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 
ABSTRACT 
 
Quantum computation is the usage of quantum mechanics to 
process information. It has been proven that quantum 
computation has the capacity to transfer data securely based 
on its fundamental and it solves the complex issues better than 
classical computation. However, before the quantum 
computers are available for people living, we need to verify 
and build up some frameworks for verification of quantum 
information system. In this research, we consider the 
MAGMA system which can be useful for quantum 
computation and calculation parameters of quantum stabilizer 
codes. Therein, we consider the problem of the first quantum 
error correction codes and we verify that basic algorithm on 
MAGMA system. The proposed system prove that MAGMA 
can be used for many tasks of quantum algorithms, quantum 
communication, and quantum computation problems. 
 
Key words: Quantum computation, MAGMA tool, Shor 
code. 
 
1. INTRODUCTION 
 
Quantum information system is a system which is based on 
quantum mechanical phenomena, such as superposition and 
entanglement to perform operates on a system state. The 
computation algorithms based on quantum computer have 
proved the efficient on processing data more security and 
solving complex problem more efficient time [1, 18-22]. For 
example, one of the first quantum algorithm to factor an 
integers into its primers is invented by Shor[2], which runs on 
polynomial time. Moreover, Grover [3] proposed a searching 
algorithm named Grover search, which is applied on many 
reality research on large database system. Hence, quantum 
computers are attracted by many researchers all over the 
world [4, 5, 6].  

However, the efforts tobuild them have been hampered 
by the fragility of qubits since they areeasily affected by heat 
and electromagnetic radiation. This type of error is called 
decoherence and the field of error correction in quantum 
computation examines the different ways to avoid 

 
 

decoherence. Since the first discussion of quantum 
code(QECC) was invented by Shor [7], the theory of QECC is 
generalization to be expressed as the quantum stabilizer code. 
Therefore, the importance of QECC on practical building of 
quantum computer is no longer in doubt [8, 9, 10, 11]. 

Before implementing the algorithms, computation on 
quantum computer, the necessary step is to simulate them on 
the classical computer. Among many quantum systems 
models such as quantum circuits model, quantum adiabatic 
computation, Zidan’s model [12,13,14,15], which are proven 
to have those effective on simulation of quantum algorithm, 
quantum protocol, quantum communication. Quantum circuit 
model is related to mathematical model and it is suitable 
choice for verification of quantum computation. Hence, in this 
research, we study a framework which is based on MAGMA 
algebra computation environment to simulate and analysis 
two basic solution of error correction code on quantum 
information system. 

We organize this study as follows. Section 2 will review 
basic problem of quantum computers such as quantum bits, 
operations of quantum bits. In section 3, MAGMA system is 
introduced, and the implementation of quantum algorithms 
based on MAGMA is explained. Finally, the conclusion is 
listed in Section 4. 
 
2. QUANTUM INFORMATION AND QUANTUM 
COMPUTATION 

Quantum systems use qubit which simulates two levels 
system such as: atoms, ions, electrons or protons and their 
respective control devicesthat are working together to act as 
computer memory. A qubit |߮⟩ = ߮ଵ|0⟩ + ߮ଶ|1⟩  is 
considered to be found in the both basis states |0⟩ and |1⟩ 
where the probability value of state |0⟩  is |ܽ|ଶ and of state 
|1⟩ is |ܾ|ଶ. It is called the superposition concept of a qubit, 
which is one of a main property of quantum information since 
the amount of information which presented in qubits are no 
limitation. The matrix form of a qubit can be represented in 
Hilbert space as, 

|φ⟩ = ቂ
߮ଵ
߮ଶቃ = ߮ଵ ቂ

1
0ቃ + ߮ଶ ቂ

0
1ቃ = ߮ଵ|0⟩ + ߮ଶ|1⟩.														(1) 

According to norm condition for a qubit on the Bloch sphere 
space, the complex numbers a and b satisfy the equation 
|߮ଵ|ଶ + |߮ଶ|ଶ = 1 . A n qubits system is constructed by 
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multiple tensor products of some other qubits, it is given as 
follows, 

|ϕ⟩ = ෍ ߶௜|݅⟩
ଶ೙ିଵ

௜ୀ଴

= ෍ ߶௜భ௜మ…௜೙|݅ଵ⟩|݅ଶ⟩… |݅௡⟩
௜ೖୀ{଴,ଵ}

.														(2) 

where ݅ = ∑ 2௝ ௝݅௡ିଵ
௝ୀ଴ . 

 

 
Figure 1:Basic Gates in quantum computation. 

Note that the condition for any quantum gate is revertible 
and the invert gate that move ܃|߰⟩  back to |߰⟩  satisfy 
ଵି܃ =  ற, so U is unitary matrix. Fig. 1 shows the basis of܃
quantum gates, all the quantum gates can be represented as 
their linear combination. Pauli channel of quantum system 
consists of four basic elements, namely X, Z, Y, andI (identity 
matrix). Any operation and errors acting on qubit can be 
represented as the combination of them. Hence, we have three 
types of errors: bit flip, phase flip, and their combination. In 
general, the error operators that effect on  n qubits have the 
form: 1 2 ... nE e e e    where { , , , }ie  I X Y Z . 

There are many quantum computation models can be used 
to explain the quantum state and quantum computation. 
Among them, quantum circuit model is related to 
mathematical model and it is suitable for simulation in 
MAGMAenvironment.  

 
 
3. SIMULATION OF QUANTUM COMPUTATION OVER 
MAGMA SYSTEM 

A. MAGMA system 
MAGMA is a software tool which we can install in PC or 

we can used as web-based for the purpose of computation in 
number theory, algebra, algebraic geometry, and 
combinatorics. It is open access for study, research purpose 
and provides a comfortable defined environment for many 
problems of mathematical such as graph, group, fields, code 
designs, and many others [16]. Using MAGMA, we can do 
the working with quantum computation since it offers some 
basic tool for defining the quantum state, Hilbert space, 
Galois field, and unitary transformation of quantum states. In 
this study, we use the web-based MAGMA tool, it is free and 
can be found at [17]. 

 

 
Figure 2:Quantum bit flip error correction code. 

 
Figure 3:Quantum phase flip error correction code. 

B. Simulation of Quantum Repetition Code 
The simplest and first QECC is three qubits repetition code 

for bit flip or phase flip error. Fig. 2, 3 are the quantum circuit 
models for correction those types of errors. The only 
difference between two circuits is the using of Hadamard 
matrix on correction of phase flip error, which is since the 
property of Clifford gates: Z=HXH and X=HZH. 

The MAGMA programs of quantum circuits for Fig. 2, 3 
are described as follows. First, the information qubits are 
declared. The quantum system starts with the initial 
information, we extend it to the 3-qubits system via helps of 
ancilla 2 qubits of zeros, after transformation by encode step, 
the logical states or encoded qubits are created. Then, the 
quantum gates as previous mentioned must to be declared. 
Here, the quantum gates Bit-flip, Phase-flip, and 
Controlled-NOT gates are used. Here, the encoding state is 
as follows, 

|૙௅⟩ = |000⟩, |૚௅⟩ = |111⟩.																																																			(4) 

C. Simulation of Shor code 
To extend the first full quantum code, Shor code for 9 

qubits is created by Shor, which use both bit-flip correction 
and phase-flip correction and can correct bit-flip, phase-flip, 
and their combination. To do so, for one qubit is protected 
against phase-flip we need extend it to codeword of three 
qubits. Then, each qubits of that three-qubits need to extend to 
three-qubits to protect against bit-flip error. Hence, the 
quantum circuit starts with the initial information, we extend 
it to the 9-qubits via helps of ancilla 8 qubits of zeros, after 
transformation by encode step, the logical states or encoded 
qubits are created. Here, two basis states of codewords 
9-qubits repetition as follows, 

|૙௅⟩ =
1
√8

(|000⟩ + |111⟩)⨂(|000⟩ + |111⟩)⨂(|000⟩

+ |111⟩),	 

|૚௅⟩ =
1
√8

(|000⟩ − |111⟩)⨂(|000⟩ − |111⟩)⨂(|000⟩

− |111⟩). 
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Using matrices transformation, the states after applying 
error and decoding can be found. The final states show us the 
correction state can be recovered the syndrome |S௘⟩tell us 
which error has applied to logical states. The full quantum 

circuit for Shor code is given in Fig. 5. And the 
MAGMAprogram for Shor code is described in Fig. 6. 
 
 

% Repetition code: For bit flip error: 
F<i> := ComplexField(4); 
H1 := HilbertSpace(F, 3); 
f := 3/5 * H1![0,0,0] + 4/5 * H1![1,0,0]; 
f; 
ControlledNot(~f, {1}, 2); 
ControlledNot(~f, {1}, 3); 
f; 
BitFlip(~f, 2); 
f; 
ControlledNot(~f, {1}, 2); 
ControlledNot(~f, {1}, 3); 
ControlledNot(~f, {2,3}, 1); 
f; 
%Result 
0.6000|000> + 0.8000|100> 
0.6000|000> + 0.8000|111> 
0.6000|010> + 0.8000|101> 
0.6000|010> + 0.8000|110> 

% Repetition code: For PhaseFlip error: 
F<i> := ComplexField(4); 
H1 := HilbertSpace(F, 3); 
f := 3/5 * H1![0,0,0] + 4/5 * H1![1,0,0]; 
f; 
ControlledNot(~f, {1}, 2); 
ControlledNot(~f, {1}, 3); 
f; 
 
f1 := BitFlip(f, 1); 
f2 := PhaseFlip(f, 1); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f1 := BitFlip(f, 2); 
f2 := PhaseFlip(f, 2); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;  
f1 := BitFlip(f, 3); 
f2 := PhaseFlip(f, 3); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;  
 
PhaseFlip(~f, 3); 
 
f1 := BitFlip(f, 1); 
f2 := PhaseFlip(f, 1); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f1 := BitFlip(f, 2); 
f2 := PhaseFlip(f, 2); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;  
f1 := BitFlip(f, 3); 
f2 := PhaseFlip(f, 3); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2; 
 
ControlledNot(~f, {1}, 2); 
ControlledNot(~f, {1}, 3); 
ControlledNot(~f, {2,3}, 1); 
f; 
%Result 
0.6000|000> + 0.8000|100> 
0.6000|000> + 0.8000|111> 
0.5999|001> + 0.8000|101> 

 
Figure 4:Repetition codeon MAGMA system. 

 
Figure 5:Quantum full bit flip, phase flip error correction. 
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% Shor code: 
F<i> := ComplexField(4); 
H1 := HilbertSpace(F, 9); 
f := 3/5 * H1![0,0,0,0,0,0,0,0,0] + 4/5 * H1![1,0,0,0,0,0,0,0,0]; 
f; 
 
ControlledNot(~f, {1}, 4); 
ControlledNot(~f, {1}, 7); 
f; 
 
f1 := BitFlip(f, 1); 
f2 := PhaseFlip(f, 1); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f1 := BitFlip(f, 4); 
f2 := PhaseFlip(f, 4); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f1 := BitFlip(f, 7); 
f2 := PhaseFlip(f, 7); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f; 
 
ControlledNot(~f, {1}, 2); 
ControlledNot(~f, {1}, 3); 
ControlledNot(~f, {4}, 5); 
ControlledNot(~f, {4}, 6); 
ControlledNot(~f, {7}, 8); 
ControlledNot(~f, {7}, 8); 
f; 
 
PhaseFlip(~f, 3); 
BitFlip(~f, 3); 
f; 
 
ControlledNot(~f, {1}, 2); 
ControlledNot(~f, {1}, 3); 
ControlledNot(~f, {4}, 5); 
ControlledNot(~f, {4}, 6); 
 

ControlledNot(~f, {7}, 8); 
ControlledNot(~f, {7}, 8); 
ControlledNot(~f, {2,3}, 1); 
ControlledNot(~f, {5,6}, 4); 
ControlledNot(~f, {8,9}, 7); 
f; 
 
f1 := BitFlip(f, 1); 
f2 := PhaseFlip(f, 1); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f1 := BitFlip(f, 4); 
f2 := PhaseFlip(f, 4); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f1 := BitFlip(f, 7); 
f2 := PhaseFlip(f, 7); 
f := 1/SquareRoot(2)*f1 + 1/SquareRoot(2)*f2;   
f; 
 
ControlledNot(~f, {1}, 4); 
ControlledNot(~f, {1}, 7); 
ControlledNot(~f, {4,7}, 1); 
f; 
%Result 
0.6000|000000000> + 0.8000|100000000> 
0.6000|000000000> + 0.8000|100100100> 
0.4949|000000000> - 0.07074|100000000> - 0.07074|000100000> + 
0.4949|100100000> 
- 0.07074|000000100> + 0.4949|100000100> + 0.4949|000100100> - 
0.07074|100100100> 
0.4949|000000000> - 0.07074|111000000> - 0.07074|000111000> + 
0.4949|111111000> 
- 0.07074|000000100> + 0.4949|111000100> + 0.4949|000111100> - 
0.07074|111111100> 
0.07074|110000000> + 0.4949|001000000> - 0.4949|110111000> - 
0.07074|001111000> 
- 0.4949|110000100> - 0.07074|001000100> + 0.07074|110111100> + 
0.4949|001111100> 
0.4949|001000000> + 0.07074|101000000> - 0.07074|001100000> - 
0.4949|101100000> 
- 0.07074|001000100> - 0.4949|101000100> + 0.4949|001100100> + 
0.07074|101100100> 
0.5999|101000000> + 0.8000|001100100> 
0.5999|001100100> + 0.8000|101100100> 

Figure 6: Shor code on MAGMA system. 

4. CONCLUSION 
 

The paper presents basic information on quantum 
information system these are qubits, unitary transformation. 
In addition, we use MAGMA computational algebra system 
with web-based tool for a verification of the three-qubits 
repetition and nine-qubits Shor code. Such verification of 
simplest QECC help us better understanding of quantum error 
correction and quantum algorithm.  

The outstanding result prove that the proposed framework 
is novel for further researches simulation of quantum 
information system. In the future, we plan to use this 
framework for simulation of quantum stabilizer codes, 
quantum algorithms, and quantum communication.  
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