
Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

34

ABSTRACT

This paper proposes an integrated framework that combines
software testing and software quality into standard Software
Configuration Management process, whilst highlighting the
importance of human competency. Software quality
characteristics are embedded in change control procedures
whilst software testing approaches provide means for
evaluating software artefacts. Existing software configuration
management, software quality and software testing standards
are referred to in the development of this framework. The
importance of competency is highlighted where the minimum
competency for implementing each software configuration
management process is presented. Advantages over
traditional approaches are presented from four different
aspects namely People, Process, Tools and Documentation.
Major challenges in the realization of this integration are
discussed including competency assessment; quality
characteristics and metrics; test approach; and automation.

Key words: Human Competency, Software Configuration
Management, Software Quality, Software Testing.

1. INTRODUCTION

A conceptual framework for integrating software testing and
software quality into Software Configuration Management
(SCM) was proposed by [1] to address the issues of project
delays and low quality software products. The framework was
based on existing standards for SCM, software quality and
software testing in weaving software quality into SCM and
instill standardized testing procedures for evaluating software
artefacts.

SCM was first used in software development in the 1950s
with the adoption of Configuration Management to manage
product changes and has been used since then to ensure timely
delivery of software products. In addition, software quality
models have been used since the 1990s to ensure conformance
(to product requirements and needs). However, the issues of
project delays and unfit software products still prevail in
software development, prompting the need for a
comprehensive approach to address these problems.

This paper extends the work in [1] and proposes an integrated
framework that combines software testing and software
quality into SCM, whilst highlighting the importance of
human competency in the whole process.

The motivation for looking into the competency aspects in
SCM is based on the observation that configuration
management in software engineering only works to a certain
degree. In manufacturing, a same set of input and process
would produce the same result every time. However, this is
not always true in software engineering as there is another
factor involved in the equation: the skill of the person who
implements the process, i.e. the human competency. This
makes software development, more art than science,
compared to manufacturing.

Human competency in software engineering have been
extensively studied for example the effects of knowledge and
code ownership to software quality [2-3]; the effects of
individual decision-making behavior to quality [4], and
promoting quality in the development team [5]. However, it
has not been the focus of SCM research, apart from project
team collaborations [6] and debugging activities [7].

This paper is organized as follows: Section 2 presents a brief
overview of SCM, software quality, software testing and
human competency. Section 3 presents i-SCM, an integrated
SCM framework, combining software quality characteristics
and software testing approaches into standard SCM process.
Section 4 lists the challenges for this integration and
conclusion is presented in Section 5.

2. OVERVIEW

This section presents a brief overview of software
configuration management, software quality, software testing
and human competency.

2.1 Software Configuration Management

SCM can be loosely defined as “the ability of control and
manage changes in a software project”. It is used to control the
evolution of software systems [8]. A more formal definition of
SCM is “a supporting-software life cycle process that benefits

Human Competency Considerations in an Integrated

Software Configuration Management Framework
Syahrul Fahmy1, Amir Ngah2, Ahmad Faiz3, Nurul Haslinda1, Wan Roslina1

1TATI University College, Malaysia, fahmy@tatiuc.edu.my
2Universiti Malaysia Terengganu, Malaysia

3SEGi University and Colleges, Malaysia

 ISSN 2278-3091
Volume 9, No.1.3, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse0691.32020.pdf

https://doi.org/10.30534/ijatcse/2020/0691.32020

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

35

project management, development and maintenance
activities, quality assurance activities, as well as the
customers and users of the end product” [9].

Research efforts in SCM has been highly motivated by
tackling the problems at hand in software development for
example issues in the development of large software systems
in the 1980s; object-oriented systems in the 1990s; web
services in the 2000s; and late binding systems in the 2010s.
Majority of research are technical in nature involving
concepts, models and tools. Commercial and proprietary tools
are aplenty, and the underlying techniques are no longer
confined to SCM, but in other areas such as web services.

Efforts to formalize the process in SCM started as early as the
1960s with the ideas of configuration as a control mechanism
in software development [10] and concepts for program
specifications [11]. The process underwent further refinement
throughout the 1970s with the recognition of software
engineering as a new field in computing.

In 1983, IEEE published the first standard for SCM, the IEEE
828 - IEEE Standard for Software Configuration Management
Plans, which was revised in 1990, 1998, and 2005. The latest
version was released in 2012 [12]. It establishes the minimum
requirements for configuration management processes in
systems and software engineering.

In addition, ISO published a quality-related standard for SCM
in 1995, the ISO 10007 Quality Management - Guidelines for
Configuration Management, which was revised in 2003. The
latest version was released in 2017 [13]. The ISO standards
provide guidance on the use of configuration management
within the organization.

IEEE stipulates six crucial process in SCM namely (1)
management and planning of the SCM process; (2) software
configuration identification; (3) software configuration
control; (4) software configuration status accounting; (5)
software configuration auditing; and (6) software release
management and delivery [12].

The outcome of SCM is the SCM Plan (SCMP), a living
document that is used throughout the software life-cycle.
SCMP provides a systematic view of the current
configuration, supports decision-making activities in
processing change request, provides information on the
product status, and facilitate future enhancements through
detailed product documentation.

2.2 Software Quality

Quality is highly subjective and the term software quality has
been referred to “conformance to requirements” [14], “fitness
for use” [15], and “capability of software product to satisfy
stated and implied needs” [16]. It focuses on the conformance
(of software products) to requirements. Quality models are

often used to measure quality and understand how quality
metrics relate to each other. There are several models for
assessing software products including McCall, Boehm,
FURPS, Dromey, and ISO 9126. ISO 25010 [16] succeeded
ISO 9126 in 2011 and it defines quality from two perspectives
namely quality in use and product quality.

ISO 25010 product quality model is composed of eight major
characteristics that relate to static properties of software and
dynamic properties of the computer system (Functional
Suitability, Performance Efficiency, Compatibility, Usability,
Reliability, Security, Maintainability, & Portability). This
model is applicable to both computer systems and software
products.

Software quality research in SCM are mainly associated with
source code defects where focus are directed at reducing or
eliminating them. Examples include real-time quality control
through the analysis of code change [17]; consecutive changes
and software defects [18]; estimating defects and changes in
software systems [19]; heterogeneous defect prediction across
projects with heterogeneous metric sets [20]; software defect
metrics to aid analysis [21]; impact of product development
strategy on defects [22]; and a decision support system to
predict defects and enhance release management [23].

2.3 Software Testing

Software testing is “the dynamic verification that a program
provides expected behaviors on a finite set of test cases,
selected from an infinite execution domain” [9]. It is
conducted to provide stakeholders with information about the
quality of the software product under test [24]. The main
standard governing software testing is the ISO 29119 [25-29],
a series of five international standards for testing. It is a
comprehensive standard, defining concepts and vocabulary;
test process descriptions; templates and examples of test
documentation; test design techniques; and solution for
keyword-driven testing.

Software testing is performed at different levels throughout
the software life-cycle, based on the target or the objective of
test. The target of the test can vary between a single module
(unit testing), a group of modules (integration testing), or an
entire system (system testing) [30-31]. The objective of
testing is conducted with specific objectives that are
quantitatively defined for example acceptance testing,
installation testing, alpha/ beta testing, regression testing, and
performance testing [30-31].

There is only a few works (if any) on software testing in SCM
for example [32], although there are interest on the adoption
of SCM in software testing such as [33-34]. One reason would
be software testing is being carried out as a separate process in
SCM, supported by lack of details on the approach for testing
found in SCM standards.

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

36

2.4 Human Competency

Competency can be defined as “the combination of
knowledge, skills, abilities, and personal attributes that
contribute to enhanced employee performance”. Successful
SCM implementation is dependent on several factors
including the competency of the software practitioners.
Traditionally, competency was built on personal qualities and
developed primarily through experience. Recently, education
and training have taken on a greater role in the development of
human competency. In SCM, the study of competency has
focused on:

 Collaboration activities such as conflict history data
[6]; revision history [35]; and the impact of a change
made by one developer to other developers [36].

 Learning activities for example the use of version
control system in student development projects [37];
implementation of a distributed revision control
system as part of the undergraduate and graduate
curriculums [38]; and the integration of configuration
management into the IT curriculum [39].

 Debugging activities for example the correlation
between a commit’s social characteristics and bugs [7];
the organization of bug reports into sets for effective
management by developers [40]; and the relationship
between developers' communication frequency and
number of bugs [41].

Although human competency has not been the main focus of
SCM research, IEEE has outlined a generic skill set for
software practitioners in the Software Competency Model
(SWECOM) [42]. SWECOM specifies skill areas, skills
within skill areas, and work activities. Activities are specified
at five levels of increasing competency namely Technician,
Entry Level Practitioner, Practitioner, Technical Leader, and
Senior Software Engineer. Software practitioners involved in
SCM implementation would have to acquire three specific
skill sets namely Plan SCM, Conduct SCM and Managing
Software Releases (Table 1).

Table 1: Software Configuration Management Skill Sets and
Activities based on the IEEE Software Engineering

Competency Model
Software

Configuration
Management Skill

Set

Software Configuration
Management Activities

Plan SCM

 Determine organizational
context for and constraints on
SCM
 Identify software components

to be controlled by SCM
 Design data and code

repositories
 Plan versioning procedures for

path branching and path
integration
 Develop/adopt a change control

process
 Identify and procure SCM tools
 Establish SCM library
 Develop SCMP

Conduct SCM

 Follow SCMP
 Use SCM tools
 Control path branching and path

integration during development
 Generate, classify, and manage

problem reports
 Maintain and update SCM

baselines
 Prepare SCM reports
 Conduct SCM audits

Manage Software
Releases

 Develop software release plan
 Identify and procure software

release tools
 Use software release tools
 Produce software releases
 Design and implement tools and

procedures for generating
patches to be delivered

3. CONCEPTUAL FRAMEWORK

Figure 1 illustrates the integrated SCM framework (i-SCM).
Standard SCM process serves as the backbone in this
framework and can be adopted from existing standards such
as IEEE 828 [12], CMMi [43], ISO 10007 [13], or other
proprietary process as practiced by the organization. Software
quality are incorporated through pre-defined, project-specific
quality characteristics. These characteristics can be based on
existing standards such including ISO 25020. Software testing
contributes through procedures for evaluating changes made
to the software product. Existing standards including ISO
29119 can be referred to in determining the approach for
testing.

Human competency, based on SWECOM, can be adopted to
determine the minimum set of skills required by software
practitioners to successfully implement the SCM process. The
final outcome of SCM implementation is the SCMP, that
serve not only as proof of conformance, but also as reference
for future enhancement of the software product.

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

37

Figure 1: Integrated Software Configuration Management Framework (i-SCM)

3.1 Planning

Planning is the first process in SCM and should be consistent
with the organizational context, constraints, and nature of the
project. Effective planning coordinates activities throughout
the software product life-cycle. The output of this process is
the SCMP. SCMP is subjected to SQA review; documented
and approved; and controlled. Software quality requirements
are identified in this phase including strategies for achieving
them. In addition, approach for testing, including the levels
and objectives of testing, is also identified and documented in
this process.

3.2 Configuration Identification

The next process is the identification of Configuration Items
(CIs) to be controlled. CIs are selected using established
criteria early in the software product life-cycle and reviewed
as the product evolves. Typical CIs include requirements,
designs, and source codes. Software quality and testing
artefacts such as test specification and supporting tools are
identified in this process. CIs may consist of multiple related
artefacts that form a baseline. These baselines including
approved changes, represent the current approved
configuration.

3.3 Control

After the initial release of configuration information, all
changes are controlled and documented. This covers the
process of determining what changes to make; the authority
for approving changes; and the implementation of changes.
Software Trouble Report, Software Change Request and
similar documents should explicitly state the quality
characteristics that will be affected by the proposed change
and how these changes will be tested.

3.4 Accounting

Accounting is the recording and reporting of information for
managing a configuration effectively. It is performed
throughout the software product life-cycle. Types of
information recorded include approved CIs and baselines;
current implementation of changes; and status of release.
Conformance to defined quality characteristics are also
recorded along with test objectives and procedures used.

3.5 Auditing

Auditing is performed in accordance with documented
procedures to determine whether a product conforms to its
requirements and configuration information. Informal audits
can be conducted as necessary whilst formal audits can be
carried out as scheduled. Here software testing can play a
more significant role through the adopted approach and
testing tools used.

3.6 Delivery

This final process involves the identification, packaging, and
delivery of artefacts such as an executable program. Quality
and test documentation are included in the conventional SCM
Plan, underlining initial quality characteristics of the product,
quality characteristics after the implementation of change,
test approach adopted, test tools used, and results obtained.

The minimum competency for implementing each process is
determined by SWECOM’s SCM skill set:

 Minimum competency for managing the Planning
process is Practitioner, as a practitioner “participates
in determining impact of constraints on SCM imposed
by policies, contract, and SDLC”.

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

38

 Minimum competency for managing the Identification
process is Practitioner, as a practitioner “participates
in identifying SCIs and the relationships among them”
and “participates in developing software release
plans”.

 Minimum competency for managing the Control
process is Technical Leader, as a technical leader
“appoints members and convenes the CCB” and
“tailors and adopts mechanisms for requesting,
evaluating, and approving software changes”.

 Minimum competency for managing the Accounting
process is Technical Leader, as a technical leader
“leads the CCB in making yes/no decisions on change
requests” and “ensures that approved changes are
made and documented”.

 Minimum competency for managing the Audit process
is Practitioner, as a practitioner “leads the building and

verifying of software releases”.
 Minimum competency level for carrying out the

Delivery process is Practitioner, as a practitioner
“leads the building and verifying of software
releases”.

The implementation of these processes contribute to the
development of the SCM Plan (Figure 2). The SCM Plan
takes shape during Planning where the Contractual,
Organizational, Project and Software Quality and Test
Requirements are identified. During the Identification
process, contractual and organizational requirements dictate
the type of artefacts that are going to be controlled. List of
controlled artefacts and approved baselines are added to
Project Documentation.

Figure 2: Development of the SCM Plan

In Control, contractual and organizational requirements
characterize the change control and change request
procedures. These information are also appended to Project
Documentation. In Accounting, change requests and artefacts
approval are processed. Change requests, CIs and baselines
approvals are appended to Project Documentation.

In Audit, the contractual, organizational, project and software
quality requirements are taken into consideration and referred
to in determining the test approach. Test results are appended

to the Project and Software Quality Documentation. In
Delivery, the Project, Software Quality and Test
Documentation are included in the software package.

Finally, the software product and other documentation are
attached to the SCMP as appendices. The advantages of
i-SCM over traditional SCM approach can be viewed from
four different aspects namely People, Process, Tools and
Documentation (Table 2).

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

39

Table 2: Advantages of i-SCM

Component Traditional
SCM i-SCM

People

Mainly tasked
with the

operation of
tools

Competency is
a dominant

factor in SCM
implementation

Process

 Software
Quality ×

Focal in the
Planning,
Control,

Accounting,
Auditing, and

Delivery
process.

 Software
Testing ×

Focal in the
Control,

Auditing, and
Delivery
process.

Tools
Dominant factor

in SCM
implementation

Supports SCM
implementation

Documentation
Mainly acts as

project
documentation

Guides SCM
implementation
and passed over

to facilitate
future product
enhancements

i-SCM emphasizes on the competency of People in the
implementation of process, utilization of tools, and
generation of documentation. Traditional SCM approach
relies heavily on the use of tools for implementation and
People are mainly tasked to operate these tools. In addition,
i-SCM promotes the use of SWECOM SCM skill set to
successfully implement SCM. Traditional SCM does not
make any distinctions regarding these skills.

i-SCM focuses on the importance of software quality where it
is identified in the Planning process, explicitly stated in
Control, effects of a proposed change to quality is taken into
consideration in Accounting, quality audits are carried out in
addition to project audits, and quality documentation is
included in Delivery. Traditional SCM implementation gives
little emphasis (if any) to software quality as quality
assessment is usually carried out in other software
engineering process. Test approaches are also the focus of
i-SCM where test strategies are explicitly stated in the
Control process, test procedures are specified in Accounting
and Auditing, and test results are included in Delivery.
4. CHALLENGES

There are four major challenges in the realization of this
integration namely competency assessment; quality
characteristics and metrics; test approach; and automation.

4.1 Competency Assessment

The first challenge is the identification of assessment methods
and approach. Although many software organizations use
proprietary competency models to assess the performance of
their employees, general (software engineering) competency
models can also be adopted including INCOSE [44]; ENG
Competency Model [45]; NASA APPEL Competency Model
[46]; MITRE Competency Model [47]; and CMMI
Competency Model [48]. Approach for assessment will also
need to be identified for example self-estimation, interviews
and/ or work product audit based on the assessment needs.

4.2 Quality Characteristics and Metrics

The second challenge is the identification of applicable
quality characteristics for SCM. Previous findings such as
quality factors for certification [49] and refinement of
existing standards to evaluate quality [50] could be adopted
for this purpose. Once the characteristics have been
identified, related metrics would then be formulated for each
characteristics. It is crucial that the relationship between
quality and SCM process is preserved as outlined by relevant
standards.

4.3 Test Approach

The third challenge is the identification of suitable approach
for testing the various software artefacts. Previous approaches
including program slicing [51] can be used. In addition, the
use of suitable support tools for testing would also need to be
identified. Not only testing needs to evaluate CIs and
baselines to configurations, but it also need ensure
conformance to predefined quality requirements [52].

4.4 Automation

Perhaps the most interesting challenge is the automation of
testing in SCM. The advantages of automated testing has been
widely reported. With regards to SCM, automated testing
would enable early defect detection, thus increasing
development speed; lead to improved efficiency, as tests can
be run unattended; and test automation provides a larger
coverage than manual test, hence assuring a higher product
quality is obtained.

5. CONCLUSION AND FUTURE WORK

This paper proposes i-SCM, an integrated framework that
combines software testing and software quality into standard
SCM process, whilst highlighting the importance of human
competency in the whole process. Software quality
characteristics are embedded in the change control procedure
and software testing provides means for testing software
artefacts to ensure conformance. It highlights the competency
of people in the implementation of process, utilization of
tools, and generation of documentation. I-SCM promotes the

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

40

delivery of project-specific and quality documentation to
support future enhancements to the software product. Future
work include the identification of suitable quality
characteristics for SCM and existing tools for testing them.

REFERENCES

1. Fahmy, S., Deraman A., & Ngah, A. (2018). A

Conceptual Framework for Integrating Software Quality
and Testing into Software Configuration Management.
The Postgraduate Workshop@SOFTEC Asia 2018, Sept
02nd, Kuala Lumpur, Malaysia.
https://doi.org/10.1145/3185089.3185117

2. Orru, M. and Marchesi, M. (2016). A Case Study on the
Relationship Between Code Ownership and Refactoring
Activities in a Java Software System. In Proceedings of
the 7th International Workshop on Emerging Trends in
Software Metrics, Austin, USA, 43-49.
https://doi.org/10.1145/2897695.2897702

3. Ribeiro, D.M., da Silva, F.Q.B., Valença, D., Freitas,
E.L.S.X., and França, C. (2016). Advantages and
Disadvantages of Using Shared Code from the
Developers Perspective: A Qualitative Study. In
Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement, Ciudad Real, Spain, Article 33, 6 pages.

4. Jia, J., Zhang, P., and Capretz, L.C. (2016).
Environmental Factors Influencing Individual
Decision-Making Behaviour in Software Projects: A
Systematic Literature Review. In Proceedings of the 9th
International Workshop on Cooperative and Human
Aspects of Software Engineering, Austin, USA, 86-92.
https://doi.org/10.1145/2897586.2897589

5. Prikladnicki, R., Perin, M., and Marczak, S. (2016).
Virtual Team Configurations that Promote Better
Product Quality. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement, Ciudad Real, Spain,
Article 18, 5 pages.

6. North, K.J., Bolan, S., Sarma, A., and Cohen, M.B.
(2015). GitSonifier: Using Sound to Portray Developer
Conflict History. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
Bergamo, Italy, 886-889.

7. Eyolfson, J., Tan, L., and Lam. P. (2011). Do Time of
Day and Developer Experience Affect Commit
Bugginess?. In Proceedings of the 8th Working
Conference on Mining Software Repositories, Waikiki,
USA, 153-162.
https://doi.org/10.1145/1985441.1985464

8. Babich, W.A. (1986). Software Configuration
Management, Coordination for Team Productivity.
Addison-Wesley.

9. SWEBOK. (2014). Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society Press, Los
Alamitos, CA, USA.

10. Oettinger, A.G. (1964). A Bull's Eye View of
Management and Engineering Information Systems. In

Proceedings of the 1964 19th ACM National Conference.
New York, USA, 21.1-21.14.
https://doi.org/10.1145/800257.808892

11. Liebowitz, B.H. (1967). The Technical Specification:
Key to Management Control of Computer Programming.
In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, Atlantic City, USA, 51-59.

12. IEEE 828. (2012). IEEE Standard for Configuration
Management in Systems and Software Engineering. The
Institute of Electrical and Electronics Engineers. (71
pages).

13. ISO 10007. (2017). Quality Management Systems -
Guidelines for Configuration Management. International
Organization for Standardization. (10 pages).

14. Crosby, P.B. (1979). Quality is Free: The Art of Making
Quality Certain. McGraw-Hill.

15. Humphrey, W.S. (1989). Managing the Software
Process. Addison-Wesley.

16. ISO 25010. (2011). Systems and Software Engineering -
Systems and Software Quality Requirements and
Evaluation (SQuaRE) - System and Software Quality
Models. International Organization for Standardization.
(34 pages).

17. Heinemann, L., Hummel, B., and Steidl, D. (2014).
Teamscale: Software Quality Control in Real-Time. In
Companion Proceedings of the 36th International
Conference on Software Engineering, Hyderabad, India,
592-595.
https://doi.org/10.1145/2591062.2591068

18. Dai, M., Shen, B., Zhang, T., and Zhao, M. (2014).
Impact of Consecutive Changes on Later File Versions.
In Proceedings of the 3rd International Workshop on
Evidential Assessment of Software Technologies,
Nanjing, China, 17-24.
https://doi.org/10.1145/2627508.2627512

19. Malhotra, R., and Agrawal, A. (2014). CMS Tool:
Calculating Defect and Change Data from Software
Project Repositories. SIGSOFT Softw. Eng. Notes 39(1):
1-5.

20. Nam, J., and Kim, S. (2015). Heterogeneous Defect
Prediction. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
Bergamo, Italy, 508-519.

21. Henderson, C. (2008). Managing Software Defects:
Defect Analysis and Traceability. SIGSOFT Softw. Eng.
Notes 33, 4, Article 2, 3 pages.

22. Ramler, R. (2008). The Impact of Product Development
on the Lifecycle of Defects. In Proceedings of the 2008
Workshop on Defects in Large Software Systems,
Seattle, USA, 21-25.
https://doi.org/10.1145/1390817.1390823

23. Tosun, A., Turhan, B., and Bener, A. (2009). Practical
Considerations in Deploying AI for Defect Prediction: A
Case Study within the Turkish Telecommunication
Industry. In Proceedings of the 5th International
Conference on Predictor Models in Software
Engineering, Vancouver, Canada, Article 11, 9 pages.

24. Kaner, C. (2006). Exploratory Testing (Keynote
Address). Quality Assurance Institute Worldwide

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

41

Annual Software Testing Conference, Orlando, FL,
USA.

25. ISO 29119-1 (2013). Part 1: Concepts and Definitions.
International Organization for Standardization. (56
pages).

26. ISO 29119-2 (2013). Part 2: Test Processes. International
Organization for Standardization. (59 pages).

27. ISO 29119-3 (2013). Part 3: Test Documentation.
International Organization for Standardization. (127
pages).

28. ISO 29119-4. (2015). Part 4: Test Techniques.
International Organization for Standardization. (139
pages).

29. ISO 29119-5. (2016). Part 5: Keyword-Driven Testing.
International Organization for Standardization. (54
pages).

30. Naik, K., & Tripathy, P. (2008). Software Testing and
Quality Assurance: Theory and Practice,
Wiley-Spektrum.
https://doi.org/10.1002/9780470382844

31. Sommerville, I. (2015). Software Engineering, 10th ed.,
Pearson.

32. Appleton, B., Berczuk, S., adn Cowham, R. (2007).
Testing's Role in the Software Configuration
Management Process.
https://www.cmcrossroads.com/article/testings-role-soft
ware-configuration-management-process. Retrieved July
2018.

33. Jindal, N. (2016). Role of Software Configuration
Management (SCM) in Software Testing.
https://www.linkedin.com/pulse/role-software-configura
tion-managementscm-testing-nitish-jindal. Retrieved
July 2018.

34. Software Testing Solution. (2017). Configuration
Management for Software Testing.
http://softwaretestingsolution.com/blog/configuration-m
anagement-software-testing-much-meets-eye/. Retrieved
July 2018.

35. Huang, S-K., and Liu, K-M. (2005). Mining Version
Histories to Verify the Learning Process of Legitimate
Peripheral Participants. THE 2005 International
Workshop on Mining Software Repositories, Saint
Louis, USA, 1-5.
https://doi.org/10.1145/1083142.1083158

36. Sarma, S., Branchaud, J., Dwyer, M.B., Person, S., and
Rungta, N. (2014). Development Context Driven Change
Awareness and Analysis Framework. In Companion
Proceedings of the 36th International Conference on
Software Engineering, Hyderabad, India, 404-407.

37. Makiaho, P., Poranen, T., and Seppi, A. (2014). Version
Control Usage in Students' Software Development
Projects. The 15th International Conference on
Computer Systems and Technologies, Ruse, Bulgaria,
452-459.
https://doi.org/10.1145/2659532.2659646

38. Gowtham, S. (2014). Revision Control System (RCS) in
Computational Sciences and Engineering Curriculum. In
Proceedings of the 2014 Annual Conference on Extreme
Science and Engineering Discovery Environment, New
York, USA, Article 76, 3 pages.

39. Jiang, K., and Kamali, R. (2008). Integration of
Configuration Management into the IT Curriculum. In
Proceedings of the 9th ACM SIGITE conference on
Information Technology Education, Cincinnati, USA,
183-186.
https://doi.org/10.1145/1414558.1414606

40. Bortis, G., and van der Hoek, A. (2013). PorchLight: A
Tag-Based Approach to Bug Triaging. In Proceedings of
the 2013 International Conference on Software
Engineering. IEEE Press, Piscataway, USA, 342-351.

41. Abreu, R., and Premraj, R. (2009). How Developer
Communication Frequency Relates to Bug Introducing
Changes. In Proceedings of the Joint ERCIM Workshop
on Software Evolution and International Workshop on
Principles of Software Evolution, Szeged, Hungary,
153-157.
https://doi.org/10.1145/1595808.1595835

42. IEEE Software Engineering Competency Model
(SWECOM). IEEE Computer Society Press,
https://www.computer.org/web/peb/swecom-download,
retrieved Sept 2018.

43. CMMI Product Team. (2010). CMMI for Development
Version 1.3. Software Engineering Institute.

44. INCOSE. (2010). Systems Engineering Competencies
Framework 2010-0205. San Diego, CA, USA:
International Council on Systems Engineering
(INCOSE), INCOSE-TP-2010-003.

45. ENG Competency Model. (2013). Defense Acquisition
University (DAU)/ U.S. Department of Defense
Database
https://dap.dau.mil/workforce/Documents/Comp/ENG%
20Competency%20Model%2020130612_Final.pdf
Accessed July 2018.

46. NASA Project Management and Systems Engineering
Competency Model. (2009). Academy of
Program/Project & Engineering Leadership (APPEL).
Washington, DC, USA: US National Aeronautics and
Space Administration (NASA).
http://appel.nasa.gov/competency-model/ Accessed July
2018.

47. MITRE Systems Engineering Competency Model.
(2007).
http://www.mitre.org/publications/technical-papers/syst
ems-engineering-competency-model Accessed July
2018.

48. CMMI-Based Professional Certifications: The
Competency Lifecycle Framework (2004). Software
Engineering Institute, CMU/SEI-2004-SR-013.
http://resources.sei.cmu.edu/library/asset-view.cfm?asse
tid=6833 Accessed July 2018.

49. Deraman, A., Yahaya, J., Baharom, F., & Hamdan, A.R.
(2010). User-Centred Software Product Certification:
Theory and Practices. International Journal of Digital
Society (IJDS), Vol.1 (4), Dec 2010, pp. 281-288.

50. Fahmy, S., Haslinda, N., Roslina, W., & Fariha, Z.
(2012). Evaluating the Quality of Software in e-Book
Using the ISO 9126 Model. The 7th Asia Pacific
International Conference on Information Science and
Technology, July 4-7, Jeju Island, Korea.

Syahrul Fahmy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 34 - 42

42

51. Ngah, A., Munro, M., and Gallagher, K. (2012).
Regression Test Selection Model Using Decomposition
Slicing. In the Proceedings of the IASTED International
Conference on Software Engineering.
https://doi.org/10.2316/P.2012.780-020

52. Nishad Nawaz. Artificial Intelligence interchange human
intervention in the recruitment process in Indian
Software Industry. International Journal of Advanced
Trends in Computer Science and Engineering. Volume 8,
No.4, July – August 2019
https://doi.org/10.30534/ijatcse/2019/62842019

