
Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3538 – 3543

3538


ABSTRACT

With the increasing demand of fast computation, High
performance computing is getting evolved now a days rapidly.
In Today’s data era where problems are going to be huge and
need high computational resources, High performance
computing (HPC) is emerged based on multiple system
parallelism equivalent to facilitate supercomputing
functionalities. It is going to have a cluster of parallel
interconnected computational systems to reduce time of the
execution. Several tools are available for cluster management,
but resource usage and consumption are always a concern.
This paper presents a model which will help in dynamically
allocation of the computational resources in terms of CPU,
memory to overcome the existing challenges and reduce
performance overhead. The results focus on the different
configuration for computing resources and comparison of
time entities for execution with different number of
interconnected processes.

Key words: Computing Resources, High Performance
Computing, Resource Manager, Parallel Computing,
Resource allocation, Torque, Virtualization.

1. INTRODUCTION

In today’s data-centric world, High Performance Computing
is always in demand to solve large complex datasets problems.
These are going to be multiple parallel running jobs running
with static computing resources allocations using well known
tools like Message Passing Interface (MPI). The underlying
infrastructure should be enough capable in terms of memory,
CPU, GPU, network bandwidth and much more to facilitate
supercomputer functionalities. Available HPC resource
managers like Torque, resources will be assigned to running
job based on the specified configurations. If there is any
change required in allocated computing resources, the whole
job needs to be cancelled and need to submit it again in queue
due to its static behavior in nature. Therefore, we need
dynamic allocation of computing resources that will not only
increase the performance of running application but also
enable the Data Intensive application to run on HPC cluster.
HPC applications usage are on boom in research area, IT

industry as well as in educational institutes to solve the real
time issues. HPC cluster formation is higher in cost but now a
days it can be reduced easily via using commodity-off-shell
hardware components or leveraging the virtualization
techniques [1]. Linux Operating System is most preferable for
building the interconnected systems in form of clusters.
Parallelism is an essential key performance factor to run HPC
applications.
In parallel computing, the issue is split in multiple parts as a
series of instructions which can be solved parallel on multiple
running processes within a cluster and results it in better
performance and execution time. Generally, within an HPC
cluster, running jobs are not going to consume full resources
but still we need to take care of resource allocation wisely.
These free resources can be allocated to other applications
like we mentioned above that is Data intensive applications.
A little relocation of any computing resource in HPC cluster
can highly impact the performance of whole running
application, we need to take care of allocation of free
resources for data intensive applications very carefully via
maintain a buffer. Typically, in HPC cluster same pattern is
getting used for running the jobs multiple times with a
different set of Input data. Using monitoring and profiling
technique, computing resource can be defined within a
specified range. In this paper, we represent a model for the
dynamic reallocation of computing resources based on
running HPC application profile and execution time patterns.

2. RESOURCE ALLOCATION APPROACHES

2.1 Resource Allocation Managers

HPC resources can be managed by using any well-known
resource manager where users can describe the jobs by
defining their deadline and configurations like CPU, number
of threads based on core, memory etc. Running job is not
generally going to consume all resources. The allocation of
resources is typically based on the granularity of computing
node. The computing nodes can be shared across jobs.
Overall, Job can be categorized mainly in five types i.e.
adaptive, malleable, rigid, moldable and evolving. Adaptive
jobs are dynamic in nature which are responsible for large
datasets problems and can be adaptable on resource allocation
change requirements. Rigid jobs require the detailed format of

Dynamic Allocation of High Performance Computing

Resources
Manish Kumar Abhishek1, D. Rajeswara Rao2

1Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India,
manish.abhishek@gov.in

2Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, rajeshpitam@gmail.com

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse159932020.pdf

https://doi.org/10.30534/ijatcse/2020/159932020

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3538 – 3543

3539

resource constraint before job submission and used for long
running applications.

A. Torque
It is a well-known distributed resource manager which is used
to control over the jobs and distributed computing nodes [2].
It handles the fault tolerance, scheduling interface with high
logging, collection of data once job get completed and
significantly handle larger clusters to achieve scalability. It is
getting used in research supercomputers. Commands that are
generally getting used are:

 Qsub – It is used to submit a job
 Qdel – It is used to stop the job before its completion.
 Qstat – It is used to check the current status of

scheduled job.

B. Slurm
It is one of the most used open source resource managers for
clusters having Linux Operating system. It is almost
self-contained and do not require any kernel modification to
be operational [3]. It starts with the allocation of both types of
exclusive and/or non-exclusive access to compute nodes
resources. After allocating the resources, it starts, execute and
monitor the work via managing a queue for the remaining
tasks.

C. Mesos
It is a cluster resource manager which provides isolation and
resource sharing among distributed jobs or applications.
Using it, multiple applications can run via sharing the
computing resources of nodes within cluster at runtime. It is
basically using the cgroups feature of Linux OS for providing
the isolation [4]. It offers multiple APIs for executors and
schedulers like resourceOffer based on offered and offers. It
also reduces the overhead of performing the manual steps for
application deployment and automated workload shifting to
achieve fault tolerance.

Figure 1: General Resource Management with Torque

Figure 1 shows the general mechanism of managing the
computing resources in HPC cluster where jobs are typically
queued, and resources will get allocated once get freed. There
is no priority assigned to running jobs based on which
resource will get allocated. In HPC cluster, resource
allocation is always a challenge where distributed jobs are
running with different configuration of resources on
computing nodes. For this kind of scenario, dynamic resource
managers are used to have the fault tolerance. In general,
HPC clusters, allocation of resource is done via static
configuration of CPU cores, memory, I/O threads etc.
Co-scheduling is one of the most used technique to make a
change in resource utilization which can raise SLA violations.
For performance, Paragon classify each job based on the
weightage of resource impact to select the appropriate
candidate to collocate the job.

2.2 Challenges in Resource Allocation

In large HPC clusters, due to lower computing resource
fragmentation, fine granularity in task allocation can have
negative impact. Therefore, we should have a method for
resource allocation across jobs. Using the available resource
managers, it’s hard to integrate the complete analyzed data
for scheduling of jobs and control over computing resources
where it should be operated with isolation [6]. Deployment
infrastructure and its efficient use is also one of the challenges
in front of HPC. The usage of free computing resource from
the hosted environment is one of the major concerns. HPC
application requirements are getting complex, changing day
by day and to handle all, we are proposing a model via
predicting the running application profile and execution time
patterns. It is scalable, flexible in nature and results are also
promising for dynamic allocation of resources at runtime.

3. PROPOSED MODEL FOR DYNAMIC RESOURCE
ALLOCATION

Here, we are defining the design of out model using which
computing resources within a HPC cluster can be allocated at
run time to achieve the fault tolerance, isolation as well as
meantime available resources can be used for other type of
applications. Figure 2 shows system component diagram of
our model having main components and complete execution
from queue to completion of a job that is managed by Mesos
which is non-intrusive and uses cgroups. In Unix, cgroups is
one of the easily available and user-friendly operating system
controls which ensures that running process consume less
resource capacity in terms of CPU, I/O, memory, disk space)
from the allocated ones. We have used virtualization to setup
the HPC cluster using interconnected virtual machines
(VMs). KVM hypervisor has been used to provision the
Virtual computing nodes. As we have chosen Linux
Operating System (CentOS 7.0) for the deployment of HPC
applications, hypervisors also support Linux as a host
Operating system as well as guest operating system. For HPC
cluster, it is very important to choose virtualization

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3538 – 3543

3540

technology very carefully as it has its own critical aspects.
Hypervisors ease the provisioning of virtual machines. Core
Service is its one of the core components that we have
implemented via following the microservice architecture
instead of monolith to achieve scalability and fault tolerance.

Figure 2: Proposed Model Architecture in HPC Cluster

A. Core Service
Application will be deployed in and initialized by the core
service. It calculates, analyses the free computing resources
and persisting the same in database. It will gradually learn the
pattern of the resource consumption and build a model for
same. Mesos is going to use the same. The same list of
resources can be shared with the master node to start
non-HPC application execution. The profiling will get start
once job will get submitted. The profiler is going to hold the
performance counters which includes, Core usage, memory,
CPU, cycles per instruction. We are going to show all to user
to make aware about the resource consumption and can
identify the hotspots during a duration of time like past 2
hours. The threshold can be set for the allocated resources so
that events will get generated in case of threshold breach.
Internally, we have used the microservices architecture for
this model. All the node data is going to be consumed by this
service to estimate the standard deviation, average for
co-scheduling and outliers as well. This service is very light
weight in nature having no memory footprints.

We have designed the Algorithm 1 which is based on to
choose the appropriate node for container allocation. For each
computing resource factor, we have computed its affect on the
type of service and rank it. We have the CAs as the selected
allocated container and Service type as the weight vector
which gives more wightage to each impacting factor.
Computing resource factor includes cpu, memory, affinity,

network and GPU. Here overall ranking will be calculated six
times of m that means for the computation of allocation of n
containers, it will be computed based on 6 multiply by m and
n times with a complexity O (n x m).

Algorithm 1. pseudocode for the container placement

Input: Cn, Wn, St
Output: Cp
1: CAs = φ
2: for each container ∈ Cn do
3: initialize CAs with Ns
4: for each m ∈ Ns do Wn
5: Rankm = φ
6: calculate Rankcpu, Nc
7: calculate Rankmem, Nm
8: calculate Ranknet, Ns
9: calculate isGPU, t, f
10: calculate Affinity, t, f
11: Ranktotal, N* = RankN ∗ St
12: set CAs with RankN
13: end for
14: sort CAs with node_Total_score by ASC
15: map (container, CAs [0]) into Cp
16: end for
17: return Cp;

 Cn: Required containers need to be created
 Ns: Available Working Nodes
 St: Service Type
 CAs: Available node for container deployment
 RankN: The Rank of Container for deployment

4. EVALUATION

Here, we are evaluating our proposed model for dynamic
allocation resources, usage of free computing resources for
non-HPC application, performance, profiling, queue
throughput. We have executed two HPC application and one
non-HPC application with static as well as dynamic use cases.
The three cluster sizes have been considered here i.e. 512, 256
and 128 CPU cores. Allocated time period for running the
application is provided as one hour. We have evaluated the
execution time, performance impact in a private cluster
deployed in our university research labs where Figure 3 and
Figure 4 shows the comparable results using Torque and our
proposed model. The cluster is having 22 Open Compute
Windmill compute nodes, individually six 8 Intel Xeon
E5-2660 CPU cores (2.20 GHz), 124 GB DDR4 with a 14
Gb/s Ethernet network. The shared filesystem is a NFS v4.2,
with high performance of 10 Gb/s. The cluster is running on
CentOS 7.0 and managed by Torque.

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3538 – 3543

3541

Figure 3: Average Queue Make span

Figure 4: Average Resource Utilization

4.1 Use Case

We ran all two HPC application and one non-HPC application
using the core 32, 8 and 6 for each. Every application has been
executed isolated to form a baseline, cgroups based static
sharing. Later, we compare the results using our proposed
model using a parallel freezer and a random freezer. Using
parallel freezer, it does not allow the second application till
first one is using all resource (here it is CPU core) where
random freezer only stopping second application for a
duration of time period. We have defined the priorities for the
application so that application with higher priority will
always get preference for the resource consumption and
application with lower priority will wait. Using Torque logs,
we have collected the metrics data for each use case that is
going to have total CPU usage, execution time for individual
submitted job and all jobs. Table 1 is showing results related
to the execution time of HPC application that are impacted by
the different configuration of resource controllers based on
the number of CPU cores i.e. 32, 6 and 8 in count. We can see
the execution time results are much better with our proposed
architecture implementation in comparison to parallel and
Random freezer.

Table 1: Total execution time impact

4.2 Results

Using our proposed model considered use case results have
been captured and is showing impacted execution time for
two HPC based applications using different resource
controllers. The static rules provide better results for higher
priority applications but poor for the lower priority ones. Our
proposed model provides comparable good results for both
lower as well as higher even consistent with the variation of
core usage. After getting these results, we also checked for
performance and found it comparable with Mesos with
different size of clusters. Whenever we decrease the count of
cores in terms of 512 to 256 and 256 to 128, via the job count
and cores for each job decreased with a minor variation of
resource utilization. We observe that our model gains a
shorter make span than Torque. As Torque, does not come
with user-driven scheduler to control the process scheduling
by operating system, DevOps usually go with most common
user satisfier. In contrast, our model facilitating a trade-off
between performance and computing resource utilization, we
user can actively monitor, profile, control the resource usages
during variations in allocated resources or workloads.

Table 2 shows the comparison of Make Span, Core utilization
and job throughput between the Torque usage and with our
proposed model architecture.

Table 2: Results using Torque and proposed model

4.3 Discussion

The testbeds results highlight the benefits of our proposed
model using existing resource managers. With resource
utilization in a consistent manner, the provided model is
improving the dynamic resource allocation with comparable
performance and reduced overheads in terms of deadlines,
task execution waiting clock times. The DevOps should
strictly define the rules for isolation as clubbing multiple
resource managers in a cluster is not a good idea. Here the
area related to fault tolerance, system crash, customer
profiling [9] should be explored as variation in HPC cluster at
runtime can generate disturbance. For profiling, any tool can
be used wisely, and metrics data to handle the big data and its
traits in public sector [12].

5. CONCLUSION
With the expansion of agility to scale infrastructure on
demand and run complex application on them have
introduced several hurdles in path of monitoring, profiling
the computing resources. As everything is now revolving
around data, HPC’s premises offers promising

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3538 – 3543

3542

supercomputing functionalities and capabilities. In this paper,
we have addressed the problem of dynamic resource
allocation via proposing a model based on execution pattern
which also helps to determine the free resources to run
non-HPC applications. In future, we can also address the
persistency of metrics data that is provided to users for
duration of time. As life span grows, data is going to be huge
and needs to be handled.

ACKNOWLEDGEMENT

A special vote of thanks to the Koneru Lakshmaiah Education
Foundation for supporting and facilitating me required
infrastructure and my guide as well as staff members who
have helped me to complete this research work.

REFERENCES
1. S. Chen, B. Mulgrew, and P. M. Grant. High

Performance Computing (HPC) on AWS.
[http://aws.amazon.com/hpc-applications.]

2. Torque Resource Manager overview and its
advantages.
[https://adaptivecomputing.com/cherry-services/torque-r
esource-manager/]

3. Slurm Overview, its features and how to use it.
[https://slurm.schedmd.com/overview.html]

4. Mesos Overview, its advantages and how it works.
[http://mesos.apache.org/documentation/latest/]

5. Z. Fang, X. H. Sun, Y. Chen, S. Byna, Core aware
Memory Access Scheduling Schemes. In
IPDPS23,2009.

6. A Souza, M Rezaei, E Laure, J Tordsson, “Hybrid
Resource Management for HPC and Data Intensive
Workloads”,2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID)
https://doi.org/10.1109/CCGRID.2019.00054

7. R. M. Tomasul o. An efficient algorithm for exploiting
multiple arithmetic units. In IBM Journal of Research
and Development, Volume 11, Number 1, Page 25, 1967.
https://doi.org/10.1147/rd.111.0025

8. D. T. Wang. Modern DRAM Memory Systems
Performance Analysis and a High Performance,
Power Constrained DRAM Scheduling Algorithm.
Ph. D. Dissertation, Dept. Of ECE, University
ofMaryland, 2005.

9. Wang, Gunawan & Maulana, Lazuardi & Leonardi, Nico
& Kaburuan, Emil. (2020). The Use of Big Data in
Supporting Customer Profiling. International Journal
of Advanced Trends in Computer Science and
Engineering.9.1128-1133.10.30534/ijatcse/2020/35922
020.

10. K. Jackson et al. Performance Analysis of
High-Performance Computing Applications on the
Amazon Web Services Cloud. In CloudCom'10, 2010.
https://doi.org/10.1109/CloudCom.2010.69

11. Kim, H., El-Khamra, Y., Jha, S., Parashar, M.:
Exploring application and infrastructure adaptation
on hybrid grid-cloud infrastructure. In: Proceedings of
the 19th ACM International Symposium on High
Performance Distributed Computing, June 21-25, 2010,
pp. 402–412 (2010).
https://doi.org/10.1145/1851476.1851536

12. Wook, Muslihah. (2020). Big Data Analytics
Application Model Based on Data Quality
Dimensions and Big Data Traits in Public Sector.
International Journal of Advanced Trends in Computer
Science and Engineering. 9. 1247-1256.
10.30534/ijatcse/2020/53922020.

13. S.P. Bingulac, “On the Compatibility of Adaptive
Controllers,” Proc. Fourth Ann. Allerton Conf. Circuits
and Systems Theory, pp. 8-16, 1994. (Conference
proceedings).

14. H. Goto, Y. Hasegawa, and M. Tanaka, “Efficient
Scheduling Focusing on the Duality of MPL
Representation,” Proc. IEEE Symp. Computational
Intelligence in Scheduling (SCIS ’07), pp. 57-64, Apr.
2007, doi:10.1109/SCIS.2007.367670. (Conference
proceedings)

15. Nie, L., Xu, Z.: An adaptive scheduling mechanism
for elastic grid computing. In: International
Conference on Semantics, Knowledge and Grid, pp.
184–191 (2009).

16. Feitelson D. G.: Parallel workloads archive (PWA),
February 2012

17. [http://www.cs.huji.ac.il/labs/parallel/workload/]
18. Feitelson D. G., Weil A. M.: Utilization and

predictability in scheduling the IBM SP2 with
backfilling. [in:] 12th International Parallel Processing
Symposium, pages 542–546. IEEE, 1998

19. Kleban S. D., Clearwater S. H.: Fair share on high
performance computing systems: What does fair
really mean? [in:] Third IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’03), pp.
146–153. IEEE Computer Society, 2003.
https://doi.org/10.1109/CCGRID.2003.1199363

20. Klus´aˇcek D., Rudov´a H., Baraglia R., Pasquali M.,
Capannini G.: Comparison of multi-criteria scheduling
techniques. [in:] Grid Computing Achievements and
Prospects, pp. 173–184. Springer, 2008

21. SubW., Jakob W., Quinte A., Stucky K.-U.: GORBA: A
global optimising resource broker embedded in a
Grid resource management system. [in:] International
Conference on Parallel and Distributed Computing
Systems, PDCS 2005, pp. 19–24. IASTED/ACTA Press,
2005

22. Xhafa F., Abraham A.: Metaheuristics for Scheduling
in Distributed Computing Environments, volume 146
of Studies in Computational Intelligence. Springer,
2008.
https://doi.org/10.1007/978-3-540-69277-5

23. Xhafa F., Abraham A.: Computational models and
heuristic methods for Grid scheduling problems.

Manish Kumar Abhishek et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3538 – 3543

3543

Future Generation Computer Systems,
26(4):608–621, 2010.

24. Xu M. Q.: Effective metacomputing using LSF
multicluster. [in:] CCGRID ’01: Proceedings of the 1st
International Symposium on Cluster Computing and
the Grid, pp. 100–105. IEEE, 2001.

25. Kurowski K., Oleksiak A., Piatek W., Weglarz J.:
Hierarchical scheduling strategies for parallel tasks
and advance reservations in grids. Journal of
Scheduling, 11(14):1–20, 2011. C. D. Locke,
“Best-effort Decision-making for Real-time
Scheduling,” Ph.D. dissertation, Pittsburgh, PA, USA,
1986, aAI8702895.

26. P. Li and B. Ravindran, “Fast, Best-Effort Real-Time
Scheduling Algorithms,” IEEE Trans. Comput., vol. 53,
no. 9, pp. 1159–1175, 2004.
https://doi.org/10.1109/TC.2004.61

27. N. Bansal and K. R. Pruhs, “Server Scheduling to
Balance Priorities, Fairness, and Average Quality of
Service,” SIAM J. Comput., vol. 39, no. 7, pp.
3311–3335, 2010.
https://doi.org/10.1137/090772228

28. S. Aldarmi and A. Burns, “Dynamic value-density for
scheduling realtime systems,” in Proceedings of the
Euromicro Conference on RealTime Systems, 1999, pp.
270–277.

