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ABSTRACT 
 

Big data is traditionally associated with distributed systems 
and this is understandable given that the volume dimension 
of Big Data appears to be best accommodated by the 
continuous addition of resources over a distributed network 
rather than the continuous upgrade of a central storage 
resource. Based on this implementation context, non-
distributed relational database models are considered 
volume-inefficient and a departure from their usage 
contemplated by the database community. Distributed 
systems depend on data partitioning to determine chunks of 
related data and where in storage they can be 
accommodated. In existing Database Management Systems 
(DBMS), data partitioning is automated which in the 
opinion of this paper does not give the best results since 
partitioning is an NP-hard problem in terms of algorithmic 
time complexity. The NP-hardness is shown to be reduced 
by a partitioning strategy that relies on the discretion of the 
programmer which is more effective and flexible though 
requires extra coding effort. NP-hard problems are solved 
more effectively by a combination of discretion rather than 
full automation.  In this paper, the partitioning process is 
reviewed and a programmer-based partitioning strategy 
implemented for an application with a relational DBMS 
backend. By doing this, the relational DBMS is made 
adaptive in the volume dimension of big data. The ACID 
properties (atomicity, consistency, isolation, and durability) 
of the relational database model which constitutes a major 
attraction especially for applications that process 
transactions is thus harnessed. On a more general note, the 
results of this research suggest that databases can be made 
adaptive in the areas of their weaknesses as a one-size-fits-
all database management system may no longer be feasible.  
 

Key words: Big Data, V-dimensions of data, Adaptive 
Model of Relational DBMS, NoSQL, ACID 
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1. INTRODUCTION 
 

Big data is described as a dataset that cannot be 
captured, managed, and processed by average-sized 
computers within an acceptable scope or time frame [1]. 
Several databases have continued to emerge in response to 
the many big data dimensions in which data now occur; a 
phenomenon for which the relational database model does 
not have ready answers. [2] pointed out that, the relational 
database management system (RDMS) simply cannot 
handle big data. That is, big data is too big, too fast, and too 
diverse to store and manipulate in RDMS because RDMS 
requires a schema before writing to the database, a process 
which is assumed to be too rigid to handle the V-
dimensions of big data. The ACID properties (atomicity, 
consistency, isolation, and durability) of the relational 
database are also assumed to be too strict for some 
applications. This led to the requirements for new 
architectures and new transaction management techniques 
such as BASE (Basically Available, Soft State, Eventual 
consistency), which relaxes the ACID properties in 
distributed data management systems such as the NoSQL 
paradigm [2]. 
  Other issues that must be addressed when 
handling big data include scalability, schema flexibility, 
and ease of development, cost, and availability of 
deployment options. It is observed in [2] that the shift from 
relational databases to NoSQL database was spurred by the 
need for flexibility both in the scaling and data modelling 
possibilities required by big data. In NoSQL, scale-out 
means that, instead of acquiring a bigger server, one can 
add more commodity servers. NoSQL was specifically 
designed to address the needs of big data, and cloud 
computing. However, NoSQL databases do not guarantee 
consistency, by design, because many applications need to 
handle potential inconsistencies. Eventually, lack of 
consistency limits the use of NoSQL databases for mission-
critical transactional applications. Scaling up of relational 
databases is accomplished by adding a bigger server when 
additional capacity is needed. This is very expensive 
considering the capital outlay required to acquire new 
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servers.  [3] examined and exposed the state-of-the-art 
storage technologies for big data applications. Variables 
such as capacity, scalability, data transfer rate, access time, 
and cost of storage devices, are re-emphasized in the study 
to handle big data issues 

To understand completely the requirements of big 
data beyond its requirement for storage capacity, the V-
dimensions of big data are discussed. [2] characterized Big 
data by the "3Vs" of volume, variety, and velocity, 
emerging from advances in sensing, measuring, and social 
computing technologies. In addition to these 3Vs, other Vs 
such as veracity and value have been added. 

Figure 1 summarizes the "5Vs" challenges 
dominant in big data practice and research efforts. 
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Figure 1: The 5Vs of Big Data [2] 
 
The 5Vs are explained as follows: 
 

i. Volume: This is the size of data being created from all 
the sources including text, audio, video, social networks, 
research studies, medical data, space images, crime 
reports, etc. as defined [4]. The scale is now in terabytes, 
petabytes, and exabytes. The volume challenge is being 
addressed technologically by using commodity hardware 
and the Hadoop Distributed File System (HDFS) [2]. 

ii. Velocity: Velocity is seen as the speed at which data is 
created, captured, extracted, processed, or stored. A 
semi-technology solution is needed to deal with the 
velocity challenge, with the software solution portion 
having real-time processing, streaming and in-memory 
computing [2]. 

iii. Variety: Variety connotes different data types and 
sources (from structured, semi-structured and 
unstructured data), documents, Web data, XML files, 
sensor data, multimedia files, and so forth. The variety 
challenge is primarily addressed by software solutions 
because the integration of heterogeneous data requires an 
extensive software effort to handle the variety [2]. 

iv. Veracity: Veracity means the truthfulness of data [4]. 
Veracity refers to the accuracy of the data. It raises issues 
of quality, reliability, uncertainty, incompleteness, as 

well as the meaning in the data itself (e.g., word 
variation, weather data, and translation of hand-written 
data). Eventually, the veracity must be consistent to be 
processed in an automated manner and its challenge 
should be addressed with the help of software solutions 
[2]. 

v. Value: Value is concerned with data relevance to users 
(as evidenced by much research on text mining and 
sentiment analysis); and other measures. The needed 
analysis of big data to identify such value may occur in 
various ways including traditional SQL-type queries, 
machine learning techniques, data mining, statistics, 
optimization, and decision support analysis. The results 
may be represented in different forms, including 
traditional, standard and ad-hoc report generation, and 
visualization. The value challenge is most difficult to 
achieve as its software solutions must be addressed 
within its context. The next section exposes the three Vs 
used to define the characteristics of volume which is the 
cog of Big Data as defined by [5] 

The volume dimension of big data has been 
achieved mainly by distributing data in chunks to storage 
nodes. The nodes could be a data centre provisioned with a 
network of computers in physical proximity or data centres 
across the globe connected via the internet. This paper is 
aimed at reviewing how partitioning techniques are used to 
arrive at chunks of related data and exposing the crucial 
role of partitioning in achieving data distribution.  The 
objectives of this paper are therefore threefold: (i) introduce 
big data in terms of the V-dimensions of data occurrence; 
(ii) review data partitioning and the fact that current 
database management systems implement automatic 
partitioning strategy; (3) demonstrate how the discretion of 
the developer in determining the partitioning strategy 
reduces the NP-hardness of the automated partitioning 
strategy. 

The rest of this paper is organized as follows: 
Section 2 reviews related work necessary to better 
understand the technical aspects of this work, with an 
emphasis on the automated partitioning strategy. Section 3 
describes the details of our proposed non-automated 
approach to partition design and implementation. The 
partition design is embedded in the database design and 
shown using appropriate design methodologies. In Section 
4, it is shown how the relational database model can be 
adapted using non-automated partition strategies in its 
design to accommodate big data in its volume dimension. 
Section 5 concludes the paper and outlines current and 
future lines of research. 

2. RELATED WORK 
 

Approaches to handling big data have been exposed in 
the literature by researchers in response to the departure 
from the traditional pattern in which data presents itself in 
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the monolithic forms of texts and digits. This departure has 
led to newer database models and approaches such as the P-
stores, C-stores, NoSQL and the S-stores among others that 
have been proposed by scholars to address the big data 
dimensions of data.  This section unveils the current trends 
describing efforts made by researchers to take care of big 
data issues over the years. 

2.1      Pre-NoSQL Stores 

Pre-NoSQL stores include C-stores, P-stores and the 
S-stores among others. The root of column-oriented 
database systems often termed C-store can be traced to the 
1970s. In recent years, some column store database like 
MonetDB has been introduced with the claim that their 
performance gains are quite noticeable against traditional 
approaches. The traditional approaches are row-oriented 
database systems that have physical designs such that 
almost all the tables in the database have a one-to-one 
mapping to the tables in a logical schema [6]. The 
performance of C-store databases shows that, although the 
internal structure of a column store is emulated inside a row 
store, the query processing performance of the C-store is 
quite poor [6]. An attempt to optimise the performance of 
C-stores led to the design of the P-store, another form of 
pre-NoSQL store.  

P-Store is a partially replicated data store for wide-
area networks developed by Schiper, Sutra, and Pedone that 
provides transactions with serializability [7]. P-Store 
executes transactions concurrently and that the execution of 
a transaction (T) at the site (S) proceeds without worrying 
about conflicting concurrent transactions at other sites [7]. 
P-Store assumes that the local executions of multiple 
transactions on a site are equivalent to some serialized 
executions. This assumption is modelled by executing the 
transactions one-by-one. Therefore, a replica can only 
receive a transaction request if its set of currently executing 
transactions are empty. However, the certification protocol 
in P-store causes delays in transactions and the need for 
stream processing paved the way to the S-store technique.  

S-Store is a data management system that combines 
Online Transaction Processing (OLTP) transactions with 
stream processing [8]. S-Store belongs to a new breed of 
stream processing systems designed for high-throughput, 
scalable, and fault-tolerant processing over big and fast data 
across large clusters. [8] emphasized that S-Store is a 
client-server system and unique in that, all data access in S-
Store is SQL-based and fully transactional. However, the 
inherent stream processing in S-Store exposes data and 
processing dependencies among transactions that are not 
captured by the model. Hence, the need for a better solution 
like NoSQL. 

2.2  NoSQL and NewSQL 

The acronym NoSQL was coined in 1998 [9]. At first, 
many people thought NoSQL is a derogatory term created 
to poke at SQL. In reality, the term means Not Only SQL. 
The idea is that both technologies can coexist and each has 
its place. Over the years, companies like Facebook, Twitter, 
Digg, Amazon, LinkedIn and Google adopted the use of 
NoSQL in one way or another [9]. According to [10], a 
group of data storage systems able to cope with big data are 
subsumed under the term NoSQL databases, which 
emerged as a backend to support big data applications. In 
recent years, the amount of useful data in some applications 
like social media, sensor networks has become so vast that 
it cannot be stored, processed or managed by the traditional 
database systems. [11] asserts that NoSQL databases are 
characterized by horizontal scalability, schema-free data 
models, and easy cloud deployment. They have capabilities 
to manage large amounts of data, hence become widely 
adopted on cloud platforms. The growing importance of big 
data applications has driven the development of a wide 
variety of NoSQL databases such as Google’s BigTable, 
Amazon’s Dynamo, Facebook’s Cassandra, and Oracle’s 
NoSQL DB, MongoDB, Apache’s HBase and others. 

NewSQL is a class of new breed databases that have 
the strengths of both relational and NoSQL databases[2]. 
They support SQL and take advantage of its ACID 
properties. They are built on the scale-out architecture, 
supporting scalability and fault tolerance. NewSQL 
databases provide a scalable performance comparable to 
NoSQL systems for OLTP workloads. However, NewSQL 
has limited support for "variety" due to the need for a 
schema. Google spanner, VoltDB, MemSQL, NuoDB and 
Clustrix are examples of databases based on the NewSQL 
database paradigm. 

2.3  Hadoop and MapReduce 

Map/Reduce is a programming paradigm with 
automatic parallelization. The Map part can be seen as the 
input part. It houses the reduction keys and values with the 
output sorted and partitioned for the Reduce aspect. The 
Reduce function is applied to data grouped by the reduction 
key. The reduced function aggregates data by adding 
selected values. The Map and Reduce operations are then 
chained together for complex computations. The result is 
extreme scalability, well-suited for scale-out architectures 
that use low-cost commodity hardware with fault-tolerant 
features [2, 12]. Hadoop can process and store large 
amounts of structured, unstructured and semi-structured 
data. Hadoop is an open-source version of the Map/Reduce 
algorithm, created to analyze large amounts of unstructured 
data and has become a de-facto standard for big data. In a 
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traditional database, a query is written in a structured query 
language, the data is accessed is stored in a relational 
database, and the result obtained [13]. These types of 
queries, however, can be limited, thus the desired output 
may not be obtained. Using Hadoop, unstructured data can 
be combined in many ways to facilitate data access.  

Hadoop progresses from data storage, data processing, 
and data access, to data management as: 

1. Data storage – HDFS (Hadoop distributed file system) 
and HBase (column database storage); 

2. Data processing – MapReduce (automatic parallel data 
processing);  

3. Data access – Hive (SQL-like); Pig (data flow); 
Mahout (machine learning); Avro (data serialization 
and remote procedure protocol); and Sqoop (relational 
database management connector). Hadoop, as viewed 
by [12], is inherently scalable and good for processing 
a large amount of data with automatic load balancing. 
Hadoop, however, is too dependent on HDFS when 
multiple iterations are needed and still requires 
significant manual coding to implement complex 
operations such as joins based on multiple fields. 
These limitations brought about a new memory-
resident parallel processing framework, called Spark 
[2].   

2.3.1 Apache Spark 

Apache Spark is a memory-centric computing 
platform, designed specifically for large scale processing. It 
is a fast and generic engine with a simple and expressive 
programming model for supporting a wide range of 
applications, including ETL (Extract, Transform, and 
Load), machine learning, stream processing, and graph 
computations. Eighty high-level operators make it easy to 
build parallel applications, with interactive use from Scala, 
Python and R shells [2]. It combines SQL, streaming, and 
complex analytics. Spark has a stack of libraries that can be 
combined in a single application, and include SQL and 
Data Frames, MLlib for machine learning, GraphX, and 
Spark Streaming. Spark can access diverse data sources 
such as HDFS (Hadoop Distributed File Sharing), 
Cassandra (column-based database), HBase (Hadoop's 
database), Hive, and Tachyon. It uses Resilient Distributed 
Datasets (RDDs), which are fault-tolerant distributed 
memory abstractions that avoid replication. Spark can 
interactively query 1 to 2 terabytes of data in less than one 
second. Whereas Hadoop is good for batch applications, 
Spark is good for running real-time or iterative applications 
such as machine learning or graph processing and it is 
easier to program than Hadoop [2].  

2.4 Volume Re-defined 

If the volume dimension of big data is absent from the 
properties of a dataset, then the data set becomes small 
even if has the other dimensions of big data. Volume is 
therefore the major dimension of big data. Big data and 
volume are synonymous in meaning, thus volume is a pillar 
that cannot be ignored in defining big data. Since volume is 
a pillar of big data, database technologies must support 
volume with the capacity to store, process and manage 
large data sets. Volume is the main issue in big data that 
must be conquered and it will not be out of place to say that 
the probability of volume ceasing to be a requirement for 
big data will decrease soon is zero. This justifies this study 
and several others focused on the behaviour of data 
volume. From the perspective of hardware, the floppy disk 
was changed to DVD to address volume and right now, the 
DVD is almost obsolete. In another dimension, the SSD is 
emerging to replace the HDD and different types of RAM 
technologies have been introduced. For instance, 
RAMCloud [15] has been introduced to overcome the 
latency issue. On the other hand, the software perspective is 
also promoting big data technologies such as single-sign 
applications with big data backends [5]. A big data model 
supporting a single-sign-on application that enhances data 
comparability across multiple organisations was designed 
and implemented by [16] 

To put volume in a perspective that emphasises its 
relevance to big data, volume is redefined by voluminosity, 
vacuum and vitality, three additional V-dimensions of data. 
These 3V’s define the characteristics of volume in big data 
and are explained thus: 
i. Voluminosity - Voluminosity in volume states that 

there is a very large set of data collected so far and 
even much more is available to be collected. The 
volume collected so far and to be collected has a 
significant gap [5]. 

ii. Vacuum - In volume, vacuum means there is a strong 
requirement for empty spaces to store large volumes of 
data. The vacuum also refers to the creation of room to 
store, process and manage the ever-emerging dataset. 
This dimension reiterates the research question that 
how much storage space is available for incoming data 
rather than how much data we have stored. The process 
of creating storage space for incoming data is equally 
challenging as with managing already stored data. 
Vacuum is therefore concerned with creating space or 
devising techniques to reduce the size of data [5]. 

 

iii. Vitality - The vitality of volume is concerned with the 
amount of data actively served and unserved. Vitality 
emphasises the survival of data and its reliability in the 
storage environment. In a large data store, some data 
are actively used why some are not [5]. However, 
companies generate revenue from the actively used 
data only and the rest are stored in the hope for future 
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uses. The tendency that the data stored for future use is 
abandoned or not properly maintained as the tendency 
increases, anything can happen to such data. Again, 
poor investment/attention to the unserved data leads to 
incidences of fire, earthquake, flood, war, and 
terrorism which are the prominent causes of data loss. 
Thus, vitality is a critical component of volume. In the 
absence of vitality, there will be no disaster 
management system and reliability will be lost. Apart 
from reliability, vitality also describes flexibility, 
dependability and security. Vitality is an integral 
component of volume just as the volume is to Big data. 

 
2.5 Adapting Data Stores for Volume    

 

The problem of volume has been solved traditionally 
by upgrading hardware to accommodate more data in one 
central storage facility or data centre. With positive 
research results in distributed systems, it has become 
feasible to increase storage by simply adding inexpensive 
servers to an array of servers in a data centre or facilities 
outside the operational location via communication 
networks, At the heart of distributed data systems is the fact 
that data must be partitioned according to well-defined 
conditions that are used to identify them during storage and 
retrieval. Doing this achieves database scalability. The pre-
NoSQL distributed systems and NoSQL stores scale by 
default, an ability to handle an increase or decrease in 
database storage demands [14]. While some scale 
vertically, others scale horizontally. 

Vertical Scaling (scaling-up) deals with the resource 
maximization of a single unit to increase its ability to 
handle the ever-increasing load. From the hardware 
perspective, this includes adding memory and processing 
power to the physical machine on which the database server 
is running as shown in Figure 2. From the perspective of 
software or programming, scaling up include optimizing 
application code and algorithms. Parallelizing or optimizing 
several running processes is also considered methods of 
scaling up. 

 
 

 

 

 

 

Figure 2: Vertical Scaling [14] 

Although scaling up may be relatively 
straightforward, the method suffers from several 

disadvantages. Initially, the addition of hardware resources 
reflects decreasing returns and only increases as the 
additional resource is put to optimal use. Besides, there is 
an inevitable downtime needed for scaling up. If all of the 
web application services and data remain on a single unit, 
then vertical scaling on such a unit does not give assurance 
on the application's availability [14]. This led to the idea of 
horizontal scaling. 

Horizontal scaling (scaling out) refers to the 
additional resources that work in unison with an existing 
system as depicted in Figure 3. This means the addition of 
more units of smaller capacity instead of the replacement of 
an existing single unit with one of larger capacity. Haven 
scaled out, data is then partitioned using a partitioning 
strategy and spread across multiple units or servers. Hence, 
excess load on a single machine is reduced [13]. 

 

 

 

 

 

Figure 3: Horizontal Scaling [14] 

Having multiple units working together creates the 
positive probability of keeping the entire system up even if 
some of the units go down. This avoids a single point 
failure problem. This way, horizontal scaling increases the 
availability of a system. Besides, the aggregate cost 
incurred for numerous smaller units is less than the cost of 
a single larger unit. That is, horizontal scaling minimizes 
cost when compared to vertical scaling. However, 
increasing the number of units implies that more resources 
are needed to be invested in maintenance. Also, the code 
itself needs to be compiled such that it can permit 
parallelism and distribution of work among various units. 
In some circumstances, this task is not trivial therefore 
scaling horizontally can be a tough task [14].  

Big data applications require numerous servers or 
Virtual Machine (VM) instances to manage user traffic 
[14]. Existing approaches to that effect are based on either 
vertical or horizontal scaling or partitioning. [14] examined 
the following comparisons between horizontal scaling and 
vertical scaling, the two techniques of scaling cloud 
computing resources. The comparison considers the 
complexity, throughput, cost and efficiency of both 
techniques and is summarized in Table 1. 
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Table 1. Comparative Analysis of Horizontal and Vertical 
Scaling [14]. 

S/
N 

 Vertical 
Scaling 

Horizontal 
Scaling 

1 Meaning Increase the 
resources in the 
same logical 
unit or server 
aimed at 
increasing 
capacity 

increasing the 
performance of a 
server or node by 
adding more 
instances of a 
server to the pool 
of servers to 
spread the 
workload 

2 Reason to 
scale 

It includes 
increasing IOPs 
(Input / Output 
Operations), 
increasing disk 
capacity and 
CPU/RAM 
capacity. 

It includes 
increasing I/O 
concurrency, 
increasing disk 
capacity and 
reducing the load 
on existing 
nodes. 

3 Efficiency Vertical scaling 
is fairly 
inefficient in 
terms of 
resource 
sharing. 
Because servers 
are dedicated to 
specific tasks. 
Hence, tough to 
share the spare 
resources with a 
more fast 
processing 
server. 

Horizontal 
scaling, on the 
other hand, adds 
more nodes to 
the system as it 
scales, rather 
than beef up the 
existing nodes. 
This is relatively 
the more 
powerful and 
popular scaling 
strategy  

4 Complexity Less complex More complex 

5 Throughput Less throughput More 
throughputs 

6 Application/d
atabase server 

Has a 
centralized 
application or 
database server 

Has a 
decentralized 
application or 
database server 

7 Failure 
Recovery 

Failure 
recovery is 

Failure Recovery 
is easy 

difficult  

8 Approach Scale-up 
approach 

Scale-out 
approach 

9 Scenario 

 

This scenario 
focuses on 
increasing the 
capability of a 
hardware 
platform 
capacity to host 
more than one 
instance of an 
application. The 
application is 
reproduced on 
the same 
hardware until 
the capacity 
requirements 
are met. 

This scenario 
focuses on 
enhancing the 
capacity of a 
system or its 
performance 
through 
replication of a 
system 
(comprising of 
hardware or a 
virtual platform) 
until the capacity 
requirement is 
satisfied. 

10 Cost Expensive Cost-effective 

 

Using either the vertical or horizontal scaling 
strategy, the following approaches have been employed by 
researchers to deploy big data. [17] implemented one of the 
most adapted answers to big data storage known as Cloud 
Computing. More specifically, Database as a Service, 
which allows storing and managing a tremendous volume 
of variable data seamlessly, without the need to make large 
investments in infrastructure, platform, software, and 
human resources. [18] proposed an end-to-end graph 
analysis framework called GraphGen, that subsumes the 
different design points where relational or graph data 
models or engines are combined. GraphGen is intended as a 
layer on top of a relational database, and although it can 
simulate the different design points, it does not, as of now, 
offer solutions to all of the optimization challenges that 
arise in the process. GraphGen considers graph analytics or 
querying as a combination of (i) specifying graphs of 
interest against the data in the underlying database as 
GraphViews, and (ii) specifying an analysis task or a query 
(possibly at a later time) against those graphs. The study 
encountered challenges in terms of deciding where to 
execute graph queries/tasks, re-writing the SQL queries, 
and handling inaccuracies of the query optimizer and 
database statistics exposed by natural graph extraction and 
analysis. In [19], an approach for modelling data generated 
by a hybrid simulator for wireless sensor networks, where 
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virtual nodes coexist with real ones is proposed to ease the 
design and testing phases of sensor applications controlling 
large sites, such as entire office buildings. In the study, 
scalability is a fundamental requirement concerning the 
number of users and also the number of sensory devices 
and the environments under observation. However, the 
approach was sensory-based and not generic to take care of 
the ever-increasing diverse big data in several other areas. 
[20] proposed the Nested Relational Algebra (NRA) and a 
database model called Nested Relational Model (NRM) for 
nesting relations arbitrarily. As a result, there is no need to 
flatten the nested relations when a series of operations are 
executed and so the data redundancy and duplications 
caused by un-nesting relations is avoided. Furthermore, the 
representation of the data is claimed to be in a "natural 
form", making it easier for users to understand when 
working with the data. The incorporation of spatial data to 
NRM and the lack of optimization techniques for the 
efficient evaluation of complex queries became a major 
setback of the system. Also, [21] proposed an adaptive 
schema database (ASD), a conceptual framework for 
querying unstructured and semi-structured data t iteratively. 
ASD leveraged the probabilistic query processing 
techniques by incorporating extraction and integration into 
the DBMS. It has the potential to bridge the gap between 
relational databases and NoSQL, creating a far more user-
friendly data exploration experience. However, ASD has 
partially implemented hence the loss of its grounds to 
proffer a solution to the alarming challenge of the volume 
dimensions of big data. 

It is obvious that both the NoSQL and relational 
database models each have their advantages and challenges. 
It appears a combination of several models will be a 
workable model for database applications to enable them to 
accommodate the V-dimensions of data. Alternatively, a 
database model can be tweaked in its area of weakness to 
enable it accommodate data in the V-dimensions of big 
data. In other words, the days of a one-size fits all are gone 
and in this paper, partitioning the relational database to 
accommodate big data is considered [15]. The partition 
strategy proposed relaxed the NP-hardness of automated 
partitioning using the discretion of the programmer in the 
application codes.  

2.6  Automated Partitioning of Relational Database 

 

The NoSQL database paradigm seems to have 
solved the problems associated with the V-dimensions data 
assumes when cultivated in large quantities about entities 
of different categories and most times different sources. But 
they have failed to guarantee the ACID properties of data 
as the failure of network node in a distributed system may 

mean the unavailability of a queried dataset among other 
challenges. A transaction-laden application may demand a 
lot more of the ACID properties of a database to maintain 
data integrity while requiring that the ever-increasing 
volume of data is also accommodated. This means that a 
one-size-fits-all database as proposed by the proponents of 
the NoSQL paradigm may end up as a mirage. It is obvious 
that the query time is negatively affected as data volume 
increases in a relational database and therefore proposes a 
big data model which partitions a relation in a relational 
database. The programmed partitions allow data to grow in 
the new partitions rather than a single relation.  The fact 
that partitions contain less data than their non-partitioned 
equivalent enhances query time, hence another contributing 
factor considered in this study. 

The ACID properties of the relational database 
model have been assumed to be too strict for some 
applications. The ACID properties of the relational 
database model however constitute a major attraction 
especially for applications that process transactions. A 
transaction-laden application may demand a lot more of the 
ACID properties of a database so as to maintain data 
integrity while requiring that the ever increasing volume of 
data is also accommodated. This means that a one-size-fits-
all database as proposed by several researchers may end up 
as a mirage and the current trend suggests that databases be 
made adaptive in the areas of their weakness rather than 
throw the baby away with the bath. In other words, a one-
size-fits-all approach to the design and implementation of 
data stores is an idea whose time has come and gone [15, 
22 - 24]. It is on the basis of this that several researchers 
have proposed different approaches to the design and 
implementation of database management systems. [14] for 
example, discussed a shift from a traditional static data 
approach to a more adaptive model approach to database 
design. The adaptive approach help organizations build 
dynamic capabilities to react in a dynamic environment. At 
present, leaving partitioning in the hands of the developer is 
one of such adaptive approaches to database design and 
implementation. However, [9] noted that the traditional 
RDBMS can be complemented by specifically designing a 
rich set of alternative DBMS; such as NoSQL, NewSQL 
and Search-based systems but not a total departure from the 
traditional RDBMS. It is based on this new trend that this 
paper takes a more pragmatic view of big data 
implementations 

To make the relational database model adaptive to 
the volume dimension of big data, the trend is to build them 
with automatic partitioning features [26 - 28]. Automatic 
partitioning creates partitioning configurations based on 
which the database is broken down into chunks and 
distributed. The partitioning configuration is stored on a 
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single machine as if it were a regular database (but with no 
actual but meta data). The partitioning configuration 
constitutes a search space of heuristics like genetic- and 
rank-based techniques that are used to identify units of data 
distributed. In its basic form, the heuristics make use of 
interesting columns [26]. Interesting columns represent an 
extension of the notion of interesting orders introduced in 
System R [22]. To arrive at a partitioning strategy, the 
following may be considered as interesting columns: (i) 
columns referenced in equality join predicates, and (ii) any 
subset of group-by columns. Join columns are interesting 
because they make local and directed joins possible. The 
group-by columns are interesting because aggregations can 
be done locally at each node and then combined. The 
interesting columns are by definition considered as 
partitioning candidates.  

Automatic partitioning takes the control of the 
partitioning process from the programmer in addition to 
several other drawbacks of automatic partitioning. The 
study by [28] affirm that the main pitfall or challenge of 
self-regulated database partitioning is the fact enumerating 
the search space so as to arrive at an applicable partitioning 
strategy makes partitioning an NP-hard problem and 
leaving it to automation will not produce the best of results 
in terms of the resulting algorithmic time complexity. A 
partitioning strategy developed and implemented by the 
application developer is therefore proposed as being more 
effective though requiring extra coding effort. 

3. METHODOLOGY 
 

The effectiveness of the distributed database 
management system is based on the fact that query 
performance is enhanced if the cardinality of a relationship 
is minimal.. In a database D, a query time T, and a storage 
limit L, there exist a condition for D such that (i) the size of 
replicated (distributed) tables fits into L, and (ii) the overall 
query time T is minimized [26]. That is to say that the time 
taken to retrieve a record or a set of records from a relation 
is proportional to the total number of records in the relation 
hence the rationale for partitioning since it reduces the 
number of records in a unit relation. Based on this 
relationship, query time can be computed as a ratio using 
equation 1. 

௧ݍ = ೝ்
்ೃ

                         (1) 

Where qt is query time, Tr is the number of tuples retrieved 
from a relation R using a predicate ϭ and TR is the number 
of tuples in R. 

The implication of equation 1 is that an increase in 
query time comes with an increase in volume. In this study, 
partitioning is done within the context of horizontal 

scalability and has proven that not only is more data 
accommodated but query time reduces as the data retrieval 
ratio shown in equation 1 is reduced by partitioning. The 
proposed adaptive relational database model takes care of 
volume and at the same time enhances query time by 
partitioning a relation using an appropriate attribute or set 
of attributes as the interesting columns. In the experimental 
scenarios in this study, the interesting columns are 
suggested in the database design and the design does not in 
any way depend on the database engine for implementation. 

Equation 1 is validated by the experimental results of 
this work based on the experimental data set in Table 2. As 
a running example throughout the paper, consider the 
relation (R) in Table 2 as storing information about students 
in a university. 

Table 2: Relation (R) 

Tuple MatNo Dept C.Code Session Level Location 
T1  … MC  … 17/18  … NW 
T2  … BIO … 16/17 … SS 
T3  … MC  … 18/19 … NE 
T4  … CHM  … 15/16  … NC 
T5  … MC  … 17/18  … SE 
T6  … CHM  … 16/17  … NC 
 

Assuming that the cardinality of relation R is 
denoted as Card (R), becomes large, then queries on 
relation R denoted as Q(R) become very slow. Portioning 
the relation R solves the associated volume problem and the 
department (dept) attribute qualifies eminently for use as a 
partition key. The distinct values in the value set associated 
with the partition key are MC, BIO and CHM. The distinct 
values produce three partition predicates, namely 
Dept=”MC”, Dept=”BIO” and Dept=” CHM”. The 
partition predicates are SARGable predicates [26] and 
hence they filter the tuples of relation R into three 
partitions.  The cardinality of relation R, Card(R) is 6 and 
the partition predicates identified partition R as follows: 

Let P1 = partition by Dept=MC, then Card (P1) = 3 
      P2 = partition by Dept=BIO, then Card (P2) = 1 
      P3 = partition by Dept=CHM, then Card (P3) = 2 

The partitions P1, P2 and P3 are relations and can be named 
MC, BIO and CHM respectively. Once a choice of a 
partition key is made, the partition predicates are 
automatically determined using the distinct values of the 
value set associated with the partition key. This is done 
dynamically and at a run time hence the model is said to be 
adaptive. At all times, the cardinality of a partition is less 
than the cardinality of relation R, by implication, volume is 
optimised. Again, this implies that the model is adaptive to 
volume. Generally, it can be said that for any relation (R), 
given a set of partition keys, then R = {P1, P2… Pn} where 
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n = the number of distinct values in the value set associated 
with a partition key. The number of distinct values in the 
value set is also the number of partitions produced. The 
abstraction R = {P1, P2… Pn} is demonstrated by the proof 
of concept in section 3.1. 

3.1 Prof of Concept 
 

Equation 1 shows that the larger the number of 
tuples in a relation, the longer the query time. To address 
this delay in query time, the number of records can be 
reduced by partitioning the records into a smaller number 
of tuples. This approach to improving query time is proved 
using the following theorem and axiom: 

Theorem: Given P1, P2 … Pn as the partitions of a relation 
R, then R = {P1, P2… Pn}  
where n = the number of distinct values in the value set 
associated with the partition key that generated P1, P2 … Pn 

Axiom: The following axioms are applicable: 
1. A partition key has a value set, V whose element 

cannot be null 
2. The number of distinct values of V is n = number of 

partitions produced 

Proof: Let ϭ be the partition predicate associated with a 
distinct value V, then Card (ϭ) is the cardinality of the 
tuples filtered by ϭ.  
Given any value of n, there exists ϭ1, ϭ2... ϭn,  
Where:  
Ϭ1 filters all tuples in P1 from the relation R,  
Ϭ2 filters all tuples in P2 from the relation R, and  
Ϭn filters all tuples in Pn from the relation R, 

Since the elements of V cannot be null, then Card (V) = 
Card (R) 

Since ϭ1, ϭ2... ϭn filter the tuples of R according to the 
distinct values of V, it follows that: 
Card (V) =Card (ϭ1) + Card (ϭ2) +.... + Card (ϭn) 
=	∑ ௡(௜ߪ)݀ݎܽܥ

௜  
This implies that ∑ ௡(௜ߪ)݀ݎܽܥ

௜ 	= Card (R) since n is the 
number of distinct values of V defined in R. 
This shows that R = {P1, P2… Pn} since ϭ1, ϭ2... ϭn filter the 
tuples of R. 

The proof shows that partitioning does not change 
the data set. The experimental results further demonstrate 
that partitioning enhances query time. 

The equivalence of a relation and its partitions 
according to a partition key has been demonstrated. This 
study in its approach and contribution, further demonstrate 
how partitioning makes a relation or a database adaptive to 
volume. The implementation of this adaptive model thus 
demonstrates the partitioning scheme discussed as well 

demonstrate empirically that the queries on the partition, ϭ1, 
ϭ2, ..., ϭn have a better query time compared to an 
equivalent query, ϭ on the original relation, say R. The 
implementation considers a relation of students’ 
registration details with a representative sample of the 
records shown in Table 3: 

Table 3: Students’ course registration details fully populated in 
relation (R) 

Tuple MatNo Dept Course Code Session Level Location 
T1  32224 MC CMP 422 17/18 400 NW 
T2  23433 BIO ZOO 342 16/17 300 SS 
T3  55466 MC    MTH 341 18/19 300 SE 
T4  32224 CHM CHM 141 15/16 100 NC 
T5  33266 MC STAT 431 16/17 200 SW 
T6  99877 CHM CHM 211 18/19 200 NE 
T7 32242 MC CMP 322 15/16 100 NW 
T8 27833 BIO ZOO 342 16/17 300 SE 
T9 55277 MC MTH 311 18/19 200 NE 
T10 32242 CHM CHM 141 15/16 100 SS 
T11 39966 MC STAT 411 17/18 300 SE 
T12 91179 CHM CHM 211 16/17 200 NW 

…
 …

 
 

…
 

…
 

…
 

…
 …

 

 

As earlier exposed in the literature that partitioning 
is achieved only if there exist a relation. Hence, for the 
purpose of this research, the following code snippet or 
create statement allows the programmer to create partitions 
from relation R. Relation is partitioned into chunks of data 
related by course of study indicated by the variable, 
$costudy: 

function createStudentTb($costudy){ 

// called by dossierplus/student.php 

//echo " costudy = ". $costudy; 

$tablename="dept ".RemoveSpecialChar($costudy); 

if(!checkRemBigdataTableExist("student" . 
RemoveSpecialChar($costudy))) { 

$query2="CREATE TABLE IF NOT EXISTS 
".addslashes($tablename) ."( 

`id` varchar(45) default NULL, 

`matno` varchar(45) default NULL, 

`dept` varchar(200) default NULL, 

`courseCode` varchar(200) default NULL, 

`session` varchar(200) default NULL, 

`level` varchar(200) default NULL, 

`location` varchar(200) default NULL, 
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timestamped varchar(15) default NULL, 

timedescription varchar(25) default NULL, 

`status` varchar(45) default NULL, 

PRIMARY KEY (`regnocostermid`) 

) ENGINE=InnoDB DEFAULT CHARSET=latin1"; 

$create=query ($query2) or die (mysql_error ()."error function 
createStudentTb"); 

} // if ($create==1) return true; else return false; 

} // end of function createStudentattendanceTb 
function RemoveSpecialChar($value){$result  = 
preg_replace('/[^a-zA-Z0-9_ -]/s','',$value); 

 

return $result; 

} 
// create a big table if none exists by calling the function 

createStudentTb ($costudy); 
 

Bearing in mind that the main contribution of this 
study is to give programmer the privilege to create 
partitions as the need arises, a select statement is employed 
here to implement the partitioning predicate. This extracts 
records from the original relation and inserts them into the 
appropriately partitioned relation. In this way, the original 
relation is dynamically created or split based on an 
appropriate partitioning predicate. Following is a call to the 
function, createStudentTb($costudy), defined above to 
perform the dynamic portioning of relation: 
// generate relation dynamically 

$depttbname=" student ".RemoveSpecialChar($costudy); 

$classtbname=" class ".RemoveSpecialChar($costudy); 
 

// select records based on the partitioning rule and then 
insert them into an appropriate partition 

 

$insertq = query("INSERT INTO $depttbname (`tuple` , 
`matno`, `dept`, `courseCode`, `level`, `location`, 
`timestamped`, `timedescription`, `status`) 

VALUES ('$id', 'Kenn', 'bsu32242', '17/18', 'two', 'NC'") or 
die(mysql_error("Error1")); 

This query implements the partition predicates, 
Dept=”MC”,  Dept=”BIO” and  Dept=” CHM”, on user 
demand. It produces three partitions as shown in Table 4, 5 
and 6  

Table 4: MC_Dept (partition 1) 
 
 

Tuple MatNo Course Code Session Level Location 
T1  32224 CMP 422 17/18  400 NW 
T3  55466 MTH 341 18/19 300 SE 
T5  33266 STAT 431 16/17  200 SW 
T7  32242 CMP 322 15/16  100 NW 
T9 55277 MTH 311 18/19 200 NE 
T11 39966 STAT 411 17/18  300 SE 

Table 5: CHM_Dept (partition 2) 

Tuple MatNo Course Code Session Level Location 
T4  32224 CHM 141 15/16  100 NC 
T6  99877 CHM 211 18/19  200 NE 
T10  88656 CHM 141 15/16  100 SS 
T12 91179 CHM 211 16/17  200 NW 

 

Table 6: BIO Dept (partition 3) 

Tuple MatNo Course Code Session Level Location 
T2  23433 ZOO 342 16/17 300 SS 
T8 27833 ZOO 342 16/17 300 SE 

 

The cardinality of the original relation is 12. The 
cardinality of partitions 1, 2 and 3 are 6, 4 and 2 
respectively. This affirms that ∑ ௡(௜ߪ)݀ݎܽܥ

௜ 	= Card (R). 
The partitions created can be hosted on a server or across 
different servers. Thus, the volume dimension of big data is 
taken care of which is the primary concern in this study. 
Any other attribute of the original relations whose value set 
does not have null elements can be used as a partition key. 
The guide is that the cardinality of the partitions produce 
must be such that query times on them are tolerable. The 
number of partitions produced must also be such that it is 
manageable and not unwieldy or cumbersome. This means 
that the choice of the partition key depends on the number 
of distinct values in its value set since that determines the 
number of partitions. Two or more partition keys can also 
be combined to produce a composite partition key and a 
corresponding conjunctive equality partitioning predicate.  

4. RESULT AND DISCUSSION 
 

Experimentally, a relation R populated with 300,000 
tuples or records was created. The relation R was then 
partitioned into three relations: 1, 2 and 3 of different sizes 
each. Out of these partitions, relation 1 comprises 150,000 
tuples, relation 2 consists of 60,000 tuples and relation 3 is 
made of 90,000 tuples. The number of tuples in the three 
partitioned relations amounts to 300,000 tuples as 
contained in the original relation R. A query was applied on 
the original relation R with each of the partitions produced 
from relation R and the resulting query time was taken. 
That is, the same predicate on the partitioned relations and 
the original relation were timed in each case. Details of the 
experiments are as shown in Table 7. 
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Table 7: Details of Experiments 
 

 

  

 

 

  

 

 

 

 
 

  

  
 
 

 
 

The query time of each of the partitions is compared 
with the query time obtained when the same predicate is 
applied in a query on the original relation. The comparative 
results of the experiments are graphically demonstrated in 
Figures 4, 5 and 6 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 4: Relation (R) and partition (1) query time graph 

 
 

     
 
 
 
 
 
 
 
 
 

 
 
  
 

Figure 5: Relation (R) and partition (2) query time graph 
 

 

     
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Relation (R) and partition (3) query time graph 

 
The partitions in the experiments were produced by 

partition predicates embedded in the codes written in 
function, createStudentTb($costudy).It is observed from 
these results that in each run of experiment 1, 2 and 3, the 
query time of the partitioned relation is less than the query 
time of the original relation R in Table 3. This is because 
relation R has more records than the partitioned relations in 
each case. This shows that the non-automatic strategy for 
partitioning is effective and produces the established result 
that query time is enhanced when data is partitioned. This 
result goes far to affirm empirically that equation 1 is true 
for relation R and its corresponding partitions. 

The ratio of the differences in query times across the 
runs of each experiment differs as evident in the heights of 
the bar charts in the various run times displayed in the 
graphs. This is attributed to “noise” factors in the run time 
environment. In an empirical query time analysis such as 

Description            Experiment 1             Experiment 2              Experiment 3 

Run Time Relation R Partition 1 Relation R Partition 2 Relation R Partition 3 

1st Run 0.304412 0.100755 1.757856 0.248396 0.265892 0.133841 

2nd Run 0.46711 0.204732 2.256918 1.04493 1.809146 1.548764 

3rd Run 1.634166 0.238915 1.285841 0.431768 0.481732 0.197544 

4th Run 0.405944 0.221573 2.87495 1.626576 0.499015 0.232302 

5th Run 1.584439 0.167413 1.532954 0.358075 1.58721 0.281298 

Ave_RunTime 0.8792142 0.1866776 1.9417038 0.741949 0.928599 0.4787498 
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this, the influence of operating system processes on query 
time cannot be ruled out. However, the influence of the 
noise factors did not affect the big picture as the graph of 
the query times associated with the partitions are 
consistently lower than that of the query times associated 
with the original partition throughout all the runs of the 
experiments. This volume-adaptive model of a relational 
database has not only contributed to taking care of the 
volume dimension of relational data, but also optimizes 
query time. 

5. CONCLUSION AND FUTURE WORK 
 

It is practically demonstrated in this study that using 
codes representing the discretion of the programmer, a 
relational database can be partitioned and the expected 
result that query time is improved achieved. This is 
preferred to automated partitioning because automated 
partitioning is based on algorithms and heuristics whose 
algorithmic time complexity is NP-Hard. The partition 
strategy implemented in this study makes it possible to 
store voluminous data across several partitions thereby 
makes the relational database adaptive to the volume 
requirement of big data. Unlike the schemaless model of 
big data, the adaptive model of the relational database 
produces partitions that are of uniform format thereby 
reducing the effort required to mine the data into a data lake 
platform for data analytics. The ACID properties inherent 
in the relational database model are also preserved in the 
partitions. To improve the query time of partitions, a new 
partition predicate can always be implemented and the 
tuples of the partitions re-arranged accordingly. 
  Making the model adaptive to the other V-
dimensions of big data is being considered as part of future 
work. Accordingly, part of the future work would also 
include distributing the partitions across a hardware cluster 
architecture using the horizontal scaling concept earlier 
discussed in the related work section to cater for the holistic 
volume requirements of big data. 
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