
Ahmad Shukri Mohd Noor et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1533 – 1536

1533


ABSTRACT

In this paper, we study about the different types of fault
tolerance techniques which are used in various distributed
database systems. The main focus of this research is about
how the data are stored in the servers, fault detection
techniques and the recovery techniques used. A fault can
occur for many reasons. For example, system failure, resource
failure, network between the server’s failure and any other
reasons. These faults must be emphasis in order to make sure
the system can work smoothly without any problem. A proper
failure detector and a reliable fault tolerance technique can
avoid loss and at once save the system from fail.

Key words: Data recovery, Distributed database, Fault
detection, Fault tolerance.

1. INTRODUCTION

In these days and age, data are very precious commodity
Hence, it is important to make sure the data is well kept and
secure. In order to keep the data safe, the usage of distributed
database is more efficient compare to centralized database.
Centralized database is a database that is located, stored and
maintained in a single location. Thus, when the server is
down or disaster happens, the whole data will be lost.
Meanwhile, decentralized database or also known as
distributed database is installed on systems that are
geographically located at different location. Hence, in the
event of disaster, there will always be another back up servers
that have the same data. Therefore, distributed database
system is more efficient in the term of preserving the data
availability and reliability.

However, distributed database system cannot avoid from
facing failures. This will result a faulty system. A faulty
system can lead to a serious damage. A real time distributed
database system is highly dependable on the reliability of the
systems. If the failure is not detected and recovered properly
at time, it can result to a system failure. For the critical
systems that need frequently update such as such as flight

control systems, banking system, nuclear systems and etc,
they must be well functioning with high availability even
under any failures. Hence, fault tolerance is very important
technique to maintain system reliability and dependability.

Fault ought to be identified by applying a reliable fault
detector followed by a recovery technique. Unreliable fault
detector can commit errors by mistakenly trusting crashed
process or suspecting the correct process. The rest of the paper
is organized as Section 1 is introduction, Section 2 is fault
tolerance techniques and Section 3 is literature review.

2. FAULT TOLERANCE TECHNIQUES
There are many fault tolerance techniques that have been in
order to make sure all the systems can still function under a
failure occurrence. Based on fault tolerance policies and
techniques, it can be classified into two types; proactive and
reactive as shown in Figure 1 [1].

2.2 Proactive Fault Tolerance
The concept of proactive fault tolerance policy is to predict
faults and replace suspicious components in advance by
avoiding recovery from faults, errors, and failures. This policy
will detect the faults before the actual problems occur. This
policy prevents the system from calculating the node failures
by analyzing some of the applications (tasks, processes, or
virtual machines) away from the failing nodes. In other word,
this policy prevents the failures to affect the running parallel
applications. Several technologies based on these policies
such as software rejuvenation self-healing capabilities and
preemptive migration are proposed.

Figure 1: Fault tolerance types of group

A Review on Fault Tolerance in Distributed Database

Ahmad Shukri Mohd Noor1, Auni Fauzi 2, Ainul Azila Che Fauzi 3
1Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia,

ashukri@umt.edu.my
2Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia,

ainul.auni@gmail.com
3Faculty of Computer Science and Mathematics, Universiti Teknologi MARA (UiTM) Cawangan Kelantan,

Malaysia, ainulazila@uitm.edu.my

ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse071032021.pdf

https://doi.org/10.30534/ijatcse/2021/071032021

Ahmad Shukri Mohd Noor et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1533 – 1536

1534

 Software rejuvenation: A system with a method

designed for periodic reboots. This method will
reboot the system in a clean state and will be useful
for a new startup [2].

 Self-healing: The basic idea is to make an
auto-control of the failure of an application instance
running on multiple virtual machines. This idea is
done to improve the performance. If difference
instances of the application are running on different
virtual machines, then automatically handle the
failure of the application instance.

 Preemptive migration: Preemptive migration is
counted through the feedback loop control
mechanism. Applications are constantly identified
and analyzed.

2.3 Reactive Fault Tolerance

The reactive fault tolerance policy is also known as
on-demand fault tolerance. It reduces the impact of failures on
application execution when the failure occurs effectively.
There are various methods based on this policy such as
replication, check-pointing and scheduling.

 Replication: Storing several copies of the same data in
different servers is the basic idea of data replication.
This obviously increases the performance by
decreasing remote access latency and failure [3].
Providing reliable services along with high data
availability and the performance are the important
requirements that need to be essentially met. The
concept of replication is used to ensure these
requirements. The main idea of replication is to
manage large volumes of data in a distributed
manner, speeds up data access, reduces access
latency and increases data availability [4], [5], [6].
There are three fundamental questions that must be
answered in managing replica placement strategy
[7]. The three questions are: When must the copies
be produced? What data must be copied? Where the
copies must be allocated?

 Check-pointing: It is the process to saving from
complete execution a task [8]. Check-pointing
approach balances the load of processors in a
distributed system; processes are moved from
heavily loaded processors to lightly loaded ones.
Check-Pointing process periodically provides the
information necessary to move it from one processor
to another [9]. Check-Pointing can be initiated from
within grid systems or within applications.

 Scheduling: It is used to overcome the drawback of
check-pointing in distributed environment [8]. It is
categorized as time-sharing scheduling, space
sharing scheduling, and hybrid (combination of
both). Scheduling is used for load balancing as well
as fault tolerance in distributed system on the basis of

space or time sharing [8], [10]. There are three
approaches of scheduling such as space, time and
hybrid. Space scheduling is used to tolerate
permanent or hardware type of fault from a system.
The Primary-Backup approach is applied in space
redundancy. Time redundancy is used when there is
intermittent type of fault in the system and hybrid
redundancy is used when both are required.

3. LITERATURE REVIEW

The existing fault tolerance techniques consider various
parameter which are the platform used, simulation or real
time, technique used to detect, recovery technique used,
advantages and drawbacks are being compared in Table 1.

Table 1: The Comparison Among Existing Techniques

A new checkpoint technique is proposed to minimize the
checkpoint overhead in distributed system [11]. This
technique will reduce the number of checkpoints by

Source Recovery
technique

used

Advantage Drawback

Minimizing
Overheads

Checkpoints
[11]

Check
pointing

Minimize
overheads of
checkpoints

not reliable
for critical

system

Fault tolerance
in distributed
database [12]

Replication
with parity
calculation

System can run
properly even

when two sites
are down

Need to have
minimum of

six sites

Dmap
[9]

Check
pointing and
replication

Support
consistent long
running read
operations

The failure
site cannot

be used
during the

failure
occurrence

Active-active
Virtual

Machine
[13]

Check
pointing and
replication

The
performance for
online service

with i/o
intensive is

faster compare
to COLO

What if the
secondary
database is
crashed?

An efficient
fault tolerance

framework
[14]

Replication
with parity
calculation

Faster recovery Minimum
sites are four

Hadoop
Mapreduce

[15]

Re-executed
and

re-schedulin
g

Provides
reasonable

resistance to
failures.

High
execution

time

Fault tolerance
evaluation of a

new SQL
database

[16]

Replication Can tolerate
two failure

nodes

The failure
node cannot

be used
during the

failure
occurrence

Ahmad Shukri Mohd Noor et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1533 – 1536

1535

increasing the checkpoint interval. The study of the rate of
system failure will be conducted first in order to decide the
increasing of checkpoint interval. If the system failure rate is
high and almost all systems crashed during the interval time,
then the checkpoint schedule will remain the same as
traditional checkpoint. Otherwise, if the system failure rate is
low and no system shows failure during the specific time, then
it will increase the checkpoint interval. The result shows that
the time consumed when the checkpoint is increased is lesser
than the normal checkpoint.

An enhancement technique from Redundant Array of
Inexpensive Disks 5 (RAID 5) is proposed [12]. During the
first half of this technique, it will be similar to RAID 5
technique. It will divide the data into blocks (databases) and
also will calculate the parity blocks. During the experiment
all databases are assumed located in different locations.
Instead of 4 blocks that has been used in RAID 5, this new
technique required of 6 minimum blocks. This will improve
the fault tolerance because it can handle 2 databases failure
that occurred at the same time. The surviving database will
not only have to handle the recovery, but it also needs to deal
with the requested task from client for itself as well as the
failure database.

A checkpointing and replication technique is proposed in
order to handle system failure [9]. Each replica will
periodically checkpoint onto its stable state. Upon resuming
after failure, the recovering replica will retrieve the last
checkpoint state and will install the latest checkpoint. It will
also request the most recent data on all replicas to ensure data
consistency. Furthermore, this code can be used to scale any
existing Java applications.

An active-active technique called GANNET is proposed [13].
This paper critiqued the usage of active-passive technique
paper. Active-passive technique will cause high performance
overhead due to release outputs of services. It is because of
large amount of states to be transferred. Even though
active-active systems have greatly reduced the load in
transferring the data, it will get worse in case of performance
for online services when intensive I/O workload exist. Thus,
this paper presented a new replication fault tolerance
technique for active-active virtual machine, GANNET.
GANNET will only have 36 and 49 code respectively and can
handle single point of VM failure. The result shows huge
contribution in storage checkpoint duration compared to
existing technique only when the present of intensive I/O
workload exist.

An efficient fault tolerance technique in distributed
in-memory caching system is proposed [14]. This technique
adopts Row-Diagonal Parity (RDP) codes in improving
efficiency Memcached system. RDP array is defined by a

controlling parameter p which is should be a prime number
and must be greater than 2. The minimum nodes for this
technique would be four based on the equation for total nodes
p+1, where p=3. Moreover, the parity block will follow the
equation p-2. For the data recovery, this technique uses
RDOR-based Data Recovery which acquires less
transmissions during reconstruction. For example, the
standard decoding process to recover all the data block where
p=5 it will need 16 blocks in total for RDP. By using RDOR it
will need to have 12 blocks only. Thus, recovery time will be
faster compared to RDP.

A fault tolerance technique of Hadoop Mapreduce under
failure occurrence is discussed [15]. Fault tolerance in
Hadoop Mapreduce uses timeout as a failure detection. When
there is a task failure occur, the worker node or also called as
slave node will sends heartbeat to notify the master node
about the failure. Next, the master node will try to re-execute
from scratch on another healthy node. This process may be
taking a long recovery time and will lead to unpredictable
tasks execution time and resources wastage. In order to detect
the failure, the master node will check if any slave node has
not sent the heartbeat message within 10 minutes. Then, if the
master node fails, MapReduce will automatically restart the
master node and rescheduling all the failure tasks.

This proposed fault tolerance technique is quite same with the
technique that discussed above. It uses a heartbeat failure
detection technique to detect any failure from Region Server
(RS) or Data Node [16]. Both nodes are containing their own
data. From the experiment, it shows even when a node fails
and process the maximum load for the configuration the
system is able to recover and continue processing with
reasonable latency.

4. CONCLUSION
Fault tolerance is very important in order to handle the
occurrence of fault especially in distributed database system
or critical data system. Several existing fault detection and
fault recovery techniques and models has been reviewed and
been compared in this paper. In the present scenario, there are
number of challenges which need some concern hence fault
tolerance will need to evolve to be able to solve the design
fault problem.

ACKNOWLEDGEMENT

This research is funded by Fundamental Research Grant
Scheme (FRGS) with the Ref:
FRGS/1/2018/ICT04/UMT/02/2. FRGS is a research grant
from the Ministry of Higher Education (MOHE) Malaysia.

Ahmad Shukri Mohd Noor et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1533 – 1536

1536

REFERENCES
1. P. K. Patra, H. Singh and G. Singh. Fault Tolerance

Techniques and Comparative Implementation in
Cloud Computing, International Journal of Computer
Applications, vol. 64, no. 14, pp. 37-41, 2013.

2. A. Ledmi, H, Bendjenna and S. M. Hemam. Fault
Tolernace in Distributed Systems: A Survey, in 3rd
International Conference on Pattern Analysis and
Intelligent Systems (PAIS), Tebessa, 2018.

3. D. Boru, D. Kliazovich, F. Granelli, P, Bouvry and A. Y.
Zomaya. Energy-Efficient Data Replication in Cloud
Computing Datacenters, in IEEE Globecom
Workshops, Atlanta, 2018, pp. 446-451.

4. N. Ahmad, A. A. C. Fauzi, S. H. S. A. Ubaidillah and B.
Alkazemi. BVAGQ_AR for fragmented database
replication management, IEEE Access, vol. 9, pp.
56168-56177, 2021.

5. B. A. Milani and N. J. Navimipour. A comprehensive
review of the data replication techniques in the cloud
environments: Major trends and future directions, J.
Netw. Comput. Appl, vol. 64, pp. 229-238, 2016.

6. J. Wang, H. Wu and R. Wang. A new reliability model
in replication-based big data storage systems, J.
Parallel Distrib. Comput, vol. 108, pp. 14-27, 2017.

7. N. Ahmad, A. A. C. Fauzi, W. M. W. Mohd, M. Amer
and T. Herawan. Managing fragmented database
replication for Mygrants using binary vote
assignment on cloud quorum, Applied Mechanics and
Materials, vol. 490, pp. 1342-1346, 2014.

8. A. Dagur, R. S. Yadav and A. J. Ranvijay. Fault
Tolerance in Real Time Distributed System,
International Journal on Computer Science and
Engineering (IJCSE), vol. 3, no. 2, pp. 933-938, 2018.

9. S. Benz and F. Pedone. DMap: A fault-tolerant and
scalable distributed data structure, in IEEE 37th
International Symposium on Reliable Distributed
Systems, Salvador, 2018, pp. 153-160.

10. S. Krishnan and D. Gannon. Checkpoint and restart
for distributed components in XCAT3, in Proceedings
of the Fifth IEEE/ACM InternationalWorkshop on Grid
Comp, Pittsburgh, 2004, pp. 281-288.

11. S. M. A. Akber, H. Chen, Y. Wang and H. Jin.
Minimizing Overheads of Checkpoints in Distributed
Stream Processing Systems, in IEEE 7th International
Conference on Cloud Networking (CloudNet), Tokyo,
2018, pp. 1-4.

12. S. Pareek, N. Sharma and G. M. A. Fault Tolerance in
Distributed Database Management Systems –
Improving reliability with RAID, in Innovations in
Power and Advanced Computing Technologies
(i-PACT), Vellore, 2019, pp. 1-4.

13. C. Wang, X. Chen, Z. Wang, Y. Zhu and H. Cui. A Fast,
General Storage Replication Protocol for
Active-Active Virtual Machine Fault Tolerance, in
IEEE 23rd International Conference on Parallel and

Distributed Systems (ICPADS), Shenzhen, 2017, pp.
151-160.

14. S. Zhao, L. Shen, Y. Li, R. J. Stones, G. Wang and X.
Liu. An Efficient Fault Tolerance Framework for
Distributed In-memory Caching Systems, in IEEE
24th International Conference on Parallel and
Distributed Systems (ICPADS), Singapore, 2018, pp.
553-560.

15. S. Yassir, Z. Mostapha and C. Tadonki. Analyzing fault
tolerance mechanism of Hadoop Mapreduce under
different type of failures, in 4th International
Conference on Cloud Computing Technologies and
Applications (Cloudtech), Brussels, 2018.

16. A. Azqueta- Alzúaz, M. P. Martinez, V. Vianello and R.
J. Péris. Fault-tolerance Evaluation of a New SQL
Database, 14th European Dependable Computing
Conference (EDCC), in Iasi, 2018, pp. 81-86.

