
Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5278


ABSTRACT

The quality of task scheduling plays vital role towards the
trust to use the services of cloud computing. Large numbers of
tasks are submitted to the cloud environment in each moment
and these tasks are executed on the virtualized resources that
can be provisioned dynamically by the cloud. Optimal
allocation of resource to a set of tasks follows a workflow
schedule and it is an important step to improve the overall
performance of the cloud. Ant Colony Optimization (ACO) is
a meta heuristic approach that imitates the foraging
behaviour of real ants. It is a probabilistic technique that can
be used to solve the combinatorial optimization problems like
workflow scheduling. In this research work, a novel ACO
algorithm and its variant Improved ACO (IACO) performs
workflow scheduling through multi objective optimization
process is put forwarded. The IACO incorporates with a new
heuristic information value based on the processing cost and
execution time to achieve the desired objectives. These meta
heuristics are simulated on the benchmark scientific
workflows Montage, CyberShake and Ligo Inspiral. The
simulation results of IACO were compared with ACO and
Genetic Algorithm (GA), IACO reports an optimal schedule
which results into the reduction of makespan and total
execution cost.

Key words : DAG scheduling, workflow scheduling, ACO,
IACO, metaheuristic.

 1.INTRODUCTION

Cloud computing can be considered as a distributed
system that offers computer services over the internet. It
provides infrastructure, platform and software as services and
clients pay only for the resources expended [1]. Cloud
computing gained a heap of attention in both academia and
industry fields as it affords many benefits for users and
organizations with the support of virtualization[2]. Virtual
machines (VMs) are deployed in cloud environment, it is
difficult to assign tasks to resources especially when many
users submit their applications at the same time to the cloud

environment [3]. Therefore, cloud computing needs an
efficient task scheduling strategy to assign tasks to the
appropriate resources.

The task scheduler finds out the better virtual machine
(VM) for a particular task and assigns that task to VM. Task
scheduler must adapt an efficient scheduling algorithm to the
changing environment and to the type of tasks [4]. Recently
many algorithms are promoted to have task scheduling deal
with challenges. Nevertheless the problem still exists with
complex applications like workflows [5]. A workflow is a
group of tasks that processes a data set that is represented as a
directed acyclic graph (DAG) [6]. The workflow comprises
thousands of tasks and deals with huge amount of data.
Scheduling a workflow application in a cloud requires a
streams of steps to be executed in a specific sequence.
Workflow tasks also have certain dependencies like parent
child relationship during execution [7]. A dynamic random
search workflow scheduling algorithm is needed for clouds.
Therefore an efficient scheduling of workflow is necessary to
meet the best total execution time and cost incurred.

The meta heuristic approach includes scheduling
algorithms which are based on iteration method to seek out
the solution to optimization problems. Ant Colony
Optimization (ACO) is a nature-inspired algorithm to find
solutions for NP-hard related combinatorial optimization
problems like scheduling workflows. The ACO is a
metaheuristic, multi-agent approach in which every single
artificial ant’s behaviour is inspired from real ants [8]. When
ants travel in search of food the ants secrete a chemical trail
called pheromone and the ants prefer to travel along the trails
that have the strongest pheromone scent. In ACO, the role of
the trail of pheromone is to share their experience regarding
the journey for solving an optimization problem efficiently.

Meta-heuristic algorithms for task scheduling have been
proposed to carry out the optimization of workflow
scheduling in the recent years. There have been some popular
meta heuristic algorithms such as genetic algorithm(GA),
nature-inspired algorithms like ACO algorithm, particle
swarm optimization(PSO) algorithm, artificial bee colony
algorithm etc., are gaining popularity in the workflow
scheduling problem. Numerous updates and improvements

Assessment of Ant Colony Optimization Algorithm for DAG

Task Scheduling in Cloud Computing
 Nithyanandakumari.K1, Sivakumar.S 2

1Assistant Professor, Department of Computer Science, CPA College, India, nithya_raj811@yahoo.co.in
2Principal, CPA College, India, sivaku2002@yahoo.com

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse159942020.pdf

https://doi.org/10.30534/ijatcse/2020/159942020

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5279

made in these meta heuristic algorithms in the literature
which are working well in one or the other way.
 Pandey et al.[9] put forwarded a dynamic workflow
scheduling algorithm that optimizes the cost of the
task-resource mapping using PSO and takes into account the
computation and transmission costs. Wu et al. [10] presented
a Revised Discrete PSO (RDPSO) algorithm to reduce the
high volume of data transfers in cloud environment. The main
goal of this scheme is to reduce the computation cost under a
deadline constraint. The tasks are taken sequentially, during
PSO mapping update in this algorithm. Amandeep verma et
al. proposed [11] a Bi-Criteria Priority based PSO (BPSO) to
schedule workflow tasks over the available cloud resources.
This algorithm minimized the execution cost and the
execution time under given the deadline and budget
constraints while considering the confirmed reservation of
resources. This scheduling technique is a hybrid of HEFT
(Heterogeneous Earliest Finish Time) heuristic and PSO
meta-heuristics.
 Gu et al. [12] proposed algorithm to resolve scheduling
problem in the field of stochastic job shop scheduling based
on GA with a competitive co-evolution scheme. According to
experiments, their method outperforms standard widely
applied GA and some of its modifications. Barrett et al. [13]
employed a novel scheduling approach that adopts Markov
Decision Process and GA to ensure the workflow execution
process for reducing costs and adhering to the makespan
criterion.
 R.G. Babu karthik et al. [14] presented a Hybrid algorithm
based on ACO and Cuckoo search to solve the task scheduling
problem and the results shows that the algorithm can reduce
the total executing time. Shengjun Xue et al.[15] proposed
ACO Loab Balancing (ACO-LB) algorithm that can adapt to
the dynamic cloud environment. It will not only shorten the
makespan of task scheduling, but also maintain the load
balance of virtual machines in the data center. Medhat
Tawfeek et al.[16] used ACO algorithm to find the optimal
resource allocation for tasks in the dynamic cloud system to
minimize the makespan of tasks on the entire system.
 Vinothina et al.[17] proposed an ACO based algorithm
that maps workflow tasks to cloud resources which attempts
to minimize the makespan, resource cost and maximize the
resource utilization. Liyun Zuo et al. [18] presented an
improved multi-objective ACO to optimize both performance
and cost. Two constraint functions were used to adjust the
quality of the solution in a timely manner based on feedback
in order to achieve the optimal solution. The algorithm is
designed to evaluate the makespan, cost, deadline violation
and resource utilization. Gogy Reddy et al. [19] amends a
Modified Ant Colony Optimization (MACO) algorithm. The
main contribution of recommended method is to minimize
makespan and degree of imbalance. The different alterations
of GA, PSO, ABC and ACO have been proposed by various
researchers to schedule the workflow tasks in cloud with

different objectives such as minimal makespan, minimal cost
and maximal resource utilization, load balancing etc.
 In this research work, we model ACO as a multi-objective
meta heuristic approach to solve the workflow scheduling
problem that minimizes the makespan and cost. We also
applied Genetic Algorithm, an evolution based meta heuristic
approach to compute the desired objectives in multi-objective
domain for workflow scheduling problem. The proposed
IACO is an improved version of ACO to solve the
multi-objective workflow scheduling problem. Simulation
experiments were carried on to validate the benchmark
scientific workflows Montage, Cybershake and Ligo Inspiral.
The novel IACO algorithm yields an optimal allocation of
virtual machines to the workflow scheduling of tasks.

2. PROBLEM DEFINITION

This section describes the workflow application model,
definitions of evaluated meta heuristic algorithms IACO,
ACO and GA with their pseudo codes and the characteristics
of the scientific workflow applications used in this work .

2.1 System model
The workflow application is modeled as a DAG WA = (WT,
WE). Let n be the number of tasks in the workflow. The set of
nodes WT = {WT1, WT2 …WTm} corresponds to the tasks of
the workflow. The set of edges WE represent precedence
constraints that specify the execution order of tasks. An edge
is in the form of (WTi, WTj), where WTi is called the parent
task of WTj and WTj is the child task of WTi, means that WTi
and WTj has data dependency.
 Normally, a child task can only be executed until all of its
parent tasks have been completed. The set of parent tasks of
WTi is denoted by Pred(WTi), and the set of child tasks by
Succ(WTi). A task without parents is called an entry task
denoted by WTentry and a task with no children is called an end
task denoted by WTend.
 Let VM = {VM1, VM2… VMn} be the set of available
virtual machines. The selection of a virtual machine VMi to
schedule a workflow task depends on its processing capacity
P(VMi) and defined as
 P(VMi) = MIPS (VMi) * PEs (VMi)
(1)
Where

MIPS (VMi) - processing speed of VMi
PEs (VMi) - processing elements in VMi

The execution time ET(WTi) of task WTi executed by
VMj is calculated in (2), where SIZE(WTi) is the size of task
WTi and P(VMj) is the processing capacity of VMj. The data
transfer time TTei,j between a parent task WTi and its child
task WTj is given in (3), where OUTSIZE(WTi) is the output
data size produced by task WTi, BW is the bandwidth between
each virtual machine.
 ET(WTi) = SIZE(WTi) / P(VMj) (2)

 TTei,j = OUTSIZE(WTi)/ BW (3)

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5280

 Scheduling workflows in this work is treated as a multi
objective problem (MOP). The objective function of the
scheduling problem is to find an optimal solution which can
minimize the makespan as well as the total execution cost. It
is also known as Pareto optimization that is concerned with
mathematical optimization problems involving more than
one objective function to be optimized simultaneously.

 The important notations used in this manuscript are given
in Table 1.

Table 1: Notations and descriptions
Notations Descriptions

WT Set of workflow tasks
WE Set of workflow edges
WTi ith workflow task,i=1,2,3,…m
VM Set of virtual machines
VMi jth virtual machine,j=1,2,3,…n

P(VMi) Processing capacity of VMi
ET(WTi) Execution time of ith workflow task

TTei,j Data transfer time between WTi and WTj

Pr(WTi) Task priority of ith workflow task
SIZE(WTi) Length of ith workflow task
ƞ(WTi, VMj) Heuristic desirability of mapping WTi to

VMj
TP(WTi,VMj) Transition probility for assigning WTi to

VMj
 Local pheromone evaporation parameter

τ0 Initial pheromone value
 Global pheromone evaporation parameter

TEC Total execution cost

2.2 Genetic Algorithm
 Genetic Algorithm (GA) is a meta heuristic algorithm
based totally on the mechanisms of natural selection and
genetic science. This optimization method has been
confirmed to be very efficient and stable in searching out
global optimium solutions [20]. The basic idea of GA is to
start with a group of solutions and to generate a set of new
solutions by applying some well-defined operators on the
recent ones. Then, some solutions are selected to form a new
set with which another iteration is started, and so forth till
some stopping criterion is met. In general, a GA consists of
the subsequent steps:
(1) Initial Population Generation: The first step of GA

would be defining the population. The set of individuals
used in finding the optimal solution is considered as the
initial population. In GA, each chromosome (individual
within the population) represents a possible solution to a
problem and consists of a string of genes. The initial
population is taken randomly to serve as the starting
point for the algorithm.

(2) Fitness function: Fitness value is the basis for
productivity. A fitness function is defined to check the

suitability of the chromosome for the environment. The
fitness function evaluates the quality of each offspring.

(3) Selection: The parent chromosomes are selected from
the population to produce their off springs according to
their fitness value.

(4) Crossover: This step involves crossing over the parent
chromosomes to generate their off springs.

(5) Mutation: When a population is prone as homogenous
due to repeated reproduction and crossover operators,
then mutation take place. One or more gene values within
the chromosomes are altered by mutation from its initial
state. A far better solution may be created by GA with the
help of these gene values.

 This GA process is repeated till either the fittest
chromosome (optimal solution) is found or the termination
condition (maximum number of iteration) is exceeded.

Pseudo code for Genetic Algorithm

2.3 Ant Colony Optimization Algorithm

The ACO algorithm is a probabilistic technique for
solving computational problems which can be reduced to find
good paths through graphs. ACO algorithm is a parallel
algorithm. In the ACO algorithm, an artificial ant is a simple
computational agent that searches for good solutions to a
given optimization problem. They will release a substance
called pheromone in their way. The ants communicate with
each other via this pheromone.The route more ants get
through has a higher possibility for the subsequent ants to
choose and the continuous pheromone update is finally
converged to the optimal route. The process of the ACO
algorithm takes in solving MOPs is generally divided into five
steps:

(1) Initialization: To initialize the parameters of the
algorithm, the pheromone information and heuristic
information.

(2) Solution construction: Involves in construction of a
new solution for each ant by using a probabilistic
rule to choose solution components.

(3) Solution evaluation: Evaluates the solution of each
ant obtained in step 2, store the non-dominated
solutions, and eliminate the dominated ones.

1. Begin
2. Initialize population by random solutions
3. Evaluate each candidate
4. Repeat until (termination condition occur)
5. Do

a. Select parents
b. Recombine pairs of parents
c. Mutate the resulting offsprings
d. Evaluate new candidate
e. Select individuals for next generation

6. End

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5281

(4) Update of pheromone: Updates the pheromone
values by using information extracted from the
newly constructed solutions. The pheromone related
with edges in a non-dominated solution will
increase.

(5) Termination: The algorithm terminates and outputs
the optimal solution if a problem-specific stopping
condition is met, such as the number of iterations
and the running time, otherwise go back to step 2.
In the process of solving a multi-objective

optimization problem, the difference of each ant colony
algorithm is mainly reflected in step (1), step (2) and step (4).
The differences in the initialization, solution construction,
and the update of pheromones result in different improved
multi-objective ACOs.

2.4 IACO algorithm
 The proposed IACO algorithm is designed for cloud
environment where heterogeneous natures of computational
resources are available. The IACO considers the processing
capacity of VM, the cost for utilizing the VM and the status of
the VM before assigning a workflow task to that VM in order
to reduce the makespan and cost. The details of IACO
algorithm are outlined as follows:

1. Task prioritization: Initially, the tasks of the submitted
workflow are prioritized based on its precedence
constraint using (4) so that the ants can assign the tasks
to VMs based on its priority Pr.

))jPr(WT jTTei,(
)jWT(

max)()Pr(



SuccjWTiWTSIZEiWT

(4)

2. Heuristic desirability: In ACO, heuristic information is
a fixed value that reflects attractiveness between paths,
used to guide the search of artificial ants. The heuristic
information value is defined as the mapping of a
workflow task WTi to the virtual machine VMj as
ƞ(WTi, VMj).




















),(),(

1
),(ET

jVMiWT
EC

jVMiWT
jVMiWT




(5)

EC
VMWT ji),( is the heuristic information value on the

processing cost for using VMj for the task WTi and
ET

VMWT ji),( is the heuristic information value on execution

time of WTi executed by VMj .
EC

VMWT ji),( is given by

)
ji,eTT(),(),(),(Cost

jVMiWTDur
jVMiWT

CostEC
jVMiWT 

 (6)
 where

),(jVMiWT
Cost is the base processing cost for

utilizimg VMj by WTi.),(jVMiWTDur is the duration time

at which the task WTi runs on VMj.)
ji,eTT(Cost is the

communication cost to transmit the data from VMi to VMj.
ET

VMWT ji),( is given by

ET

VMWT ji),( = ET(WTi)

(7)
3. Solution Construction: Each ant incrementally builds a

complete solution in every iteration of the algorithm.
An ant selects a virtual machine VMj for a workflow
task WTi according to the pheromone and the heuristic
information value. The choice of this selection is done
probabilistically at each solution construction step.
The transition probability TP(WTi,VMj) for assigning WTi
to VMj is given by (9). Based on this transition
probability, some paths will be more likely to be chosen
than others.




















































),(),(

),(),(

),(

jVMiWTnjVM jVMiWT

jVMiWTjVMiWT

jVMiWTTP

 (9)
Where τ(WTi,VMj) - The pheromone value of mapping VMj to
task WTi.
α, β - determine the relative importance of pheromone Vs.
heuristic information value.

 ƞ(WTi, VMj) - the heuristic desirability mapping VMj to task
WTi.
4. Pheromone update: The solution quality built by ants is

directly influenced by the pheromone value. Updating of
pheromone is the main thing of IACO as it affects the
performance of workflow scheduling.
a. Initialization: The initial amount of pheromone on

virtual machines is assumed to be a small positive
constant τ0. In IACO, the initial pheromone value τ0 is
defined as τ0 =0.5.

b. Local Pheromone update: An ant has chosen a virtual
machine VMj to execute WTi, based on (9). The local
update of pheromone occurs during this solution
construction process. The local update rule is given in
(10). This value will be changed after every iteration.

  0),(),(1  
jiji VMWTVMWT (10)

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5282

where τ0 is an initial pheromone level and  is a local

pheromone evaporation parameter (0 <  < 1). This

pheromone evaporation parameter  is applied to
prevent infinite accumulation of pheromone.

c. Global pheromone update: When all the ants have
completed their tour, the best solution given by the best
ant is taken for the global pheromone update ie., the
edges that were visited by the best ant that find the
shortest path are renewed in global pheromone
updation. The proposed global pheromone update rule
can be applied with (11).

 ),(),(),(1
jijiji VMWTVMWTVMWT  

(11)
  - global pheromone evaporation parameter.

),(ji VMWT = 1/ ET(WTi) (12)

5. IACO Termination: When all ants complete mapping
of the workflow tasks assigned in virtual machines, the
best schedule with minimal execution time/makespan
and minimum total execution cost is selected. The
makespan is calculated using (13) and total execution
cost (TEC) is given in (14).

   iWTET
n

i
Makespan

1
max


 (13)

  iWTSIZEBWCost
p

i iVMMakespan
jVMiWT

CostTEC 


 















1 ,

 (14)
Pseudo code for the proposed IACO

2.5 Workflow Applications
A workflow is the composition of numerous

interconnected computational tasks that have precedence
constraints. Workflow tasks typically communicate through
the use of files. Each task in a workflow produces one or more
output files that become input files to other tasks[23].
Workflows can be divided into business workflows and
scientific workflows. Business workflows are widely used for
business data processing. Scientific workflows are typically
used for modelling and running scientific experiments.
Scientific workflows can assemble scientific data processing
activities and automate the execution of these activities to
reduce the makespan and the execution cost based on the
resource utilization [24]. The most general representation of a
scientific workflow is a DAG, in which nodes correspond to
data processing activities and edges represent the data
dependencies.

In order to evaluate the efficiency of IACO in terms
of makespan and cost, three scientific workflow applications
are taken from Pegasus toolkit and provided by the Pegasus
workflow management system. They are Montage,
Cybershake and Ligo Inspiral. These workflows are widely
used for performance measurement of scheduling algorithms.
The first workflow application Montage [25] typically follows
a regular structure, created by NASA/IPAC stitches together
multiple input images to create custom mosaics of the sky.
The second workflow application CyberShake is used by the
Southern California Earthquake Center to characterize the
earthquake hazards in a region [26]. The third workflow
application Ligo Inspiral [27] is used to generate and analyze
gravitational waveforms from data collected during the
coalescing of compact binary systems. These scientific
workflows are used and evaluated the performance of HEFT
algorithm for DAG scheduling [28].

The structures of the workflows are given in Figure
1. Four different sizes of these workflows are chosen, small
(around 30tasks), medium (around 50 tasks), large (100
tasks) and extra-large (1000 tasks) for evaluation.

a) Montage

Begin IACO
1. Get the tasks in the scientific workflow model.
2. Get the number of available virtual machines.
3. Initialize the pheromone value τ0 =0.5,parameters α= β=0.5,

 = =0.1.
4. The tasks of the workflow are prioritized using Eqn(4).
5. For i= 1 to K do // iteration starts
6. Place m ants on the starting VMs randomly.

For i= 1 to m do
 For each WTi,
 For each VMj

 Assign WTi, to VMj with highest transition
probability TP(WTi,VMj) eqn.(9)

 Apply local pheromone update rule using
Eqn(10)
 End for
 End for

7. Update makespan using Eqn(13)
End for // completion of ants tour

8. Find the best schedule Sbest of antm based on makespan
9. Apply global pheromone update rule using Eqn(11)
10. Calculate the total execution cost using Eqn(14)

 End for // iteration ends

End IACO

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5283

b) Cybershake

c) Ligo Inspiral

Figure 1: The scientific workflows

The characteristics of these benchmark workflows are
presented in Table 2.

Table 2: Characteristics of the benchmark workflows
Workflow Number of

Nodes
Number
of Edges

Mean Data
Size (MB)

Montage_25 25 95 3.43
Montage_50 50 206 3.36
Montage_100 100 433 3.23
Montage_1000 1000 4485 3.21
CyberShake_30 30 112 747.48
CyberShake_50 50 188 864.74
CyberShake_100 100 380 849.60
CyberShake_1000 1000 3988 102.29
LIGO Inspiral_30 30 95 9.00
LIGO Inspiral _50 50 160 9.16
LIGO Inspiral _100 100 319 8.93
LIGO Inspiral _1000 1000 3246 8.90

The table describes the number of nodes, number of edges and
the mean data size (MB) of each workflow.

3. PERFORMANCE EVALUATION

The experiments have been conducted to evaluate the
performance of the IACO, ACO and GA through simulation
with the Montage, CyberShake and Ligo Inspiral datasets
using Workflowsim simulator. The simulation results of
IACO have been compared with ACO and GA using the two
performance indicators makespan and cost.

Workflowsim can be used to model data centers, host,
service brokers, scheduling and allocation policies of a large
scaled cloud platform. The hardware requirements as well as

the configuration parameters used for the implementation of
IACO, ACO and GA in Workflowsim are given as follows.
Simulated datacentre (DC) host has 5 virtual machines (VMs)
which are provided to users as resources. A datacentre (DC) is
assumed to be having 1 CPU with a capacity of 1000 MIPS
and 1000MB of available bandwidth. The costs for using
memory, storage, bandwidth and processing cost are 0.05,
0.1, 0.1 and 3.0 units respectively.

In the IACO algorithm, the given workflow tasks are
prioritized based on its precedence constraints initially. Then
the mapping of a workflow task WTi, to VMj is calculated
using the transition probability given in (9). To improve the
quality of the solution, local updation as well as global
updation of pheromone is done. This updation helps the ants
to choose some paths more often than others thereby reducing
the makespan and cost.
 Experiments are carried out to compare the performance
of IACO with ACO and GA. The total cost required for
scheduling Montage workflows using GA, ACO and IACO
and the numerical values of makespan are given in Table 3.
The comparison is done with Montage data sets having 25,
50,100 and 1000 tasks. The total costs of Montage datasets
implemented with IACO are 1726.98, 2188.86, 4871.18 and
76566.9.

Table 3: The makespan and cost results for Montage

Dataset No of

Nodes
Makespan Cost

Genetic
Algorithm

ACO

IACO

Genetic
Algorithm

ACO

IACO

Montage 25 250.29 236.29 233.95 1787.16 1727.58 1726.98
50 1085.10 1052.4 1051.4 2590.87 2190.43 2188.86
100 1299.13 1278.64 1277.18 4995.31 4897.1 4871.18
1000 25120.9 24533.5 24531.5 77551.29 76566.9 76565.9

 The makespan results of IACO, ACO and GA for Montage
workflow is presented in Figure 2. The results show that
IACO decreases the makespan compared with ACO and GA.
The horizontal axis represents the different set of nodes of
Montage workflow application considered for the
experiments. The vertical axis gives the actual makespan
taken by ACO, GA and IACO algorithms.

Figure 2: Simulation results of makespan for the montage

workflows

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5284

 Similarly, The total cost required for scheduling
CyberShake workflows using GA, ACO and IACO and the
numerical values of makespan are given in Table 4. The total
costs of Cyber Shake datasets implemented with IACO are
20175.28, 40186.18, 80576.55 and 227888.3.

Table 4: The makespan and cost results for CyberShake
Dataset No of

Nodes
Makespan Cost

GA ACO

IACO

GA ACO

IACO

Cyber
shake

30 716.14 591.43 589.48 20312.15 20176.82 20175.28
50 1825.28 1021.69 1020.18 40500.16 40188.56 40186.18
100 4554.35 3905.67 3904.71 95827.99 80577.95 80576.55
1000 55854.76 55668.86 55665.19 252840.6 227890.6 227888.3

 The makespan results of IACO ,ACO and GA for
CyberShake workflow is presented in Figure 3. The results
show that IACO decreases the makespan compared with ACO
and GA. The horizontal axis represents the different set of
nodes of CyberShake workflow application considered for the
experiments. The vertical axis gives the actual makespan
taken by ACO, GA and IACO algorithms.

Figure 3: Cybershake workflows

 The total cost required for scheduling Ligo Inspiral
workflows using GA, ACO and IACO and the numerical
values of makespan are given in Table 5. The total costs of
Ligo Inspiral datasets implemented with IACO are 26620.16,
38429.32, 97277.22 and 1396188.

Table 5: The makespan and cost results for Inspiral

Data
set

No of
Nodes

Makespan Cost
GA ACO

IACO

GA ACO

IACO

Inspiral 30 5212.34 4977.45 4970.3 28123.12 26624.96 26620.16

50 7871.16 7333.96 7326.51 41679.98 38429.78 38429.32
100 39113.67 31555.0 31553.2 145769.12 97287.28 97277.22
1000 528486.4 463719.6 463713 22983248 1396190 1396188

 The makespan results of IACO ,ACO and GA for Ligo
Inspiral workflow is presented in Figure 4. The results show
that IACO decreases the makespan compared with ACO and
GA. The horizontal axis represents the different set of nodes
of Ligo Inspiral workflow application are considered for the
experiments. The vertical axis gives the actual makespan
taken by ACO, GA and IACO algorithms.

Figure 4: Ligo Inspiral workflows

 For all the three workflows, the results show that IACO
decreases the makespan compared with ACO and GA. The
makespan analysis shows that when the number of tasks is less,
the difference in makespan is not very obvious. However, with
the increase in the number of tasks, IACO significantly
minimizes the makespan compared to ACO and GA.

 As can be seen from the tables, the makespan and the total
cost of IACO against the ACO and GA is statistically better in
each case. The comparison analysis of makespan and cost
evidently depicts that the IACO performs much better than
ACO and GA. The obtained results show that the IACO
algorithm optimizes the makespan and execution cost in
comparison with the ACO and GA using the Montage,
Cybershake and Ligo Inspiral scientific workflow applications.

4. CONCLUSION

In the context of the efficient use of computational
resources within the cloud computing, a very important factor
is the issue of scheduling workflows. This work proposed a
metaheuristic scheduling algorithm IACO, ACO and GA
evaluated by simulating it with real scientific workflows
Montage, Cyber Shake and Ligo Inspiral. The IACO
algorithm allocated the VMs efficiently and optimum solution
is obtained. The simulation results show that the IACO has a
promising performance as compared to ACO and GA
algorithm in terms of makespan and total execution cost.

REFERENCES

[1] Deepinder Kaur, Manoj Kumar, Study and
Implementation of Simple Storage Service on Cloud,
International Journal of Advanced Trends in Computer
Science and Engineering, ISSN 2278-3091 ,Volume 8,
No.1.6,pp.268-271,, 2019.
https://doi.org/10.30534/ijatcse/2019/4081.62019
[2] C.Fangzhe, J.Ren, and R.Viswanathan, Optimal
Resource Allocation in Clouds, Proceedings of the 3rd
International Conference on Cloud Computing, Florida,
USA, pp. 418- 425, 2010.
[3] H. Qiyi, H.Tinglei, An Optimistic Job Scheduling
Strategy based on QoS for Cloud Computing, Proceedings
of the IEEE International Conference on Intelligent

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5285

Computing and Integrated Systems, Guilin, China, pp.
673-675, 2010.
[4] K.Gao, Q.Wang, and L Xi., Reduct Algorithm Based
Execution Times Prediction in Knowledge Discovery
Cloud Computing Environment , International Arab
Journal of Information Technology, vol. 11, no. 3, pp. 268-
275, 2014.
[5] Wei-neng Chen, Yuan Shi, Jun Zhang, An Ant Colony
Optimization Algorithm for the Time-varying Workflow
Scheduling Problem in Grids, 978-1-4244-2959-2/09,
IEEE Congress on Evolutionary Computation (CEC 2009).
https://doi.org/10.1109/CEC.2009.4983037
[6] K. Nithyanandakumari, S. Sivakumar, A study on DAG
model for Task Scheduling in Cloud Environment,
Proceedings of International Conference on Advanced
Computing and Communication Systems (ICACCS -2017),
IEEE ISBN No. 978-1-5090-4558-7,2017.
[7] Lovejit Singh Jhajj, Sarbjeet Singh, A Survey of
Workflow Scheduling Algorithms and Research Issues,
International Journal of Computer Applications,
74.10.5120/12961-0069,2013.
[8] D.Yuvaraj , M.Sivaram , A. Mohamed Uvaze Ahamed ,
S.Nageswari Nature Inspired Evolutionary Algorithm
(ACO) for Efficient Detection of DDoS Attacks on
Networks, International Journal of Advanced Trends in
Computer Science and Engineering,ISSN 2278-3091
,Volume 8, No.1.4, pp.268-271,2019.
https://doi.org/10.30534/ijatcse/2019/0781.42019
 [9] S.Pandey S, Wu L, Guru S.M, Buyya R. A particle
swarm optimization-based heuristic for scheduling
workflow applications in cloud computing environments,
Proceedings of the twenty-fourth IEEE international
conference on advanced information networking and
applications; 2010. pp. 400–407.
[10] Wu Z, Ni Z, Gu L, Liu X. A revised discrete particle
swarm optimization for cloud workflow scheduling,
Proceedings of the international conference on computational
intelligence and security; 2010. p. 184–192.
[11] Amandeep Verma, Sakshi Kaushal, Cost Minimized
PSO based Workflow Scheduling Plan for Cloud
Computing, International Journal of Information
Technology and Computer science (IJITCS), vol.7, no.8,
pp.37-43, 2015. DOI: 10.5815/ijitcs.2015.08.06.
[12] Jinwei Gu, Manzhan Gu, Cuiwen Cao, Xingsheng Gu, A
novel competitive co-evolutionary quantum genetic
algorithm for stochastic job shop scheduling problem,
Computers & Operations Research. 2010, Volume 37, Issue
5,pp. 927-937.
[13] Barrett E, Howley E, Duggan J, A learning architecture
for scheduling workflow applications in the cloud,

Proceedings of the IEEE ninth European conference on web
services; 2011. p. 83–90.
https://doi.org/10.1109/ECOWS.2011.27
[14] R.G. Babu karthik, R. Raju, P. Dhavachelvan, Hybrid
Algorithm for Job Scheduling: Combining the benefits of
ACO and Cuckoo Search, Advances in Computing and
Information Technology. Springer Berlin Heidelberg, pp.
479-490, 2013.
[15] Shengjun Xue, Mengying Li, Xiaolong Xu, Jingyi Chen,
An ACO-LB Algorithm for Task Scheduling in the Cloud
Environment, Journal of Software, Vol. 9, no. 2,
pp.466-473,February 2014.
[16] Medhat Tawfeek, Ashraf El-Sisi, Arabi Keshk and
Fawzy Torkey, Cloud Task Scheduling Based on Ant
Colony Optimization, The International Arab Journal of
Information Technology, Vol. 12, No. 2,pp.129-137,March
2015.
[17] V. Vinothina, R. Sridaran, An Approach for
Workflow Scheduling in Cloud Using ACO, Big Data
Analytics, Advances in Intelligent Systems and Computing
654, © Springer Nature Singapore Pvt. Ltd. 2018.
https://doi.org/10.1007/978-981-10-6620-7_50
[18] Liyun Zuo, Lei Shu, Shoubin Dong, Chunsheng Zhu,
Takahiro Hara, A Multi-Objective Optimization
Scheduling Method Based on the Ant Colony Algorithm
in Cloud Computing ,Special Section On Big Data Services
And Computational Intelligence For Industrial Systems,
IEEE Acess, December 2015.
[19] G. Narendrababu Reddy, S. Phanikumar, Multi
Objective Task Scheduling Using Modified Ant Colony
Optimization in Cloud Computing, International Journal of
Intelligent Engineering and Systems, Vol.11, No.3,
pp.242-250,January 2018.
[20] Kousik Dasguptaa , Brototi Mandald, Paramartha Duttac
, Jyotsna Kumar Mondald, Santanu Dame, A Genetic
Algorithm (GA) based Load Balancing Strategy for Cloud
Computing, International Conference on Computational
Intelligence: Modeling Techniques and Applications
(CIMTA), Science Direct(Elsevier), Procedia Technology 10
(2013).pp. 340 – 347.
[21] Pardeep Kumar, Amandeep Verma, Scheduling Using
Improved Genetic Algorithm in Cloud Computing for
Independent Tasks ,International Conference on Advances
in Computing, Communications and Informatics, 2012,
pp.137-142.
[22] R. Senthilnathan, M.Nithya, A Trust Model And
Quality Of Service Based Heuristic Scheduling In Cloud
Using Genetic Algorithm, International Journal of Pure and
Applied Mathematics, Volume 119,No.16 2018,
1007-1018,ISSN: 1314-3395.
[23] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang
Mehta, Benjamin P. Berman, Bruce Berriman, Phil
Maechling, Data Sharing Options for Scientific

Nithyanandakumari.K et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5278 – 5286

5286

Workflows on Amazon EC2,
https://arxiv.org/pdf/1010.4822.pdf.
[24] Ji Liu, Esther Pacitti, Patrick Valduriez, Marta Mattoso,
Parallelization of Scientific Workflows in the Cloud,
[Research Report] RR-8565, <hal-01024101v2>,2014.
[25] Jiang, Qingye & Lee, Young & Arenaz, Manuel &
Leslie, Luke & Zomaya, Albert, Optimizing Scientific
Workflows in the Cloud: A Montage Example,
IEEE/ACM, 7th International Conference on Utility and
Cloud Computing, UCC 2014. 517-522.
10.1109/UCC.2014.77.
[26] S. Bharathi, A. Chervenak , E.Deelman , G. Mehta,M.H.
Su, K.Vahi , Characterization of scientific workflows,
Proceedings of the Third Workshop on Workflows in Support
of Large-scale Science 2008, pp. 1–10.
https://doi.org/10.1109/WORKS.2008.4723958
[27] H. Monti, A. Butt, S. Vazhkudai, Catch: A cloud-based
adaptive data transfer service for hpc, Proceedings of the
25th IEEE International Parallel & Distributed Processing
Symposium (IPDPS), 2011, pp. 1242–1253.
https://doi.org/10.1109/IPDPS.2011.118
[28] K. Nithyanandakumari, S.Sivakumar, Performance
Evaluation of Enhanced Heterogeneous Earliest Finish
Time Algorithm for DAG Task Scheduling in Cloud
Computing, International Journal of Advanced Science and
Technology, Vol. 28, No. 17, pp. 178-191,ISSN: 2005-4238
,2019.

