
Rashmi Baweja et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3471 – 3477 

3471 
 

 
ISSN 2278-3091     

Volume 9, No.3, May - June 2020 
International Journal of Advanced Trends in Computer Science and Engineering 

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse151932020.pdf 
https://doi.org/10.30534/ijatcse/2020/151932020 

 
ABSTRACT 
 
Design of a neural network based model predictive controller 
for UDP(User Datagram Protocol) flow caused congestion, in 
IP( Internet protocol) networks is proposed in this paper. The 
objectives of congestion control are prevention of congestion 
collapse, maximum network bandwidth utilization, 
TCP-friendliness and smoothness for streaming media 
applications. Various approaches for controlling congestion 
in networks are present in the literature. Many of these are 
make use of network models, which are already identified. In 
this paper a neural network utilizing Levenberg-Marquardt 
learning algorithm for on-line identification of non-linear 
plant(network) model is implemented and combined with a 
model predictive optimization technique using back tracking 
line search routine over a specified time horizon. Simulations 
were carried out to prove the effectiveness of the designed 
controller. Significant increase in the network bandwidth 
utilization is also established.   
 
Key words : Congestion Control, IP Networks, Model 
Predictive Control, Neural Network, System Identification.  
 
1. INTRODUCTION 
 
Today's IP networks are progressively being utilized for 
non-data/multimedia transmissions like voice and 
gaming/streaming videos, resulting the network flows 
varying from predominantly short burst type of traffic to the 
traffic that are time perceptive and of longer interval. The 
data oriented applications can effectively be controlled using 
reliable TCP protocol but at the same time the use of UDP for 
non-data applications does not provide end to end flow and 
congestion control. Due to the unreliable nature of UDP, it 
will continue to insert packets in the network despite the 
consequences of whether the packets are arriving at 
destination or not which may result in congestion collapse in 
IP networks. The highly nonlinear and dynamic nature of 
prevailing IP networks raise the need of more sophisticated 
and advanced methods of dealing with congestion issues.   

 
 

Initially, Floyd and Fall [1] identified the high bandwidth 
TCP-unfriendly flow responsible for congestion in Internet 
and recognize the need of end to end congestion control 
mechanisms. Camacho and Bordons [2] in their book, 
established Model Predictive Control as a powerful 
controlling technique that does not require complex control 
algorithms and can be applied for a wide variety of process. 
Seungwan et al. [3] reviewed the concept of congestion 
control with a focus on the transmission control 
protocol/Internet protocol (TCP/IP) via AQM algorithms. 
Yang et al. [4] proposed an end-to-end transmission control 
protocol (TCP)-friendly multimedia streaming protocol for 
wireless Internet, namely WMSTFP, having only last hop as 
wireless hop. R. Srikant, [5] in his book, explains the basic 
mathematics necessary for internet Congestion Control. 
Welzl, M.[6] discussed the issue of traffic management with 
focus on network congestion control to improve Quality of 
Service(QOS). Pavlick [7] in his thesis addressed the 
congestion collapse issue by proposing  a new mechanism to 
come up with a TCP friendly service for voice and video 
applications. Bartoszewicz [8] addressed the issue of flow 
control in fast connection-oriented communication networks 
supporting traffic produced by multiple sources. Rahnamai et 
al. [9] presented a neural network (NN) model predictive 
control (MPC) of TCP flows in AQM networks. Mamatas et 
al. [10] discussed various congestion control algorithms 
considering the packet networks as black, grey or green box. 
Rusmin et al. [11] explains internet congestion causes, 
weakness, and congestion control technique that researchers 
have been developed. Ignaciuk and Bartoszewicz [12] 
proposed a flow controller based on sliding-mode concept for 
congestion control in connection-oriented communication 
networks which are modelled as discrete-time n th-order 
systems. Chrysostomou et al.[13] again attempted fuzzy based 
congestion control in Communication Networks. Nannan et 
al. [14] analyze and control congestion in diffserv networks 
using second order sliding mode controllers to solve infinite 
switching problems. Discrete time Sliding Mode 
Control(SMC) [15,16,17] and fuzzy based [18,19] congestion 
control are also attempted effectively for various types of 
networks. Bazmi and Keshtgary [20] proposed neural 
network prediction algorithm based congestion control for  
content-centric  networks.  
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Baweja et al. [21] derived an improved version of congestion 
avoidance and resource allocation algorithm which is based 
on the AIMD feedback law for multiple users, transmitting at 
the same time on a single link. Among the various 
applications of Model Predictive Control(MPC), Novoselnik 
et al. [22] used nonlinear MPC for energy efficient housing 
with modern construction materials. Zhou et al. [23] 
presented a multi-agent model based predictive control using 
serial scheme for controlling congestion in large-scale urban 
traffic networks. Baweja and Gupta [24] proposed design and 
analysis of fuzzy logic congestion controllers for IP networks. 
Seder et al. [25] described a receding horizon control (RHC) 
algorithm for convergent navigation of a differential drive 
mobile robot and established the advantage of receding 
horizon control over other controlling approaches. Bazi & 
Bouchaib [26] compared the prevailing TCP varients for 
controlling congestion. Africa[27] proposed a neural network 
based control system for sensor based vehicle traffic control 
network. 
 
Identifying the research gaps, it is being concluded that soft 
computing methods are rarely attempted to address the issue.  
This paper proposes a control mechanism to deal the problem 
by inclusion of flow and congestion controller based on neural 
network model predictive control technique for end-to-end 
streaming oriented protocol. Recently, neural networks have 
came out to be very useful and effective in  identifying and 
controlling time-varying non-linear systems. Multilayer 
perceptron neural network (a type of feedforward artificial 
neural network) exhibits universal approximation features 
that make it suitable for modelling nonlinear and dynamic 
systems like IP networks and for implementing 
general-purpose nonlinear congestion controllers. The 
proposed control mechanism successfully achieve important 
objectives of preventing congestion collapse, providing 
smoothness for streaming media applications, acting TCP 
friendly and effective in network bandwidth utilization.  
 
2. NETWORK MODEL 
 
The model is built up using MATLAB Simulink software, it 
constitute essential components to simulate the NNMPC 
controller inside a defined network situation and is built up to 
prove  the independent behaviour of TCP and controlled UDP 
data flow in similar conditions. It performs the test for 
congestion collapse, network bandwidth utilization and 
smoothness.In this model, NNMPC controlled UDP data flow 
and independent TCP flow, both run adjacent to an extremely 
varying bandwidth with a changing rate of ±5.9 Mbps. The 
imitated bandwidth of the link is taken as 100 Mbps. Thus, 
accessible bandwidth can vary in the range of 0 to 100 Mbps. 
The drop rate of packets is taken in the range of 0 to 5%. This 
model incorporate an application provided constant requested 
rate, an available bandwidth is also present which is taken as 
a MATLAB provided sinusoidal waveform customized by 
multiplying it with a constant to make it variable ranging 
from 0 to 100 Mbps. Although it differs from an actual 

network traffic model, however, it is used to represent an 
extremely fluctuating available bandwidth.  
 
All the inputs are first normalized before being submitted to 
the NNMPC. A varying drop rate input is estimated based on 
the varying available bandwidth. A high accessible 
bandwidth generates a low drop rate and vice-versa. TCP 
response is generated using the drop rate  and then 
normalized prior for giving as input to the NNMPC. Another 
variable i.e. the change rate is estimated as a rate of the 
change in output send rate in unit time and used as a 
feed-back input signal for NNMPC. Now, the NNMPC has all 
three necessary inputs, it provide the output in the form of a 
send rate signal (range 0 to 1) which is further multiplied with 
the un-normalized  available bandwidth signal. The result of 
simulation graphically display all three inputs and the output.  
 
3. CONTROLLER DESIGN 

 
In this section, the neural network predictive controller which 
is implemented in Neural Network Toolbox[28] utilize the 
network model of IP network built up in section-2, as a 
nonlinear plant model to estimate future network 
performance. Designed controller then determine the control 
input to optimize network performance for a particular 
upcoming time period. System identification is the primary 
step in model predictive control which is used to find out the 
model of plant based on neural network. Whereas the next 
stage utilize this plant model to predict future plant 
behaviour.  

3.1 System Identification 
This design step generates a trained neural network which 
exactly characterize the forward dynamics of the plant. A 
neural network training signal is obtained in the form of 
prediction error between the plant output and the neural 
network output. This process of system identification is 
illustrated in Figure 1[28] and the layered structure of neural 
network based plant model is shown in Figure 2[28]. 
 

 

 
 

Figure 1: Block diagram of system identification process 
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Figure 2: Layered neural network structure of plant model 
 
 

Offline training of designed network is done in batch mode 
with the data obtained from the plant operation using trainlm 
training algorithm. Trainlm is a Matlab inbuilt network 
training function that modify weights and values of bias, 
using Levenberg-Marquardt optimization technique. Neural 
network plant model is designed by adjusting network 
architecture parameters as mentioned in Table 1 and the 
designed plant model is trained using the training data as 
given in Table 2. Applying these parameters along with a 
series of random step inputs generates training data for the 
simulating the plant model. Generated training data is 
analysed and accepted to create the final neural network plant 
model. 

 
Table 1: Network architecture parameters 

 
S.No Parameters Assigned value 
1 No. of hidden layers 5 
2 Sampling Interval in sec 0.2 
3 Delayed plant inputs 2 
4 Delayed plant outputs 2 

 
Table 2: Training data / parameters 

 
S. No. Parameter Assigned value 
1 No. of training samples 200 
2 Maximum plant input 100 
3 Minimum plant input 0 
4 Maximum plant output 100 
5 Minimum plant output 0 
6 No. of training epoches 1000 
7 Training function trainlm 

 
After the training is complete, the response of the resulting 
plant model is displayed, as separate  plots for testing, 
validation and training(Figure 3, Figure 4, Figure 5). 
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Figure 3: Testing data for NN Predictive Control 
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Figure 4: Validation data for NN Predictive Control 
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Figure 5: Training Data for NN Predictive Control 
 

3.2 Control Design 
In control design stage for model predictive control, the 
neural network plant model designed in first stage is used to 
predict future output of the plant. Based on the receding 
horizon technique, an optimization algorithm is used to opt 
for the control input that optimizes future performance. The 
neural network model anticipate plant response for a 
particular time duration. Anticipated plant response is used 
by a numerical optimization algorithm to calculate 
the control signal that minimizes the performance criterion 
given in (1) for a particular time period: 
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here N1, N2, and Nu are the horizons for which the tracking 
error and the control increments are determined. The u′ 
variable is the provisional control signal, yr is the desired 
output response, and ym is the network model output response. 
The value of ρ that is the control weighing factor determines 
contribution of the sum of squares of  the control increments 
over the performance index. 
Figure 6[28] shows the complete block diagram of controller 
for model predictive control process. It consists of both, the 
neural network plant model and the optimization block. The 
optimization block calculates the values of u′ that minimize J, 
and then the optimal u is taken as input to the plant. 
Minimization is achieved using backtracking line search 
routine (srchbac) which is well-matched to use with the 
quasi-Newton optimization algorithms[28]. It starts with a 
step multiplier of 1 and then backtracks until a reasonable 
decrease in performance criteria(J) is achieved. Initially, it 
utilize performance value at the current point with a step 
multiplier of 1. The optimization block also does quadratic 

approximation of the performance along with the search 
direction by using the value of derivative of performance at 
the current point. The lowest value of quadratic 
approximation will be the new provisional optimum point 
(under specific conditions) and at this point performance is 
checked. In case the performance criteria(J) is not adequately 
decreased, a cubical interpolation is generated and the least 
value of the cubical interpolation will be the new provisional 
optimum point. Similar process is repeated until the required 
decrease in the performance criteria(J) is achieved. The 
neural network plant model generated using training data 
from first stage, is loaded into NNPC block of design window. 
The controller is designed by applying the control parameter 
values as given in Table 3. 

 
Table 3: Control Parameters 

S.No. Control Parameters Assigned values 
1. Cost Horizon 7 
2. Control weighing factor 0.05 
3. Control Horizon 2 
4. Search Parameter 0.001 
5. Minimization routine srchbac 
6. Iterations/sample time 2 

    
 

 
 

Figure 6: Block diagram of controller 
In order to control the congestion caused by UDP data in 
dedicated IP network model, general input(pre-processed/  
normalized) and output variables(post processed/ scaled) of 
the designed controller are defined by the network conditions 
as follows: 

Inputs: 
1. availableBW – Available Bandwidth input range is from 0 
to 1. It is normalized as a percentage of the application 
provided requested rate. 
 
2. tcpResponse –TCP response input range is also from 0 to 1. 
It is also normalized as a percentage of the application 
provided requested rate. The TCP Response function is 
determined using expression given by Floyd and Fall [1] used 
as the function, given in (2), where p is the packet loss rate, B 
is the packet size and R is the round trip time: 
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3. changeRate – Change rate input range is -1 to 1and it is 
also normalized as a percentage of the application provided 
requested rate. 

Output: 
1. sendRate – Send rate output range is from 0 to 1 and it is 
multiplied by the un-normalized availableBW input before 
being taken as output by the application. 
 
4. SIMULATION RESULTS 
 
The proposed approach is tested using simulink software in 
MATLAB. The test is performed to assess the designed 
controller's congestion control, network bandwidth 
utilization and smoothness of output response. Figure 7 
displays the controller output response with a fast changing 
available bandwidth input and simultaneously display the 
independently running TCP flow for the same available 
bandwidth. The application provided requested rate is 
assumed as 40 Mbps for the testing purpose. The TCP 
response is not fast enough to respond changes in available 
rate whereas immediately to react to congestion even in the 
presence of a large amount of available bandwidth. For multi- 
media or non-data applications, the rate fluctuations will have 
major effects on the user’s required quality of service and 
should be smoothened out by the solution . Consequently, the 
controlled UDP send rate output obtained from the designed 
controller is more smoother and strictly follow the bandwidth 
available in the network and utilizes the network bandwidth 
much more effectively than TCP. For an available bandwidth 
of 40 Mbps for 50 seconds, ideally a total of 2000 Mb should 
have been delivered. In the proposed approach, it is evaluated 
that the designed NNMPC controlled UDP source deliver 
1564 Mb that is 78.2% of available bandwidth utilization is 
achieved and the TCP Response is estimated at 320 Mb which 
is16% of available bandwidth utilization. It shows reported 
increase in network bandwidth utilization as compared to first 
order Sugeno type fuzzy logic controllers in the similar 
network conditions[24]. Most significantly, the send rate 
always remain less than the available bandwidth estimation. 
Hence, if estimation of available bandwidth is precise and 
well-timed, the proposed controller will never add any 
undeliverable packets into the network and completely 
prevent network congestion collapse. Figure 8 display result 
of another simulation based testing of designed controller for 
application provided requested rate of 60 Mbps and all other 
parameters remain unchanged. 
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Figure 7: NNMPC based UDP controller output response at 

40Mbps requested rate 
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Figure 8: NNMPC based UDP controller output response at 

60Mbps requested rate 
 

5. CONCLUSION 
In this paper a NNMPC controller design is presented and 
analysed for providing flow control based congestion control 
transport layer protocol that works well for 
non-data/multi-media applications. The proposed neural 
network based model predictive controller is designed to solve 
vital issues in the IP networks, such as congestion collapse, 
TCP-friendliness and smooth output response. With the help 
of simulations, it is proved that the controller completely 
eliminates the risk of congestion collapse from undelivered 
packets and simultaneously utilizes the network better than 
TCP by improving network bandwidth utilization to 78.2%. 
The designed NNMPC controller reacts to fluctuations in 
network conditions smoother than the AIMD mechanism 
used for TCP congestion control, simultaneously remain 
independent and friendly with the TCP flows. The designed 
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controller is also proved to be accurate and appropriately react 
to fast variations in the network bandwidth. 
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