Crossover: This step involves crossing over the parent 
chromosomes to generate their off springs.  

(5) Mutation: When a population is prone as homogenous 
due to repeated reproduction and crossover operators, 
then mutation take place. One or more gene values within 
the chromosomes are altered by mutation from its initial 
state. A far better solution may be created by GA with the 
help of these gene values. 

     This GA process is repeated till either the fittest 
chromosome (optimal solution) is found or the termination 
condition (maximum number of iteration) is exceeded. 
 

Pseudo code for Genetic Algorithm 

 
 
2.3 Ant Colony Optimization Algorithm 

The  ACO algorithm is a probabilistic technique for 
solving computational problems which can be reduced to find 
good paths through graphs. ACO algorithm is a parallel 
algorithm. In the ACO algorithm, an artificial ant is a simple 
computational agent that searches for good solutions to a 
given optimization problem.  They will release a substance 
called pheromone in their way. The ants communicate with 
each other via this pheromone.The route more ants get 
through has a higher possibility for the subsequent ants to 
choose and the continuous pheromone update is finally 
converged to the optimal route. The process of the ACO 
algorithm takes in solving MOPs is generally divided into five 
steps: 

(1) Initialization: To initialize the parameters of the 
algorithm, the pheromone information and heuristic 
information. 

(2) Solution construction: Involves in construction of a 
new solution for each ant  by using a probabilistic 
rule to choose solution components.  

(3) Solution evaluation: Evaluates the solution of each 
ant obtained in step 2, store the non-dominated 
solutions, and eliminate the dominated ones. 

1. Begin  
2.  Initialize population by random solutions  
3.  Evaluate each candidate  
4.  Repeat until (termination condition occur)  
5.  Do  

a. Select parents 
b. Recombine pairs of parents  
c. Mutate the resulting offsprings  
d. Evaluate new candidate  
e. Select individuals for next generation  

6. End  
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(4) Update of pheromone: Updates the pheromone 
values by using information extracted from the 
newly constructed solutions. The pheromone related 
with edges in a non-dominated solution will 
increase. 

(5) Termination: The algorithm terminates and outputs 
the optimal solution if a problem-specific stopping 
condition is met, such as the number of iterations 
and the running time, otherwise go back to step 2. 
In the process of solving a multi-objective 

optimization problem, the difference of each ant colony 
algorithm is mainly reflected in step (1), step (2) and step (4). 
The differences in the initialization, solution construction, 
and the update of pheromones result in different improved 
multi-objective ACOs. 

 
2.4 IACO algorithm 
  The proposed IACO algorithm is designed for cloud 
environment where heterogeneous natures of computational 
resources are available. The IACO considers the processing 
capacity of VM, the cost for utilizing the VM and the status of 
the VM before assigning a workflow task to that VM in order 
to reduce the makespan and cost. The details of IACO 
algorithm are outlined as follows: 

1. Task prioritization: Initially, the tasks of the submitted 
workflow are prioritized based on its precedence 
constraint using (4) so that the ants can assign the tasks 
to VMs based on its priority Pr. 

))jPr(WT jTTei,(
)jWT(

max)()Pr( 



SuccjWTiWTSIZEiWT                       

(4) 
                                   

2. Heuristic desirability: In ACO, heuristic information is 
a fixed value that reflects attractiveness between paths, 
used to guide the search of artificial ants. The heuristic 
information value is defined as the mapping of a 
workflow task WTi  to the virtual machine VMj  as 
ƞ(WTi, VMj ). 


















  

),(),(

1
),( ET

jVMiWT
EC

jVMiWT
jVMiWT


                                              

(5) 
                       

EC
VMWT ji ),( is the heuristic information value on the 

processing cost for using VMj  for the        task WTi and 
ET

VMWT ji ),( is the heuristic information value on execution 

time  of WTi  executed by VMj . 
EC

VMWT ji ),(  is given by 

)
ji,eTT(),(),(),( Cost

jVMiWTDur
jVMiWT

CostEC
jVMiWT 

                        (6) 
     where 

),( jVMiWT
Cost  is the base processing cost for 

utilizimg VMj  by WTi. ),( jVMiWTDur          is the duration time 

at which the task WTi  runs on VMj. )
ji,eTT(Cost      is the   

communication cost to transmit the data from VMi  to VMj. 
ET

VMWT ji ),(  is given by 

   
ET

VMWT ji ),(  = ET(WTi)                   

(7)                                                               
3. Solution Construction: Each ant incrementally builds a 

complete solution in every iteration of the algorithm. 
An ant selects a virtual machine VMj for a workflow 
task WTi according to the pheromone and the heuristic 
information value. The choice of this selection is done 
probabilistically at each solution construction step.  
The transition probability TP(WTi,VMj) for assigning WTi 
to VMj is given by (9). Based on this transition 
probability, some paths will be more likely to be chosen 
than others. 
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                     (9) 
Where τ(WTi,VMj) - The pheromone value of mapping VMj to 
task WTi. 
α, β -   determine the relative importance of pheromone Vs. 
heuristic           information value.  

      ƞ(WTi, VMj ) - the heuristic desirability mapping VMj to task 
WTi.                                      
4. Pheromone update: The solution quality built by ants is 

directly influenced by the pheromone value. Updating of 
pheromone is the main thing of IACO as it affects the 
performance of workflow scheduling. 
a. Initialization: The initial amount of pheromone on 

virtual machines is assumed to be a small positive 
constant τ0. In IACO, the initial pheromone value τ0 is 
defined as τ0 =0.5.  

b. Local Pheromone update: An ant has chosen a virtual 
machine VMj to execute WTi, based on (9).  The local 
update of pheromone occurs during this solution 
construction process. The local update rule is given in 
(10). This value will be changed after every iteration. 

  0),(),( 1  
jiji VMWTVMWT                       (10) 
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where τ0 is an initial pheromone level and   is a local 

pheromone evaporation  parameter (0 <  < 1). This 

pheromone evaporation parameter   is applied to 
prevent infinite accumulation of pheromone. 

c. Global pheromone update:  When all the ants have 
completed their tour, the best solution given by the best 
ant  is taken for the global pheromone update ie., the 
edges that were visited by the best ant that find the 
shortest path are renewed in global pheromone 
updation. The proposed global pheromone update rule 
can be applied with (11). 

  ),(),(),( 1
jijiji VMWTVMWTVMWT         

(11) 
    - global pheromone evaporation parameter. 

                ),( ji VMWT = 1/ ET(WTi)                    (12) 

5. IACO Termination: When all ants complete mapping 
of the workflow tasks assigned in virtual machines, the 
best schedule with minimal execution time/makespan 
and minimum total execution cost is selected.  The 
makespan is calculated using (13) and total execution 
cost (TEC) is given in (14). 

                         iWTET
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1
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

                        (13) 
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


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1 ,

            (14) 
Pseudo code for the proposed IACO 

 

2.5 Workflow Applications 
A workflow is the composition of numerous 

interconnected computational tasks that have precedence 
constraints. Workflow tasks typically communicate through 
the use of files. Each task in a workflow produces one or more 
output files that become input files to other tasks[23]. 
Workflows can be divided into business workflows and 
scientific workflows. Business workflows are widely used for 
business data processing. Scientific workflows are typically 
used for modelling and running scientific experiments. 
Scientific workflows can assemble scientific data processing 
activities and automate the execution of these activities to 
reduce the makespan and the execution cost based on the 
resource utilization [24]. The most general representation of a 
scientific workflow is a DAG, in which nodes correspond to 
data processing activities and edges represent the data 
dependencies. 

In order to evaluate the efficiency of IACO in terms 
of makespan and cost, three scientific workflow applications 
are taken from Pegasus toolkit and provided by the Pegasus 
workflow management system. They are Montage, 
Cybershake and Ligo Inspiral. These workflows are widely 
used for performance measurement of scheduling algorithms. 
The first workflow application Montage [25] typically follows 
a regular structure, created by NASA/IPAC stitches together 
multiple input images to create custom mosaics of the sky.  
The second workflow application CyberShake is used by the 
Southern California Earthquake Center to characterize the 
earthquake hazards in a region [26]. The third workflow 
application Ligo Inspiral [27] is used to generate and analyze 
gravitational waveforms from data collected during the 
coalescing of compact binary systems. These scientific 
workflows are used and evaluated the performance of HEFT 
algorithm for DAG scheduling [28]. 

The structures of the workflows are given in Figure 
1. Four different sizes of these workflows are chosen, small 
(around 30tasks), medium (around 50 tasks), large (100 
tasks) and extra-large (1000 tasks) for evaluation. 

 

  
a) Montage  

 
 

Begin IACO 
1. Get the tasks in the scientific workflow model. 
2. Get the number of available virtual machines. 
3. Initialize the pheromone value τ0 =0.5,parameters α= β=0.5, 

  = =0.1. 
4. The tasks of the workflow are prioritized using Eqn(4). 
5. For i= 1 to K do // iteration starts 
6. Place m ants on the starting VMs randomly. 

For i= 1 to m do 
      For each WTi, 
            For each VMj 

     Assign WTi,  to VMj  with highest transition 
probability TP(WTi,VMj)  eqn.(9) 

               Apply local pheromone update rule using 
Eqn(10) 
             End for 
        End for 

7.  Update makespan using Eqn(13) 
End for // completion of ants tour 

8.  Find the best schedule Sbest  of antm  based on makespan 
9.   Apply global pheromone update rule using Eqn(11) 
10.  Calculate the total execution cost using  Eqn(14) 

 End for // iteration ends 

End IACO 
 



Nithyanandakumari.K et al.,   International Journal of Advanced Trends in Computer Science and  Engineering, 9(4),  July – August  2020, 5278 –  5286 

5283 
 

 

 
b) Cybershake 

 
c)  Ligo Inspiral 

Figure 1: The scientific workflows 

The characteristics of these benchmark workflows are 
presented in Table 2.  
 

Table 2: Characteristics of the benchmark workflows 
Workflow Number of 

Nodes 
Number 
of Edges 

Mean Data 
Size (MB) 

Montage_25 25 95 3.43 
Montage_50 50 206 3.36 
Montage_100 100 433 3.23 
Montage_1000 1000 4485 3.21 
CyberShake_30 30 112 747.48 
CyberShake_50 50 188 864.74 
CyberShake_100 100 380 849.60 
CyberShake_1000 1000 3988 102.29 
LIGO Inspiral_30 30 95 9.00 
LIGO Inspiral _50 50 160 9.16 
LIGO Inspiral _100 100 319 8.93 
LIGO Inspiral _1000 1000 3246 8.90 
 
The table describes the number of nodes, number of edges and 
the mean data size (MB) of each workflow. 
 
3. PERFORMANCE EVALUATION 
 

The experiments have been conducted to evaluate the 
performance of the IACO, ACO and GA through simulation 
with the Montage, CyberShake and Ligo Inspiral datasets 
using Workflowsim simulator. The simulation results of 
IACO have been compared with ACO and GA using the two 
performance indicators makespan and cost.  

Workflowsim can be used to model data centers, host, 
service brokers, scheduling and allocation policies of a large 
scaled cloud platform. The hardware requirements as well as 

the configuration parameters used for the implementation of 
IACO, ACO and GA in Workflowsim are given as follows. 
Simulated datacentre (DC) host has 5 virtual machines (VMs) 
which are provided to users as resources. A datacentre (DC) is 
assumed to be having 1 CPU with a capacity of 1000 MIPS 
and 1000MB of available bandwidth. The costs for using 
memory, storage, bandwidth and processing cost are 0.05, 
0.1, 0.1 and 3.0 units respectively.  

In the IACO algorithm, the given workflow tasks are 
prioritized based on its precedence constraints initially. Then 
the mapping of a workflow task WTi, to VMj  is calculated 
using the transition probability given in (9). To improve the 
quality of the solution, local updation as well as global 
updation of pheromone is done. This updation helps the ants 
to choose some paths more often than others thereby reducing 
the makespan and cost. 
     Experiments are carried out to compare the performance 
of IACO with ACO and GA. The total cost required for 
scheduling Montage workflows using GA, ACO and IACO 
and the numerical values of makespan are given in Table 3. 
The comparison is done with Montage data sets having 25, 
50,100 and 1000 tasks. The total costs of Montage datasets 
implemented with IACO are 1726.98, 2188.86, 4871.18 and 
76566.9. 

 
Table 3: The makespan and cost results for Montage 

 
Dataset No of 

Nodes 
Makespan Cost 

Genetic 
Algorithm  

ACO 
 

IACO 
 

Genetic 
Algorithm  

ACO 
 

IACO 
 

Montage 25 250.29 236.29 233.95 1787.16 1727.58 1726.98 
50 1085.10 1052.4 1051.4 2590.87 2190.43 2188.86 
100 1299.13 1278.64 1277.18 4995.31 4897.1 4871.18 
1000 25120.9 24533.5 24531.5 77551.29 76566.9 76565.9 

 
    The makespan results of IACO, ACO and GA  for Montage 
workflow is presented in Figure 2. The results show that 
IACO decreases the makespan compared with ACO and GA. 
The horizontal axis represents the different set of nodes of 
Montage workflow application considered for the 
experiments. The vertical axis gives the actual makespan 
taken by ACO, GA and IACO algorithms. 
   

 
Figure 2: Simulation results of makespan for the montage 

workflows 
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 Similarly, The total cost required for scheduling 
CyberShake workflows using GA, ACO and IACO  and the 
numerical values of makespan are given in Table 4. The total 
costs of  Cyber Shake datasets implemented with IACO are 
20175.28, 40186.18, 80576.55 and 227888.3.  
 

Table 4: The makespan and cost results for CyberShake 
Dataset No of 

Nodes 
Makespan Cost 

GA   ACO 
 

IACO 
 

GA   ACO 
 

IACO 
 

Cyber 
shake 

30 716.14 591.43 589.48 20312.15 20176.82 20175.28 
50 1825.28 1021.69 1020.18 40500.16 40188.56 40186.18 
100 4554.35 3905.67 3904.71 95827.99 80577.95 80576.55 
1000 55854.76 55668.86 55665.19 252840.6 227890.6 227888.3 

 
     The makespan results of IACO ,ACO and GA  for 
CyberShake workflow is presented in Figure 3. The results 
show that IACO decreases the makespan compared with ACO 
and GA. The horizontal axis represents the different set of 
nodes of CyberShake workflow application considered for the 
experiments. The vertical axis gives the actual makespan 
taken by ACO, GA and IACO algorithms.   
 

 
Figure 3: Cybershake workflows 

     The total cost required for scheduling Ligo Inspiral 
workflows using GA, ACO and IACO and the numerical 
values of makespan are given in Table 5. The total costs of 
Ligo Inspiral datasets implemented with IACO are 26620.16, 
38429.32, 97277.22 and 1396188.  

 
Table 5: The makespan and cost results for Inspiral 

Data 
set 

No of 
Nodes 

Makespan Cost 
GA   ACO 

 
IACO 

 
GA   ACO 

 
IACO 

 
Inspiral 30 5212.34 4977.45 4970.3 28123.12 26624.96 26620.16 

50 7871.16 7333.96 7326.51 41679.98 38429.78 38429.32 
100 39113.67 31555.0 31553.2 145769.12 97287.28 97277.22 
1000 528486.4 463719.6 463713 22983248 1396190 1396188 

 
    The makespan results of IACO ,ACO and GA  for Ligo 
Inspiral workflow is presented in Figure 4. The results show 
that IACO decreases the makespan compared with ACO and 
GA. The horizontal axis represents the different set of nodes 
of Ligo Inspiral workflow application are considered for the 
experiments. The vertical axis gives the actual makespan 
taken by ACO, GA and IACO algorithms. 

   

 
Figure 4: Ligo Inspiral workflows 

 
     For all the three workflows, the results show that IACO 
decreases the makespan compared with ACO and GA. The 
makespan analysis shows that when the number of tasks is less, 
the difference in makespan  is not very obvious. However, with 
the increase in the number of tasks, IACO significantly 
minimizes the makespan compared to ACO and GA.  

   As can be seen from the tables, the makespan and the total 
cost of IACO against the ACO and GA is statistically better in 
each case. The comparison analysis of makespan and cost 
evidently depicts that the IACO performs much better than 
ACO and GA. The obtained results show that the IACO 
algorithm optimizes the makespan and execution cost in 
comparison with the ACO and GA using the Montage, 
Cybershake and Ligo Inspiral scientific workflow applications. 

 
4. CONCLUSION 

In the context of the efficient use of computational 
resources within the cloud computing, a very important factor 
is the issue of scheduling workflows. This work proposed a 
metaheuristic scheduling algorithm IACO, ACO and GA 
evaluated by simulating it with real scientific workflows 
Montage, Cyber Shake and Ligo Inspiral. The IACO 
algorithm allocated the VMs efficiently and optimum solution 
is obtained. The simulation results show that the IACO has a 
promising performance as compared to ACO and GA 
algorithm in terms of makespan and total execution cost. 
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