
Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2283

Volume-Adaptive Big Data Model for Relational Databases

Patrick O. Obilikwu1*, Kenneth D. Kwaghtyo1 and Edward N. Udo2
1Department of Mathematics and Computer Science, Benue State University, Makurdi, Nigeria

2Department of Computer Science, University of Uyo, Uyo, Nigeria.
*Corresponding author: poblikwu@gmail.com

ABSTRACT

Big data is traditionally associated with distributed systems
and this is understandable given that the volume dimension
of Big Data appears to be best accommodated by the
continuous addition of resources over a distributed network
rather than the continuous upgrade of a central storage
resource. Based on this implementation context, non-
distributed relational database models are considered
volume-inefficient and a departure from their usage
contemplated by the database community. Distributed
systems depend on data partitioning to determine chunks of
related data and where in storage they can be
accommodated. In existing Database Management Systems
(DBMS), data partitioning is automated which in the
opinion of this paper does not give the best results since
partitioning is an NP-hard problem in terms of algorithmic
time complexity. The NP-hardness is shown to be reduced
by a partitioning strategy that relies on the discretion of the
programmer which is more effective and flexible though
requires extra coding effort. NP-hard problems are solved
more effectively by a combination of discretion rather than
full automation. In this paper, the partitioning process is
reviewed and a programmer-based partitioning strategy
implemented for an application with a relational DBMS
backend. By doing this, the relational DBMS is made
adaptive in the volume dimension of big data. The ACID
properties (atomicity, consistency, isolation, and durability)
of the relational database model which constitutes a major
attraction especially for applications that process
transactions is thus harnessed. On a more general note, the
results of this research suggest that databases can be made
adaptive in the areas of their weaknesses as a one-size-fits-
all database management system may no longer be feasible.

Key words: Big Data, V-dimensions of data, Adaptive
Model of Relational DBMS, NoSQL, ACID
properties

1. INTRODUCTION

Big data is described as a dataset that cannot be
captured, managed, and processed by average-sized
computers within an acceptable scope or time frame [1].
Several databases have continued to emerge in response to
the many big data dimensions in which data now occur; a
phenomenon for which the relational database model does
not have ready answers. [2] pointed out that, the relational
database management system (RDMS) simply cannot
handle big data. That is, big data is too big, too fast, and too
diverse to store and manipulate in RDMS because RDMS
requires a schema before writing to the database, a process
which is assumed to be too rigid to handle the V-
dimensions of big data. The ACID properties (atomicity,
consistency, isolation, and durability) of the relational
database are also assumed to be too strict for some
applications. This led to the requirements for new
architectures and new transaction management techniques
such as BASE (Basically Available, Soft State, Eventual
consistency), which relaxes the ACID properties in
distributed data management systems such as the NoSQL
paradigm [2].
 Other issues that must be addressed when
handling big data include scalability, schema flexibility,
and ease of development, cost, and availability of
deployment options. It is observed in [2] that the shift from
relational databases to NoSQL database was spurred by the
need for flexibility both in the scaling and data modelling
possibilities required by big data. In NoSQL, scale-out
means that, instead of acquiring a bigger server, one can
add more commodity servers. NoSQL was specifically
designed to address the needs of big data, and cloud
computing. However, NoSQL databases do not guarantee
consistency, by design, because many applications need to
handle potential inconsistencies. Eventually, lack of
consistency limits the use of NoSQL databases for mission-
critical transactional applications. Scaling up of relational
databases is accomplished by adding a bigger server when
additional capacity is needed. This is very expensive
considering the capital outlay required to acquire new

ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse1121032021.pdf

https://doi.org/10.30534/ijatcse/2021/1131032021

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2284

servers. [3] examined and exposed the state-of-the-art
storage technologies for big data applications. Variables
such as capacity, scalability, data transfer rate, access time,
and cost of storage devices, are re-emphasized in the study
to handle big data issues

To understand completely the requirements of big
data beyond its requirement for storage capacity, the V-
dimensions of big data are discussed. [2] characterized Big
data by the "3Vs" of volume, variety, and velocity,
emerging from advances in sensing, measuring, and social
computing technologies. In addition to these 3Vs, other Vs
such as veracity and value have been added.

Figure 1 summarizes the "5Vs" challenges
dominant in big data practice and research efforts.

.

Figure 1: The 5Vs of Big Data [2]

The 5Vs are explained as follows:

i. Volume: This is the size of data being created from all
the sources including text, audio, video, social networks,
research studies, medical data, space images, crime
reports, etc. as defined [4]. The scale is now in terabytes,
petabytes, and exabytes. The volume challenge is being
addressed technologically by using commodity hardware
and the Hadoop Distributed File System (HDFS) [2].

ii. Velocity: Velocity is seen as the speed at which data is
created, captured, extracted, processed, or stored. A
semi-technology solution is needed to deal with the
velocity challenge, with the software solution portion
having real-time processing, streaming and in-memory
computing [2].

iii. Variety: Variety connotes different data types and
sources (from structured, semi-structured and
unstructured data), documents, Web data, XML files,
sensor data, multimedia files, and so forth. The variety
challenge is primarily addressed by software solutions
because the integration of heterogeneous data requires an
extensive software effort to handle the variety [2].

iv. Veracity: Veracity means the truthfulness of data [4].
Veracity refers to the accuracy of the data. It raises issues
of quality, reliability, uncertainty, incompleteness, as

well as the meaning in the data itself (e.g., word
variation, weather data, and translation of hand-written
data). Eventually, the veracity must be consistent to be
processed in an automated manner and its challenge
should be addressed with the help of software solutions
[2].

v. Value: Value is concerned with data relevance to users
(as evidenced by much research on text mining and
sentiment analysis); and other measures. The needed
analysis of big data to identify such value may occur in
various ways including traditional SQL-type queries,
machine learning techniques, data mining, statistics,
optimization, and decision support analysis. The results
may be represented in different forms, including
traditional, standard and ad-hoc report generation, and
visualization. The value challenge is most difficult to
achieve as its software solutions must be addressed
within its context. The next section exposes the three Vs
used to define the characteristics of volume which is the
cog of Big Data as defined by [5]

The volume dimension of big data has been
achieved mainly by distributing data in chunks to storage
nodes. The nodes could be a data centre provisioned with a
network of computers in physical proximity or data centres
across the globe connected via the internet. This paper is
aimed at reviewing how partitioning techniques are used to
arrive at chunks of related data and exposing the crucial
role of partitioning in achieving data distribution. The
objectives of this paper are therefore threefold: (i) introduce
big data in terms of the V-dimensions of data occurrence;
(ii) review data partitioning and the fact that current
database management systems implement automatic
partitioning strategy; (3) demonstrate how the discretion of
the developer in determining the partitioning strategy
reduces the NP-hardness of the automated partitioning
strategy.

The rest of this paper is organized as follows:
Section 2 reviews related work necessary to better
understand the technical aspects of this work, with an
emphasis on the automated partitioning strategy. Section 3
describes the details of our proposed non-automated
approach to partition design and implementation. The
partition design is embedded in the database design and
shown using appropriate design methodologies. In Section
4, it is shown how the relational database model can be
adapted using non-automated partition strategies in its
design to accommodate big data in its volume dimension.
Section 5 concludes the paper and outlines current and
future lines of research.

2. RELATED WORK

Approaches to handling big data have been exposed in
the literature by researchers in response to the departure
from the traditional pattern in which data presents itself in

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2285

the monolithic forms of texts and digits. This departure has
led to newer database models and approaches such as the P-
stores, C-stores, NoSQL and the S-stores among others that
have been proposed by scholars to address the big data
dimensions of data. This section unveils the current trends
describing efforts made by researchers to take care of big
data issues over the years.

2.1 Pre-NoSQL Stores

Pre-NoSQL stores include C-stores, P-stores and the
S-stores among others. The root of column-oriented
database systems often termed C-store can be traced to the
1970s. In recent years, some column store database like
MonetDB has been introduced with the claim that their
performance gains are quite noticeable against traditional
approaches. The traditional approaches are row-oriented
database systems that have physical designs such that
almost all the tables in the database have a one-to-one
mapping to the tables in a logical schema [6]. The
performance of C-store databases shows that, although the
internal structure of a column store is emulated inside a row
store, the query processing performance of the C-store is
quite poor [6]. An attempt to optimise the performance of
C-stores led to the design of the P-store, another form of
pre-NoSQL store.

P-Store is a partially replicated data store for wide-
area networks developed by Schiper, Sutra, and Pedone that
provides transactions with serializability [7]. P-Store
executes transactions concurrently and that the execution of
a transaction (T) at the site (S) proceeds without worrying
about conflicting concurrent transactions at other sites [7].
P-Store assumes that the local executions of multiple
transactions on a site are equivalent to some serialized
executions. This assumption is modelled by executing the
transactions one-by-one. Therefore, a replica can only
receive a transaction request if its set of currently executing
transactions are empty. However, the certification protocol
in P-store causes delays in transactions and the need for
stream processing paved the way to the S-store technique.

S-Store is a data management system that combines
Online Transaction Processing (OLTP) transactions with
stream processing [8]. S-Store belongs to a new breed of
stream processing systems designed for high-throughput,
scalable, and fault-tolerant processing over big and fast data
across large clusters. [8] emphasized that S-Store is a
client-server system and unique in that, all data access in S-
Store is SQL-based and fully transactional. However, the
inherent stream processing in S-Store exposes data and
processing dependencies among transactions that are not
captured by the model. Hence, the need for a better solution
like NoSQL.

2.2 NoSQL and NewSQL

The acronym NoSQL was coined in 1998 [9]. At first,
many people thought NoSQL is a derogatory term created
to poke at SQL. In reality, the term means Not Only SQL.
The idea is that both technologies can coexist and each has
its place. Over the years, companies like Facebook, Twitter,
Digg, Amazon, LinkedIn and Google adopted the use of
NoSQL in one way or another [9]. According to [10], a
group of data storage systems able to cope with big data are
subsumed under the term NoSQL databases, which
emerged as a backend to support big data applications. In
recent years, the amount of useful data in some applications
like social media, sensor networks has become so vast that
it cannot be stored, processed or managed by the traditional
database systems. [11] asserts that NoSQL databases are
characterized by horizontal scalability, schema-free data
models, and easy cloud deployment. They have capabilities
to manage large amounts of data, hence become widely
adopted on cloud platforms. The growing importance of big
data applications has driven the development of a wide
variety of NoSQL databases such as Google’s BigTable,
Amazon’s Dynamo, Facebook’s Cassandra, and Oracle’s
NoSQL DB, MongoDB, Apache’s HBase and others.

NewSQL is a class of new breed databases that have
the strengths of both relational and NoSQL databases[2].
They support SQL and take advantage of its ACID
properties. They are built on the scale-out architecture,
supporting scalability and fault tolerance. NewSQL
databases provide a scalable performance comparable to
NoSQL systems for OLTP workloads. However, NewSQL
has limited support for "variety" due to the need for a
schema. Google spanner, VoltDB, MemSQL, NuoDB and
Clustrix are examples of databases based on the NewSQL
database paradigm.

2.3 Hadoop and MapReduce

Map/Reduce is a programming paradigm with
automatic parallelization. The Map part can be seen as the
input part. It houses the reduction keys and values with the
output sorted and partitioned for the Reduce aspect. The
Reduce function is applied to data grouped by the reduction
key. The reduced function aggregates data by adding
selected values. The Map and Reduce operations are then
chained together for complex computations. The result is
extreme scalability, well-suited for scale-out architectures
that use low-cost commodity hardware with fault-tolerant
features [2, 12]. Hadoop can process and store large
amounts of structured, unstructured and semi-structured
data. Hadoop is an open-source version of the Map/Reduce
algorithm, created to analyze large amounts of unstructured
data and has become a de-facto standard for big data. In a

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2286

traditional database, a query is written in a structured query
language, the data is accessed is stored in a relational
database, and the result obtained [13]. These types of
queries, however, can be limited, thus the desired output
may not be obtained. Using Hadoop, unstructured data can
be combined in many ways to facilitate data access.

Hadoop progresses from data storage, data processing,
and data access, to data management as:

1. Data storage – HDFS (Hadoop distributed file system)
and HBase (column database storage);

2. Data processing – MapReduce (automatic parallel data
processing);

3. Data access – Hive (SQL-like); Pig (data flow);
Mahout (machine learning); Avro (data serialization
and remote procedure protocol); and Sqoop (relational
database management connector). Hadoop, as viewed
by [12], is inherently scalable and good for processing
a large amount of data with automatic load balancing.
Hadoop, however, is too dependent on HDFS when
multiple iterations are needed and still requires
significant manual coding to implement complex
operations such as joins based on multiple fields.
These limitations brought about a new memory-
resident parallel processing framework, called Spark
[2].

2.3.1 Apache Spark

Apache Spark is a memory-centric computing
platform, designed specifically for large scale processing. It
is a fast and generic engine with a simple and expressive
programming model for supporting a wide range of
applications, including ETL (Extract, Transform, and
Load), machine learning, stream processing, and graph
computations. Eighty high-level operators make it easy to
build parallel applications, with interactive use from Scala,
Python and R shells [2]. It combines SQL, streaming, and
complex analytics. Spark has a stack of libraries that can be
combined in a single application, and include SQL and
Data Frames, MLlib for machine learning, GraphX, and
Spark Streaming. Spark can access diverse data sources
such as HDFS (Hadoop Distributed File Sharing),
Cassandra (column-based database), HBase (Hadoop's
database), Hive, and Tachyon. It uses Resilient Distributed
Datasets (RDDs), which are fault-tolerant distributed
memory abstractions that avoid replication. Spark can
interactively query 1 to 2 terabytes of data in less than one
second. Whereas Hadoop is good for batch applications,
Spark is good for running real-time or iterative applications
such as machine learning or graph processing and it is
easier to program than Hadoop [2].

2.4 Volume Re-defined

If the volume dimension of big data is absent from the
properties of a dataset, then the data set becomes small
even if has the other dimensions of big data. Volume is
therefore the major dimension of big data. Big data and
volume are synonymous in meaning, thus volume is a pillar
that cannot be ignored in defining big data. Since volume is
a pillar of big data, database technologies must support
volume with the capacity to store, process and manage
large data sets. Volume is the main issue in big data that
must be conquered and it will not be out of place to say that
the probability of volume ceasing to be a requirement for
big data will decrease soon is zero. This justifies this study
and several others focused on the behaviour of data
volume. From the perspective of hardware, the floppy disk
was changed to DVD to address volume and right now, the
DVD is almost obsolete. In another dimension, the SSD is
emerging to replace the HDD and different types of RAM
technologies have been introduced. For instance,
RAMCloud [15] has been introduced to overcome the
latency issue. On the other hand, the software perspective is
also promoting big data technologies such as single-sign
applications with big data backends [5]. A big data model
supporting a single-sign-on application that enhances data
comparability across multiple organisations was designed
and implemented by [16]

To put volume in a perspective that emphasises its
relevance to big data, volume is redefined by voluminosity,
vacuum and vitality, three additional V-dimensions of data.
These 3V’s define the characteristics of volume in big data
and are explained thus:
i. Voluminosity - Voluminosity in volume states that

there is a very large set of data collected so far and
even much more is available to be collected. The
volume collected so far and to be collected has a
significant gap [5].

ii. Vacuum - In volume, vacuum means there is a strong
requirement for empty spaces to store large volumes of
data. The vacuum also refers to the creation of room to
store, process and manage the ever-emerging dataset.
This dimension reiterates the research question that
how much storage space is available for incoming data
rather than how much data we have stored. The process
of creating storage space for incoming data is equally
challenging as with managing already stored data.
Vacuum is therefore concerned with creating space or
devising techniques to reduce the size of data [5].

iii. Vitality - The vitality of volume is concerned with the
amount of data actively served and unserved. Vitality
emphasises the survival of data and its reliability in the
storage environment. In a large data store, some data
are actively used why some are not [5]. However,
companies generate revenue from the actively used
data only and the rest are stored in the hope for future

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2287

uses. The tendency that the data stored for future use is
abandoned or not properly maintained as the tendency
increases, anything can happen to such data. Again,
poor investment/attention to the unserved data leads to
incidences of fire, earthquake, flood, war, and
terrorism which are the prominent causes of data loss.
Thus, vitality is a critical component of volume. In the
absence of vitality, there will be no disaster
management system and reliability will be lost. Apart
from reliability, vitality also describes flexibility,
dependability and security. Vitality is an integral
component of volume just as the volume is to Big data.

2.5 Adapting Data Stores for Volume

The problem of volume has been solved traditionally
by upgrading hardware to accommodate more data in one
central storage facility or data centre. With positive
research results in distributed systems, it has become
feasible to increase storage by simply adding inexpensive
servers to an array of servers in a data centre or facilities
outside the operational location via communication
networks, At the heart of distributed data systems is the fact
that data must be partitioned according to well-defined
conditions that are used to identify them during storage and
retrieval. Doing this achieves database scalability. The pre-
NoSQL distributed systems and NoSQL stores scale by
default, an ability to handle an increase or decrease in
database storage demands [14]. While some scale
vertically, others scale horizontally.

Vertical Scaling (scaling-up) deals with the resource
maximization of a single unit to increase its ability to
handle the ever-increasing load. From the hardware
perspective, this includes adding memory and processing
power to the physical machine on which the database server
is running as shown in Figure 2. From the perspective of
software or programming, scaling up include optimizing
application code and algorithms. Parallelizing or optimizing
several running processes is also considered methods of
scaling up.

Figure 2: Vertical Scaling [14]

Although scaling up may be relatively
straightforward, the method suffers from several

disadvantages. Initially, the addition of hardware resources
reflects decreasing returns and only increases as the
additional resource is put to optimal use. Besides, there is
an inevitable downtime needed for scaling up. If all of the
web application services and data remain on a single unit,
then vertical scaling on such a unit does not give assurance
on the application's availability [14]. This led to the idea of
horizontal scaling.

Horizontal scaling (scaling out) refers to the
additional resources that work in unison with an existing
system as depicted in Figure 3. This means the addition of
more units of smaller capacity instead of the replacement of
an existing single unit with one of larger capacity. Haven
scaled out, data is then partitioned using a partitioning
strategy and spread across multiple units or servers. Hence,
excess load on a single machine is reduced [13].

Figure 3: Horizontal Scaling [14]

Having multiple units working together creates the
positive probability of keeping the entire system up even if
some of the units go down. This avoids a single point
failure problem. This way, horizontal scaling increases the
availability of a system. Besides, the aggregate cost
incurred for numerous smaller units is less than the cost of
a single larger unit. That is, horizontal scaling minimizes
cost when compared to vertical scaling. However,
increasing the number of units implies that more resources
are needed to be invested in maintenance. Also, the code
itself needs to be compiled such that it can permit
parallelism and distribution of work among various units.
In some circumstances, this task is not trivial therefore
scaling horizontally can be a tough task [14].

Big data applications require numerous servers or
Virtual Machine (VM) instances to manage user traffic
[14]. Existing approaches to that effect are based on either
vertical or horizontal scaling or partitioning. [14] examined
the following comparisons between horizontal scaling and
vertical scaling, the two techniques of scaling cloud
computing resources. The comparison considers the
complexity, throughput, cost and efficiency of both
techniques and is summarized in Table 1.

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2288

Table 1. Comparative Analysis of Horizontal and Vertical
Scaling [14].

S/
N

 Vertical
Scaling

Horizontal
Scaling

1 Meaning Increase the
resources in the
same logical
unit or server
aimed at
increasing
capacity

increasing the
performance of a
server or node by
adding more
instances of a
server to the pool
of servers to
spread the
workload

2 Reason to
scale

It includes
increasing IOPs
(Input / Output
Operations),
increasing disk
capacity and
CPU/RAM
capacity.

It includes
increasing I/O
concurrency,
increasing disk
capacity and
reducing the load
on existing
nodes.

3 Efficiency Vertical scaling
is fairly
inefficient in
terms of
resource
sharing.
Because servers
are dedicated to
specific tasks.
Hence, tough to
share the spare
resources with a
more fast
processing
server.

Horizontal
scaling, on the
other hand, adds
more nodes to
the system as it
scales, rather
than beef up the
existing nodes.
This is relatively
the more
powerful and
popular scaling
strategy

4 Complexity Less complex More complex

5 Throughput Less throughput More
throughputs

6 Application/d
atabase server

Has a
centralized
application or
database server

Has a
decentralized
application or
database server

7 Failure
Recovery

Failure
recovery is

Failure Recovery
is easy

difficult

8 Approach Scale-up
approach

Scale-out
approach

9 Scenario

This scenario
focuses on
increasing the
capability of a
hardware
platform
capacity to host
more than one
instance of an
application. The
application is
reproduced on
the same
hardware until
the capacity
requirements
are met.

This scenario
focuses on
enhancing the
capacity of a
system or its
performance
through
replication of a
system
(comprising of
hardware or a
virtual platform)
until the capacity
requirement is
satisfied.

10 Cost Expensive Cost-effective

Using either the vertical or horizontal scaling
strategy, the following approaches have been employed by
researchers to deploy big data. [17] implemented one of the
most adapted answers to big data storage known as Cloud
Computing. More specifically, Database as a Service,
which allows storing and managing a tremendous volume
of variable data seamlessly, without the need to make large
investments in infrastructure, platform, software, and
human resources. [18] proposed an end-to-end graph
analysis framework called GraphGen, that subsumes the
different design points where relational or graph data
models or engines are combined. GraphGen is intended as a
layer on top of a relational database, and although it can
simulate the different design points, it does not, as of now,
offer solutions to all of the optimization challenges that
arise in the process. GraphGen considers graph analytics or
querying as a combination of (i) specifying graphs of
interest against the data in the underlying database as
GraphViews, and (ii) specifying an analysis task or a query
(possibly at a later time) against those graphs. The study
encountered challenges in terms of deciding where to
execute graph queries/tasks, re-writing the SQL queries,
and handling inaccuracies of the query optimizer and
database statistics exposed by natural graph extraction and
analysis. In [19], an approach for modelling data generated
by a hybrid simulator for wireless sensor networks, where

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2289

virtual nodes coexist with real ones is proposed to ease the
design and testing phases of sensor applications controlling
large sites, such as entire office buildings. In the study,
scalability is a fundamental requirement concerning the
number of users and also the number of sensory devices
and the environments under observation. However, the
approach was sensory-based and not generic to take care of
the ever-increasing diverse big data in several other areas.
[20] proposed the Nested Relational Algebra (NRA) and a
database model called Nested Relational Model (NRM) for
nesting relations arbitrarily. As a result, there is no need to
flatten the nested relations when a series of operations are
executed and so the data redundancy and duplications
caused by un-nesting relations is avoided. Furthermore, the
representation of the data is claimed to be in a "natural
form", making it easier for users to understand when
working with the data. The incorporation of spatial data to
NRM and the lack of optimization techniques for the
efficient evaluation of complex queries became a major
setback of the system. Also, [21] proposed an adaptive
schema database (ASD), a conceptual framework for
querying unstructured and semi-structured data t iteratively.
ASD leveraged the probabilistic query processing
techniques by incorporating extraction and integration into
the DBMS. It has the potential to bridge the gap between
relational databases and NoSQL, creating a far more user-
friendly data exploration experience. However, ASD has
partially implemented hence the loss of its grounds to
proffer a solution to the alarming challenge of the volume
dimensions of big data.

It is obvious that both the NoSQL and relational
database models each have their advantages and challenges.
It appears a combination of several models will be a
workable model for database applications to enable them to
accommodate the V-dimensions of data. Alternatively, a
database model can be tweaked in its area of weakness to
enable it accommodate data in the V-dimensions of big
data. In other words, the days of a one-size fits all are gone
and in this paper, partitioning the relational database to
accommodate big data is considered [15]. The partition
strategy proposed relaxed the NP-hardness of automated
partitioning using the discretion of the programmer in the
application codes.

2.6 Automated Partitioning of Relational Database

The NoSQL database paradigm seems to have
solved the problems associated with the V-dimensions data
assumes when cultivated in large quantities about entities
of different categories and most times different sources. But
they have failed to guarantee the ACID properties of data
as the failure of network node in a distributed system may

mean the unavailability of a queried dataset among other
challenges. A transaction-laden application may demand a
lot more of the ACID properties of a database to maintain
data integrity while requiring that the ever-increasing
volume of data is also accommodated. This means that a
one-size-fits-all database as proposed by the proponents of
the NoSQL paradigm may end up as a mirage. It is obvious
that the query time is negatively affected as data volume
increases in a relational database and therefore proposes a
big data model which partitions a relation in a relational
database. The programmed partitions allow data to grow in
the new partitions rather than a single relation. The fact
that partitions contain less data than their non-partitioned
equivalent enhances query time, hence another contributing
factor considered in this study.

The ACID properties of the relational database
model have been assumed to be too strict for some
applications. The ACID properties of the relational
database model however constitute a major attraction
especially for applications that process transactions. A
transaction-laden application may demand a lot more of the
ACID properties of a database so as to maintain data
integrity while requiring that the ever increasing volume of
data is also accommodated. This means that a one-size-fits-
all database as proposed by several researchers may end up
as a mirage and the current trend suggests that databases be
made adaptive in the areas of their weakness rather than
throw the baby away with the bath. In other words, a one-
size-fits-all approach to the design and implementation of
data stores is an idea whose time has come and gone [15,
22 - 24]. It is on the basis of this that several researchers
have proposed different approaches to the design and
implementation of database management systems. [14] for
example, discussed a shift from a traditional static data
approach to a more adaptive model approach to database
design. The adaptive approach help organizations build
dynamic capabilities to react in a dynamic environment. At
present, leaving partitioning in the hands of the developer is
one of such adaptive approaches to database design and
implementation. However, [9] noted that the traditional
RDBMS can be complemented by specifically designing a
rich set of alternative DBMS; such as NoSQL, NewSQL
and Search-based systems but not a total departure from the
traditional RDBMS. It is based on this new trend that this
paper takes a more pragmatic view of big data
implementations

To make the relational database model adaptive to
the volume dimension of big data, the trend is to build them
with automatic partitioning features [26 - 28]. Automatic
partitioning creates partitioning configurations based on
which the database is broken down into chunks and
distributed. The partitioning configuration is stored on a

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2290

single machine as if it were a regular database (but with no
actual but meta data). The partitioning configuration
constitutes a search space of heuristics like genetic- and
rank-based techniques that are used to identify units of data
distributed. In its basic form, the heuristics make use of
interesting columns [26]. Interesting columns represent an
extension of the notion of interesting orders introduced in
System R [22]. To arrive at a partitioning strategy, the
following may be considered as interesting columns: (i)
columns referenced in equality join predicates, and (ii) any
subset of group-by columns. Join columns are interesting
because they make local and directed joins possible. The
group-by columns are interesting because aggregations can
be done locally at each node and then combined. The
interesting columns are by definition considered as
partitioning candidates.

Automatic partitioning takes the control of the
partitioning process from the programmer in addition to
several other drawbacks of automatic partitioning. The
study by [28] affirm that the main pitfall or challenge of
self-regulated database partitioning is the fact enumerating
the search space so as to arrive at an applicable partitioning
strategy makes partitioning an NP-hard problem and
leaving it to automation will not produce the best of results
in terms of the resulting algorithmic time complexity. A
partitioning strategy developed and implemented by the
application developer is therefore proposed as being more
effective though requiring extra coding effort.

3. METHODOLOGY

The effectiveness of the distributed database
management system is based on the fact that query
performance is enhanced if the cardinality of a relationship
is minimal.. In a database D, a query time T, and a storage
limit L, there exist a condition for D such that (i) the size of
replicated (distributed) tables fits into L, and (ii) the overall
query time T is minimized [26]. That is to say that the time
taken to retrieve a record or a set of records from a relation
is proportional to the total number of records in the relation
hence the rationale for partitioning since it reduces the
number of records in a unit relation. Based on this
relationship, query time can be computed as a ratio using
equation 1.

௧ݍ = ೝ்
்ೃ

 (1)

Where qt is query time, Tr is the number of tuples retrieved
from a relation R using a predicate ϭ and TR is the number
of tuples in R.

The implication of equation 1 is that an increase in
query time comes with an increase in volume. In this study,
partitioning is done within the context of horizontal

scalability and has proven that not only is more data
accommodated but query time reduces as the data retrieval
ratio shown in equation 1 is reduced by partitioning. The
proposed adaptive relational database model takes care of
volume and at the same time enhances query time by
partitioning a relation using an appropriate attribute or set
of attributes as the interesting columns. In the experimental
scenarios in this study, the interesting columns are
suggested in the database design and the design does not in
any way depend on the database engine for implementation.

Equation 1 is validated by the experimental results of
this work based on the experimental data set in Table 2. As
a running example throughout the paper, consider the
relation (R) in Table 2 as storing information about students
in a university.

Table 2: Relation (R)

Tuple MatNo Dept C.Code Session Level Location
T1 … MC … 17/18 … NW
T2 … BIO … 16/17 … SS
T3 … MC … 18/19 … NE
T4 … CHM … 15/16 … NC
T5 … MC … 17/18 … SE
T6 … CHM … 16/17 … NC

Assuming that the cardinality of relation R is
denoted as Card (R), becomes large, then queries on
relation R denoted as Q(R) become very slow. Portioning
the relation R solves the associated volume problem and the
department (dept) attribute qualifies eminently for use as a
partition key. The distinct values in the value set associated
with the partition key are MC, BIO and CHM. The distinct
values produce three partition predicates, namely
Dept=”MC”, Dept=”BIO” and Dept=” CHM”. The
partition predicates are SARGable predicates [26] and
hence they filter the tuples of relation R into three
partitions. The cardinality of relation R, Card(R) is 6 and
the partition predicates identified partition R as follows:

Let P1 = partition by Dept=MC, then Card (P1) = 3
 P2 = partition by Dept=BIO, then Card (P2) = 1
 P3 = partition by Dept=CHM, then Card (P3) = 2

The partitions P1, P2 and P3 are relations and can be named
MC, BIO and CHM respectively. Once a choice of a
partition key is made, the partition predicates are
automatically determined using the distinct values of the
value set associated with the partition key. This is done
dynamically and at a run time hence the model is said to be
adaptive. At all times, the cardinality of a partition is less
than the cardinality of relation R, by implication, volume is
optimised. Again, this implies that the model is adaptive to
volume. Generally, it can be said that for any relation (R),
given a set of partition keys, then R = {P1, P2… Pn} where

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2291

n = the number of distinct values in the value set associated
with a partition key. The number of distinct values in the
value set is also the number of partitions produced. The
abstraction R = {P1, P2… Pn} is demonstrated by the proof
of concept in section 3.1.

3.1 Prof of Concept

Equation 1 shows that the larger the number of
tuples in a relation, the longer the query time. To address
this delay in query time, the number of records can be
reduced by partitioning the records into a smaller number
of tuples. This approach to improving query time is proved
using the following theorem and axiom:

Theorem: Given P1, P2 … Pn as the partitions of a relation
R, then R = {P1, P2… Pn}
where n = the number of distinct values in the value set
associated with the partition key that generated P1, P2 … Pn

Axiom: The following axioms are applicable:
1. A partition key has a value set, V whose element

cannot be null
2. The number of distinct values of V is n = number of

partitions produced

Proof: Let ϭ be the partition predicate associated with a
distinct value V, then Card (ϭ) is the cardinality of the
tuples filtered by ϭ.
Given any value of n, there exists ϭ1, ϭ2... ϭn,
Where:
Ϭ1 filters all tuples in P1 from the relation R,
Ϭ2 filters all tuples in P2 from the relation R, and
Ϭn filters all tuples in Pn from the relation R,

Since the elements of V cannot be null, then Card (V) =
Card (R)

Since ϭ1, ϭ2... ϭn filter the tuples of R according to the
distinct values of V, it follows that:
Card (V) =Card (ϭ1) + Card (ϭ2) +.... + Card (ϭn)
=	∑ ௡(௜ߪ)݀ݎܽܥ

௜
This implies that ∑ ௡(௜ߪ)݀ݎܽܥ

௜ 	= Card (R) since n is the
number of distinct values of V defined in R.
This shows that R = {P1, P2… Pn} since ϭ1, ϭ2... ϭn filter the
tuples of R.

The proof shows that partitioning does not change
the data set. The experimental results further demonstrate
that partitioning enhances query time.

The equivalence of a relation and its partitions
according to a partition key has been demonstrated. This
study in its approach and contribution, further demonstrate
how partitioning makes a relation or a database adaptive to
volume. The implementation of this adaptive model thus
demonstrates the partitioning scheme discussed as well

demonstrate empirically that the queries on the partition, ϭ1,
ϭ2, ..., ϭn have a better query time compared to an
equivalent query, ϭ on the original relation, say R. The
implementation considers a relation of students’
registration details with a representative sample of the
records shown in Table 3:

Table 3: Students’ course registration details fully populated in
relation (R)

Tuple MatNo Dept Course Code Session Level Location
T1 32224 MC CMP 422 17/18 400 NW
T2 23433 BIO ZOO 342 16/17 300 SS
T3 55466 MC MTH 341 18/19 300 SE
T4 32224 CHM CHM 141 15/16 100 NC
T5 33266 MC STAT 431 16/17 200 SW
T6 99877 CHM CHM 211 18/19 200 NE
T7 32242 MC CMP 322 15/16 100 NW
T8 27833 BIO ZOO 342 16/17 300 SE
T9 55277 MC MTH 311 18/19 200 NE
T10 32242 CHM CHM 141 15/16 100 SS
T11 39966 MC STAT 411 17/18 300 SE
T12 91179 CHM CHM 211 16/17 200 NW

…
 …

…

…

…

…
 …

As earlier exposed in the literature that partitioning
is achieved only if there exist a relation. Hence, for the
purpose of this research, the following code snippet or
create statement allows the programmer to create partitions
from relation R. Relation is partitioned into chunks of data
related by course of study indicated by the variable,
$costudy:

function createStudentTb($costudy){

// called by dossierplus/student.php

//echo " costudy = ". $costudy;

$tablename="dept ".RemoveSpecialChar($costudy);

if(!checkRemBigdataTableExist("student" .
RemoveSpecialChar($costudy))) {

$query2="CREATE TABLE IF NOT EXISTS
".addslashes($tablename) ."(

`id` varchar(45) default NULL,

`matno` varchar(45) default NULL,

`dept` varchar(200) default NULL,

`courseCode` varchar(200) default NULL,

`session` varchar(200) default NULL,

`level` varchar(200) default NULL,

`location` varchar(200) default NULL,

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2292

timestamped varchar(15) default NULL,

timedescription varchar(25) default NULL,

`status` varchar(45) default NULL,

PRIMARY KEY (`regnocostermid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1";

$create=query ($query2) or die (mysql_error ()."error function
createStudentTb");

} // if ($create==1) return true; else return false;

} // end of function createStudentattendanceTb
function RemoveSpecialChar($value){$result =
preg_replace('/[^a-zA-Z0-9_ -]/s','',$value);

return $result;

}
// create a big table if none exists by calling the function

createStudentTb ($costudy);

Bearing in mind that the main contribution of this
study is to give programmer the privilege to create
partitions as the need arises, a select statement is employed
here to implement the partitioning predicate. This extracts
records from the original relation and inserts them into the
appropriately partitioned relation. In this way, the original
relation is dynamically created or split based on an
appropriate partitioning predicate. Following is a call to the
function, createStudentTb($costudy), defined above to
perform the dynamic portioning of relation:
// generate relation dynamically

$depttbname=" student ".RemoveSpecialChar($costudy);

$classtbname=" class ".RemoveSpecialChar($costudy);

// select records based on the partitioning rule and then
insert them into an appropriate partition

$insertq = query("INSERT INTO $depttbname (`tuple` ,
`matno`, `dept`, `courseCode`, `level`, `location`,
`timestamped`, `timedescription`, `status`)

VALUES ('$id', 'Kenn', 'bsu32242', '17/18', 'two', 'NC'") or
die(mysql_error("Error1"));

This query implements the partition predicates,
Dept=”MC”, Dept=”BIO” and Dept=” CHM”, on user
demand. It produces three partitions as shown in Table 4, 5
and 6

Table 4: MC_Dept (partition 1)

Tuple MatNo Course Code Session Level Location
T1 32224 CMP 422 17/18 400 NW
T3 55466 MTH 341 18/19 300 SE
T5 33266 STAT 431 16/17 200 SW
T7 32242 CMP 322 15/16 100 NW
T9 55277 MTH 311 18/19 200 NE
T11 39966 STAT 411 17/18 300 SE

Table 5: CHM_Dept (partition 2)

Tuple MatNo Course Code Session Level Location
T4 32224 CHM 141 15/16 100 NC
T6 99877 CHM 211 18/19 200 NE
T10 88656 CHM 141 15/16 100 SS
T12 91179 CHM 211 16/17 200 NW

Table 6: BIO Dept (partition 3)

Tuple MatNo Course Code Session Level Location
T2 23433 ZOO 342 16/17 300 SS
T8 27833 ZOO 342 16/17 300 SE

The cardinality of the original relation is 12. The
cardinality of partitions 1, 2 and 3 are 6, 4 and 2
respectively. This affirms that ∑ ௡(௜ߪ)݀ݎܽܥ

௜ 	= Card (R).
The partitions created can be hosted on a server or across
different servers. Thus, the volume dimension of big data is
taken care of which is the primary concern in this study.
Any other attribute of the original relations whose value set
does not have null elements can be used as a partition key.
The guide is that the cardinality of the partitions produce
must be such that query times on them are tolerable. The
number of partitions produced must also be such that it is
manageable and not unwieldy or cumbersome. This means
that the choice of the partition key depends on the number
of distinct values in its value set since that determines the
number of partitions. Two or more partition keys can also
be combined to produce a composite partition key and a
corresponding conjunctive equality partitioning predicate.

4. RESULT AND DISCUSSION

Experimentally, a relation R populated with 300,000
tuples or records was created. The relation R was then
partitioned into three relations: 1, 2 and 3 of different sizes
each. Out of these partitions, relation 1 comprises 150,000
tuples, relation 2 consists of 60,000 tuples and relation 3 is
made of 90,000 tuples. The number of tuples in the three
partitioned relations amounts to 300,000 tuples as
contained in the original relation R. A query was applied on
the original relation R with each of the partitions produced
from relation R and the resulting query time was taken.
That is, the same predicate on the partitioned relations and
the original relation were timed in each case. Details of the
experiments are as shown in Table 7.

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2293

Table 7: Details of Experiments

The query time of each of the partitions is compared
with the query time obtained when the same predicate is
applied in a query on the original relation. The comparative
results of the experiments are graphically demonstrated in
Figures 4, 5 and 6

Figure 4: Relation (R) and partition (1) query time graph

Figure 5: Relation (R) and partition (2) query time graph

Figure 6: Relation (R) and partition (3) query time graph

The partitions in the experiments were produced by

partition predicates embedded in the codes written in
function, createStudentTb($costudy).It is observed from
these results that in each run of experiment 1, 2 and 3, the
query time of the partitioned relation is less than the query
time of the original relation R in Table 3. This is because
relation R has more records than the partitioned relations in
each case. This shows that the non-automatic strategy for
partitioning is effective and produces the established result
that query time is enhanced when data is partitioned. This
result goes far to affirm empirically that equation 1 is true
for relation R and its corresponding partitions.

The ratio of the differences in query times across the
runs of each experiment differs as evident in the heights of
the bar charts in the various run times displayed in the
graphs. This is attributed to “noise” factors in the run time
environment. In an empirical query time analysis such as

Description Experiment 1 Experiment 2 Experiment 3

Run Time Relation R Partition 1 Relation R Partition 2 Relation R Partition 3

1st Run 0.304412 0.100755 1.757856 0.248396 0.265892 0.133841

2nd Run 0.46711 0.204732 2.256918 1.04493 1.809146 1.548764

3rd Run 1.634166 0.238915 1.285841 0.431768 0.481732 0.197544

4th Run 0.405944 0.221573 2.87495 1.626576 0.499015 0.232302

5th Run 1.584439 0.167413 1.532954 0.358075 1.58721 0.281298

Ave_RunTime 0.8792142 0.1866776 1.9417038 0.741949 0.928599 0.4787498

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2294

this, the influence of operating system processes on query
time cannot be ruled out. However, the influence of the
noise factors did not affect the big picture as the graph of
the query times associated with the partitions are
consistently lower than that of the query times associated
with the original partition throughout all the runs of the
experiments. This volume-adaptive model of a relational
database has not only contributed to taking care of the
volume dimension of relational data, but also optimizes
query time.

5. CONCLUSION AND FUTURE WORK

It is practically demonstrated in this study that using
codes representing the discretion of the programmer, a
relational database can be partitioned and the expected
result that query time is improved achieved. This is
preferred to automated partitioning because automated
partitioning is based on algorithms and heuristics whose
algorithmic time complexity is NP-Hard. The partition
strategy implemented in this study makes it possible to
store voluminous data across several partitions thereby
makes the relational database adaptive to the volume
requirement of big data. Unlike the schemaless model of
big data, the adaptive model of the relational database
produces partitions that are of uniform format thereby
reducing the effort required to mine the data into a data lake
platform for data analytics. The ACID properties inherent
in the relational database model are also preserved in the
partitions. To improve the query time of partitions, a new
partition predicate can always be implemented and the
tuples of the partitions re-arranged accordingly.
 Making the model adaptive to the other V-
dimensions of big data is being considered as part of future
work. Accordingly, part of the future work would also
include distributing the partitions across a hardware cluster
architecture using the horizontal scaling concept earlier
discussed in the related work section to cater for the holistic
volume requirements of big data.

REFERENCES

[1] C. Hemlata and P. Gulia. Big Data Analytics,
Journal of Computer and Information Technology
Sciences, vol. 4, no. 2, pp. 1 – 4, 2016

[2] V. C. Storey and I. Song. Big Data Technologies and
Management: What Conceptual Modelling can do,
Data & Knowledge Engineering vol. 108, pp. 50–67,
2017

[3] R. Agrawal and C. Nyamful. Challenges of Big
Data Storage and Management, Global Journal of
Information Technology, vol. 6, no. 1, pp. 1-10, 2016

[4] M. A. Khan, M. F. Uddin, and N. Guptam. Seven
V’s of Big Data: Understanding Big Data to
Extract Value, In Proceedings of 2014 Zone 1
Conference of the American Society for Engineering
Education (ASEE Zone 1), Bridgeport, Connecticut,
USA, 2014

[5] R. Patgiri and A. Ahmed. Big Data: The V’s of the
Game Changer Paradigm, In Proceedings of 18th
IEEE International Conference on High-Performance
Computing and Communications, Sydney, Australia.
2016

[6] S. G. Yaman, Introduction to Column-Oriented
Database Systems, Seminar: Columnar Databases,
Finland, 2012

[7] Peter Ölveczky, Formalizing and Validating the P-
Store Replicated Data Store in Maude, In book:
Recent Trends in Algebraic Development
Techniques, doi: 10.1007/978-3-319-72044-9_13,
2017

[8] Ugur Cetintemel, Kristin Tufte, Hao Wang, Stanley
Zdonik, Jiang Du, Tim Kraska, et al., S-store: A
Streaming NewSQL System For Big Velocity
Applications. In Proceedings of the VLDB
Endowment, vol 7, Issue 13, pp. 1633–1636, 2014

[9] A. B. Moniruzzaman and Syed Hossain, NoSQL
Database: New Era of Databases for Big data
Analytics - Classification, Characteristics and
Comparison, International Journal of Database
Theory and Application, vol. 6, no. 4, pp. 1 – 13,
2013

[10] Felix Gessert, Wolfram Wingerath, Steffen
Friedrich, and Norbert Ritter. NoSQL Database
Systems: A Survey and Decision Guidance,
Computer Science Research and Development, vol.
32, Issue 3-4, pp 353–365, 2017

[11] Gandini A., Gribaudo M., Knottenbelt W.J., Osman
R., Piazzolla P. Performance Evaluation of
NoSQL Databases. In: Horváth A., Wolter K. (eds)
Computer Performance Engineering. EPEW. Lecture
Notes in Computer Science, vol 8721, Springer,
Cham, 2014

[12] Rakesh Kumar, Bhanu Parashar, Sakshi Gupta,
Yougeshwary Sharma, and Neha Gupta. Apache
Hadoop, NoSQL and NewSQL Solutions of Big
Data, International Journal of Advance Foundation
and Research in Science & Engineering, vol. 1, issue
6, pp. 28 – 36, 2014

[13] T. K. Das and Arati Mohapatro. A Study on Big
Data Integration with Data Warehouse.
International Journal of Computer Trends and
Technology. Vol. 9, pp. 188-192, 2014

Patrick O. Obilikwu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2283 – 2295

2295

[14] U. Tailor and P. Patel. A Survey on Comparative
Analysis of Horizontal Scaling and Vertical
Scaling of Cloud Computing Resources,
International Journal for Science and Advance
Research in Technology, vol. 2, issue 6, pp. 2395-
1052, 2016.

[15] Michael Stonebraker and Ugur Çetintemel. One Size
Fits All: An Idea Whose Time has come and gone,
In book: Making Databases Work: the Pragmatic
Wisdom of Michael Stonebraker,
10.1145/3226595.3226636, 2018

[16] Patrick Obilikwu and Emeka Ogbuju. A Data Model
for Enhanced Data Comparability across
Multiple Organizations., Journal of Big Data, vol.
7, article no. 95, 2020

[17] Manar Abourezq and Abdellah Idrissi. Database-
as-a-Service for Big Data: An Overview.
International Journal of Advanced Computer Science
and Applications, vol. 7, no. 1, pp. 157 – 177, 2016

[18] Konstantinos Xirogiannopoulos, Virinchi Srinivas
and Amol Deshpande. GraphGen: Adaptive
Graph Processing using Relational Databases. In
Proceedings of the Fifth International Workshop on
Graph Data-management Experiences and Systems,
Article No. 9, pp. 1 – 7, 2017

[19] Alessandra De Paola, Giuseppe Lo Re, Fabrizio
Milazzo,Marco Ortolani. Adaptable Data Models
for Scalable Ambient Intelligence Scenarios. In
Proceedings of International Conference on
Information Networking, Kuala Lumpur, Malaysia,
pp. 80 – 85, 2011

[20] Georgia Garani. A Generalised Relational Data
Model. International Journal of Computer Systems
Science and Engineering, vol. 4, no. 1, pp. 43 – 59,
2010

[21] W. Spoth, B. S. Arab, E. S. Chan, D. Gawlick, A.
Ghoneimy, B. Glavic, et al.. Adaptive Schema
Databases. In Proceedings of 8th Biennial
Conference on Innovative Data Systems Research
(CIDR ’17). Chaminade, California, USA, 2017

[22] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie and T. G. Price. Access Path Selection
in a Relational Database Management System,
SIGMOD Conference, Boston, Massachusetts, pp.
23-34, 1979

[23] S. Idreos and T. Kraska. From Auto-tuning One
Size Fits All to Self-designed and Learned Data-
Intensive Systems, SIGMOD Conference,
Amsterdam, Netherlands, 2019

[24] Pwint P. Khine. and Zhaoshun Wang. A Review of
Polyglot Persistence in the Big Data World,

Information, vol. 10, no. 4, doi:
10.3390/info10040141, 2019

[25] Ion Lungu and Andrei Mihalache. A New Approach
to Adaptive Data Models. Database Systems
Journal, vol. 7, no. 2, pp. 19 – 27, 2016.

[26] Rimma Nehme and Nicolas Bruno. Automated
Partitioning Design in Parallel Database Systems,
In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data,
Athens, Greece, pp. 1137-1148, 2011

[27] Alvin Cheung, Owen Arden, S. Madden and
Andrew C. Myers. Automatic partitioning of
database applications, In Proceedings of the VLDB
Endowment, Vol. 5, Issue 11, pp. 1471 –1482, doi:
10.14778/2350229.2350262, 2012

[28] Sanjay Agrawal, Vivek Narasayya and Beverly
Yang. Integrating Vertical and Horizontal
Partitioning into Automated physical database
design, In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data,
Paris, France, pp. 359 – 370, 2004.

