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ABSTRACT 

  

The early prediction of software failure is important in the 

field of software engineering since it leads to the 

development of better quality software, along with a 

reduction in maintenance cost and effort. However, even 

though there is growing interest in early prediction of 

software failure, the existing literature shows some gaps. 

While many studies are quite reliant on static code metrics 

or test case execution data, they tend to miss out on vital 

dynamic and contextual information which can be obtained 

by analyzing software system logs. Log data is regularly 

created by computing systems during their runtime and 

contains rich information including event sequences, 

timestamps, error messages, and system states that can 

potentially being utilized in the identification of anomalies 

and predictions of failures on real-time. The objective of this 

work is to categorize the existing literature on the use of 

system logs for predicting software, through systematic 

literature review, with the help of the guidelines from 

Barbara Kitchenham. The review categorizes system logs 

into four primary parameters: resource/hardware logs, 

workload/performance logs, network logs, and security logs. 

It also highlights the machine learning models. The findings 

reveal that log attributes such as CPU usage, memory 

utilization, disk space, transaction processing, and network 

errors are consistently identified as key predictors of 

software failure. This finding aligns with expert opinions, 

demonstrating strong agreement on the relevance of these 

attributes for predicting software failure.  This study 

contributes to the growing body of knowledge on software 

failure prediction, emphasizing the importance of integrating 

machine learning with systematic log monitoring to enhance 

proactive system failure management. Future work should 

focus on developing real-time monitoring tools that leverage 

machine learning models to automate failure detection and 

prediction across various system components. 

Key words :Machine learning, Log parameters, System logs, 

software failure 
 
1. INTRODUCTION 

 

In today's world, software breakdown is very costly in large 

and medium critical software systems. The size and 

complexity of software’s make runtime errors unavoidable. 

Companies that vend software’s such as Enterprise Resource 

Planning (ERPs) or High-Performance Computing (HPCs) 

solutions could benefit from accurate forecasting of software 

failure. Timely prediction of impeding software failure 

allows the root cause of the error to be corrected before it 

impacts the software. Software failure describes the inability 

of a program to function correctly due to erroneous logic. It’s 

also referred to as a crash or software breakdown [1]. 

Software failure is the instant in time where a software 

projects no longer meets its expectations [2].  Software 

failures caused by hardware or software errors often result in 

task and job failures. Such failures can severely reduce the 

reliability of software, loss of customers, fatalities in critical 

systems and could demand huge number of resources to 

recover the service from failures [3].  

Software defect prediction aids software engineers to detect 

faulty constructions, such as modules or classes, early to 

avoid losses that may result from a failed software and assist 

to identify security, hardware and network problems. 

Software fault prediction increases software quality and 

minimizes maintenance effort [4]. It helps in obtaining the 

preferred software quality with improved cost and effort [4]. 

System logs are used to identify runtime errors, diagnose the 

root cause of software failure, troubleshoot runtime errors 

and monitor software behaviors [5]. On some occasions, log 

parameters can provide rich data for business decision 

making. The parameters may be of different types such as:  

security parameter logs which are used to keep logs related 

to unauthorized access to the software [6], [7].The  resource 

parameter logs which keep track of how the devices such as 

memory, random access memory (RAM), had disk and input 

and/or output I/O devices are servicing the software. In case 

they are almost full it detects and registers in the log or in 
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case the device fails it is recorded [8]. The other type of log 

is the workload parameter logs which keep track of the 

events and process coordinated in the software. It can detect 

database connection failure, application failure, and 
components communication failure, among others [9]. 

Finally is the hardware  parameter logs which indicates 

failure of peripherals serving the software’s and lastly the 

Network parameter which shows failures to communicate 

with the nodes in a network. The models using one 

parameter are not able to detect failures caused by other 

parameters 

Several researchers have developed models for software 

failure predictions For instance, recent works in this area 

have focused mainly on machine learning techniques such as 

RNN [7], LSTM [10], [11], [12] [13] and CNN [9]. The 

researchers have majored in single parameters in each model.  

By identifying the attributes of system log parameters for 

predicting software failures, this study analyzes and 

synthesizes existing literature to describe models that have 

used system logs for software failure predictions, 

highlighting their weaknesses, and categorize key parameters 

that contribute to successful predictions.  

 
2.RELATED WORKS 

 

Systems Log Parameters 

 

Extant literature classifies  system log parameters into four 

main categories namely: security, workload, network and 

resources or hardware  [14] [15] [16] [17] [18].  [19] [20]. 

Security log parameters include details like login 

timestamps, user IDs, IP addresses, and whether the login 

attempt was successful or failed. They can provide 

information about denied or allowed connections, blocked IP 

addresses, and attempted attacks. For example, unauthorized 

access attempts, port scanning attempts. To mitigate against 

failures due to errors in security log parameters,  intrusion 

detection/prevention System (IDS/IPS) Logs capture 

information about potential threats detected by intrusion 

detection or prevention systems [18] They help identify and 

block malicious activities, such as unauthorized network 

access, malware, or other attacks that include malware 

detection, abnormal network traffic, intrusion attempts [15] 

[16] [17]. 

 

Network log parameters capture information about network 

traffic, including details such as source and destination IP 

addresses, port numbers, protocols used (e.g., TCP, UDP), 

packet sizes, and transmission timestamps. This data 

provides visibility into the volume, type, and patterns of 

network communications occurring within the network [20]. 

Network logs are structured records that document events 

and activities related to network communications within a 

computer network. They play a critical role in monitoring 

traffic patterns, detecting security incidents, evaluating 

performance, and tracking network device activities. These 

logs capture detailed data such as IP addresses, port 

numbers, protocols, packet sizes, and timestamps, offering 

insight into the nature and volume of network interactions. 

They also record security events like intrusion attempts, 

malware infections, and unauthorized access, along with 

activities from devices such as routers and switches [20]. 

Additionally, network logs support protocol analysis and 

categorize events by severity to aid in prioritizing responses.  

 
Hardware logs are essential records that capture runtime 

information related to system hardware components [19]. 

These records contain events and activities generated by the 

hardware components. These components include servers, 

routers, switches, and physical devices within a computing 

environment such as peripherals, chipsets, CPU (Central 

Processing Unit), memory modules (RAM), storage devices 

(hard drives, SSDs), motherboard, power supply unit (PSU), 

and peripheral devices.  All physical issues like component 

failure, overheating and power issues can be termed 

hardware problems. A typical hardware log usually contains 

the following details: Timestamp describing when the event 

occurred, event security level that categorizes the log as 

either just information, warning or an error and it also 

includes event details that describe the event that occurred in 

detail. [18] [21] [22] [23]. Overall, hardware logs serve as 

valuable diagnostic tools for identifying hardware failures, 

troubleshooting issues, monitoring system performance, and 

predicting potential hardware-related failures. By analyzing 

hardware logs, system administrators can take proactive 

measures to maintain system reliability and minimize 

downtime [24]. Hardware logs also include storage logs 

which structure records of events and activities associated 

with storage devices and file system operations in a 

computer system. These logs provide insights into the 

performance, health, and usage of storage resources, 

facilitating troubleshooting, monitoring, and optimization of 

storage infrastructure [14]. These logs contain information 

about data reads, writes, access permissions, and storage 

health. Usually, a storage log record contains Timestamp that 

indicates the day and the time the storage event occurred, 

data access patterns that contain details about the read and 

write operations while storage health metric field contains 

data about the disk space, I/O latency and error rates. 

Another important feature contained in storage logs is the 

security event that provides record of access attempts and 

change of permissions [14]. 
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Machine Learning Models for Prediction Software 

Failures 

Several machine learning models have been developed to 

predict software failures. For instance, Banjongkan and 

others [25] developed a job failure prediction model in HPC 

systems using the decision tree algorithm. Job failure was 

predicted at two distinct states namely job submit, and job 

start states. Workload logs from HPC systems were used to 

train the decision tree.  Ali and others [26] proposed a 

machine learning model to classify and predict software 

incidents. In their work, they considered an abnormal process 

that disrupted operational procedures. Their technique used 

an active learning approach to label data that was appropriate 

for building the model. K Means clustering was used to do 

unsupervised labelling of the data through clustering [26] 

The labelled logs were then fed to the SVM to predict the 

failure. It classified results into groups It used workload logs 

only which had attributes which consisted of date and time, 

source, EventID and Task category. The model had some 

weaknesses such as did not consider scalability issues, used 

only one type of logs that is workload logs which gotten 

from ECLIPSE software repository and never considered 

scalability in future. A study done by Mohamed and others 

[27] used machine learning to predict failure in HPC systems 

and their applications. Their model considered system 

components failure datasets which are under workload 

dataset where he considered the use of time series and ML 

algorithms to predict failure of all applications and system 

components. It was noted that a process could have failed 

due to several reasons such as hardware, software, human 

error, network and undermined.  

Das et al., [10] [12]  implemented the LSTM combined with 

RNN and LSTM models respectively to detect node failure. 

Node failure is termed as any abnormal shutdown that may 

occur on a node due to software or hardware problems. It 

would identify log events that would lead to failure, predict 

which specific node would fail and for how many minutes, 

retrain chain recognition of events augmented with expected 

lead time to failure. The study focused on resources logs due 

to hardware. Gao and others [11] developed a model to 

predict task failure in cloud data centers. The model was 

based on bi-directional LSTM to identify job failures and 

forecast their occurrence. Bi-LSTM model contains one 

input layer, Bi-LSTM layer and logistic regression layer for 

classification. The jobs termination status of the tasks is 

classified based on the task attributes and performance data. 

Their model used data center logs from Google cluster trace. 

It displayed whether a task or a job has failed or completed. 

It used workload log type of data.  

Convolutional Neural Networks (CNN) was used to make a 

model predict and alert failure risk failure of virtual 

machines using log analysis. Nam [9] developed the model 

to preprocess the failure using constant time gap. The model 

learns to calculate the probability that a failure will occur 

after gap minutes based on the input window size of the 

input logs. The model preprocesses the failure messages 

using word embeddings, then the embedded words were fed 

as input to train the CNN model. The input had constant time 

gaps that were used to ensure the CNN can calculate the 

probability of failure after some gap minutes. Google 

word2vec was used for word embeddings to form a log 

corpus. The dataset and failure injections were simulated 

using OpenStack. It uses workload logs. The challenge it 

faces is failure to use different logs to allow future growth in 

failure prediction. 

Lin et al [28] proposed a hybrid system that combined LSTM 

and Random Forest Classifier to forecast the failure of a 

node in the cloud service system using a variety of attributes 

such as disk sector error logs, service error, rack location, 

load balancer group, IO response and the OSBuildGroup. 

The dataset was borrowed from Microsoft Cloud System 

logs from a live production environment. LSTM model 

handles the temporal and spatial features of the data to 

provide the predicted sequence.  The sequence was ranked 

using Random Forest and the cost-sensitive function was 

used to make classifications [28].Its weakness was that it 

focused on resources logs only.  Another model that 

combines several algorithms is Jingweng Wang et al. [8]. 

This technique utilized several machine learning algorithms 

to predict anomalies in financial Information Technology 

systems. It had KPI (Key performance indicators) which 

would record the usage of the CPU, disks, and the memory 

for each of the servers at all-time thus producing time series 

data of KPIs. Incase an anomaly would occur it would be 

recorded. Therefore, the system log parameter used to detect 

software failure was resource parameter. A hierarchy of 

classifiers was used with Random Forest classifier at the data 

prediction phase while the anomaly detection module used 

Decision Tree (DT), RF Classifier, KNN, Gradient Boosting 

Decision Tree (GBDT) and Logistic Regression (LR). 

Outputs of DT, RF, KNN, GBDT were fed to the LR 

classifier that determined the severity of the failure while the 

KNN model was used at the end of the model to classify 

anomalies with different severity [4]. The main weakness of 

the model was that it would only detect software failure 

using resource parameters.  

Also, Brown et. al [6] developed a log anomaly detection 

technique that leveraged the combined strengths of Recurrent 

Neural Networks and Attention Based Mechanisms. Their 

solution was unsupervised since the logs were not labelled. 

Language modelling was applied to the logs to assign 

probabilities to sequences and tokenization was used to break 
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down the log lines into words and characters. The LSTM 

model was fed the preprocessed logs, and it predicted the 

sequences. LSTM model was optimized by dot product 

attention to be selective to the relevant tokens. This feature 

allowed the model to access the relevant information with 

ease while making predictions. Their model used a public 

dataset drawn from the Los Almos National Laboratory 

(LANL), of network traffic, authentication info and DNS 

logs from a vast 58 billion logs [6]. It used authentication 

logs which consisted of attributes like Source user, 

Destination user, Source pc, Destination pc, Authentication 

type, Logon type, Authentication orientation, 

Success/failure. Its main weakness is that it focused on a 

single parameter which limits future growth of the model. 

Hybrid models combine the strength of several learning 

techniques through a combination of several ML algorithms 

or DL models or both. For instance, Savaranan and 

Sangeetha [29] combined the power of Adaptive 

Dimensional Search based Particle Swarm Optimization 

(ADS-PSO) with the Hyper Basis Function Neural Network 

to improve its prediction accuracy while predicting software 

failure. It used the events logs of a task to determine the 

degree of accuracy and classified the result into two.  The 

Saravanan hybrid model [29] used event logs to predict 

software failure. The initial stage of their model [29], used 

the Hyper Basis Function Neural Network (HBFNN), which 

is a three-layered feed-forward neural network. The 

classification weights drawn from the neural network were 

optimized further using the ADS-PSO algorithm to minimize 

the cost of misclassification. The dataset used was made 

from workload event logs from the Blue Gene/p intrepid 

system. The challenge was lack of scalability.  

 
3.RESEARCH METHOD 

This research employs a systematic literature review (SLR) 

methodology based on Barbara Kitchenham's original 

guidelines (2007) to comprehensively analyze and synthesize 

the existing literature on importances of system logs in 

predicting software failure. These guidelines were chosen for 

their relevance to system logs, providing domain-specific 

guidance for analyzing technical papers, software failure 

prediction studies, and IT initiatives. A scientific literature 

review aims to identify, evaluate, and interpret relevant 

research on a specific question, topic, or phenomenon. This 

study qualifies as a tertiary review, focusing on systematic 

reviews, which are secondary studies. The approach is 

divided into three phases: 

 

A. Planning Review Phase 

The planning phase ensures the SLR is thorough, objective, 

and methodical. It includes identifying the need for the 

review, defining study subjects, and developing a robust 

review methodology. 

 

Objectives of the Systematic Literature Review 

This literature study seeks to compile and evaluate the vast 

body of knowledge on system logs by understanding their 

importance in scientific research, learning how to prepare the 

logs before using them in any research, understanding the 

different machine learning models used in software failure 

prediction and their weaknesses, and exploring the different 

attributes that a log can have, along with methods for 

interpreting its actual message to classify the log. Lastly, it 

aims to identify the different types of system logs that can be 

used for log classification. This work will contribute to 

improving software failure prediction in case the researcher 

wants a better understanding of logs. It will foster innovation 

and future research and can also guide researchers in 

determining which types of logs to focus on when 

conducting research. According to Barbara Kitchenham's 

original guidelines (2007), Figure 1 shows the phases that 

have been followed in conducting the systematic literature 

review. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Barbara Kitchenham's original guidelines (2007) 

 Research Questions 
To achieve the objectives of this research, several key 

research questions were formulated to guide the investigation 

and ensure comprehensive coverage of the topic. The 

following primary research questions served as the basis for 

this review paper: 

RQ1: Which machine learning models have used system 

logs to detect software failures, and what are their 

weaknesses  

RQ2: Which log parameter attributes can be used to 

predict software failures? 

 

 

Planning Review 

 

 

1. Identify the need for a systematic review. 

2. Formulate research goals and questions. 

3. Identify relevant keywords. 

4. Identify the sources of literature. 

5. Define the inclusion and exclusion 

criteria. 

6. Establish the data extraction strategy. 

Conducting Review 

 

 

7. Identify relevant research. 

8. Select studies. 

9. Assess study quality. 

10. Extract and monitor data. 

11. Synthesize data. 

Reporting Results 

 12. Write a review report. 
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Search Phrases and Sources 

A stepwise analysis of system logs was conducted using 

well-known paper indexing engines. Some of the search 

strings used include "system logs," "log collection," "log 
parsing," "log anomaly," "feature extraction," "machine 

learning," and "software failure." The search engines used in 

this paper are listed in Table 1: 

 

Table 1: Search engines 

Finding Engine  Source Address 

Semantic Scholar  https://www.semanticscholar.org/ 

Scopus https://www.scopus.com 

Science Direct  https://www.sciencedirect.com/ 

ACM Digital Library https://dl.acm.org 

IEEE Xplore  https://ieeexplore.ieee.org/ 

SpringerLink https://link.springer.com 

Research Gate  https://www.researchgate.net/ 

Google Scholar  https://scholar.google.com 

 

B. Conducting Research  

The following processes were undertaken throughout the 

review: eligibility criteria, the search process, study 

selection, data collection process, inclusion and exclusion 

criteria, and synthesis methods. 

 

Eligibility Criteria 

This section defines the inclusion and exclusion criteria for 

the literature review and outlines how studies were 

categorized for synthesis. These criteria establish the scope 

of the review, ensuring that only the most relevant studies 

are included in the data analysis. The selection process for 

articles in the Systematic Literature Review was conducted 

in three stages: initial selection based on the title, second 

selection through abstract reading, and final selection after 

reviewing the full paper. The inclusion and exclusion criteria 

used in this research are as follows: 

a) Articles on existing software failure detection. 

b) Articles using system logs and relevant to the 

machine learning field. 

c) Only the most recent versions of articles (if 

available) are considered. 

d) Articles published between 2016 and 2024 are 

included. 

e) Only peer-reviewed journal publications or 

conference proceedings are considered. 

f) Articles, papers, and journals that are not peer-

reviewed journal or conference publications are 

excluded. 

 

Search Process 

"Search criteria" refers to the specific terms, parameters, or 

conditions used to define and narrow down search results, 

whether in a search engine or database. Well-defined criteria 

ensure that only the most relevant information is retrieved. 

For instance, keywords were used to focus the search. These 

included terms such as "software failure," "failure 

prediction," "system logs," "log parsing," "feature 

extraction," "logs," "anomaly detection," and "machine 

learning." Filters were also applied to refine the results by 

specifying the publication timeframe. Only journal papers 

published between 2016 and 2024 were considered, as the 

researcher was interested in the most recent advancements in 

the field. The papers were then screened for relevance, 

focusing on their titles, abstracts, and keywords. Following 

this, a snowballing method was employed to expand the pool 

of relevant studies. This included both backward snowballing 

which involved examining the reference lists of selected 

studies and forward snowballing which involves analyzing 

citations to these papers to uncover additional relevant 

publications. 

 

Data Extraction Synthesis 

To identify the most recent models, journal papers published 

between years 2016–2024, were reviewed. Table 2 and the 

pie chart present the number of papers selected from each 

academic database during this period. 

 

Table 2: No. of papers selected 

 
Academic Databases  No of Journal Papers 

Reviewed  

IEEE  55 

Elsevier  15 

SPRINGER  16 

ACM Digital library  14 

Citeseer Library  7 

arXiv.  19 

Wiley  6 

Total  122 

 
The article's abstract was gathered as a key component in the 

first phase of the analysis. To address the research questions, 

specific sections of the selected papers were considered, 

including the abstract, introduction, literature review, and 

results sections. The process for deciding whether to include 

an article in the final review was carried out in two stages. 

First, each abstract was read and classified as either relevant 

or not, based on its alignment with the search phrases. The 

relevance of each abstract was evaluated by comparing it to 

predefined search criteria. 

 

The review also considered factors such as the authors, 

publication date, article type (e.g., journal or conference 

proceeding), technique-based taxonomy, and datasets. These 

details were crucial for answering the research questions. 

Figure 2 presents a flowchart illustrating the article and 

paper selection process. 
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C. Reporting and Review 

This section discusses the responses to our research 

questions based on the papers reviewed. Specifically, it 

examines the, models used in software failure prediction, and 

classification of logs. The research findings are structured as 

follows in alignment with the research questions 

 

4.RESULTS 

 

RQ1: What are machine learning models for predicting 

software failures? 

The first objective of research was to analyze the existing 

machine learning (ML) models that have been utilized to 

detect software failures using system logs. Table 3 provides a 

comparative summary of these models, highlighting the ML 

or deep learning (DL) algorithms employed, the types of log 

mining techniques used, datasets utilized, evaluation metrics 

applied, and notably, the specific weaknesses of each 

approach.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Flowchart for selection of journal papers 
 

Table 3: Machine Learning Models for Predicting Software Failures 

Publication Underlying DL 

& ML models 

Log Mining 

Technique 

Datasets Metrics Weakness 

Banjongkan et al. 

[25] 

Decision Tree: 

C5.0, CART & 

CHAID 

N/A Los Alamos 

National 

Laboratory 

(LANL) & 

National Electronic 

and Computer 

Technology Center 

(NECTEC) 

Prediction Acc. 

Recall, 

Precision, F1 

Score 

- It focused focusing on point of 

failure and scalability issues. 

- increase generalizability of the 

model, network logs 

-  

Ali et al. [30] SVM, k-Means 

Clustering 

Waikato 

Environment for 

Knowledge 

Analysis 

(WEKA) 

WEKA log files False Positive 

Rate (FPR), 

True Positive 

Rate, Precision, 

Recall, F-

- Did not consider scalability issues 

- It used only one type of logs that 

is workload logs.Therefore should 

work on the ability to use 

different logs parameters to detect 

Identification 

stage 

Records discovered though 
database searching (j=96) 

Journals after removal 
of duplicates 

(J=76) 

screening 
stage 

Screened 
records 
(j=76) 

Journal papers 
excluded dues to 
titles/abstract. 

Removed (j=40) 

Papers selected 

after screening 

(j=36) 

Additional 
papers 

screened 
through 

snowballing 
(j=16) 

Papers excluded j=10 
Articles additionally 

selected (j=6) 

Eligibility 
stage 

Full articles 
assessed for 

eligibility j=42 

Other articles 
excluded for 

other reasons 
J=1 

Included 
stage 

Articles included I 
the research j=41 



Juliet Gathoni Muchori et al .,  International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June  2025, 157 - 170 

163 

 

Measure, RoC 

Curve 

failures 

B. Mohammed et al. 

[31] 

SVM, RF, Linear 

Discriminant 

Analysis (LDA), 

CART, KNN 

N/A NERSC I/O failure 

data. 

Prediction Acc. 

Sensitivity ROC 
- The model relied on one type of 

log that is system component 

failure logs and also did not 

consider time parameter in its 

feature selection despite it being 

tested with different machine 

learning algorithms. 

- It mostly considered the accuracy 

of the algorithms. 

 

Lu et al. [32] k-Means Word count Spark Log Files Prediction Acc. - Data used was too small and 

caused overfitting. 

- Used one type of log parameters 

which is resource log. Therefore 

should work on the ability to use 

different logs parameters to 

detect failures 

- Did not consider scalability of the 

model which can lead to future 

growth. 

Savaranan and 

Sangeetha [29] 

Hyper Basis 

Function Neural 

Network 

(HBFNN 

N/A Blue Gene/p 

intrepid system 

False Positive 

Rate (FPR), 

Time 

Complexity 

- The dataset used was made from 

workload event logs from the 

Blue Gene/p intrepid system. 

- lacked scalability issues. 

Lin et al. [28] LSTM & 

Random 

Classifier (RF) 

N/A Microsoft cloud 

system logs 

Precision, recall, 

F1 
- Its weakness was that it focused 

on resources logs only, therefore 

should wotk on the ability to use 

different logs parameters to detect 

failures 

Wang et al. . [33] PCA-Q, Logistic 

Regression, 

SVM 

N/A HDFS logs Prediction Acc. 

Recall, F1 Score 

- Scalability issues 

- Generalizability issues 

Gao and others [11] Bi-LSTM, LR N/A Google Cluster 

Trace Logs 

F1 Score, 

Receiver 

operating 

Characteristic 

(RoC) Curve, 

Time-cost 

overhead, 

Prediction Acc. 

- It used workload log type of data 

only so the scope was limited to 

one type of failure in the clouds 

- Never considered future growth in 

terms of wider logs coverage. 

Aarohi Framework 

[34] 

LSTM Regular 

expression, Parser 

HPC logs: Cray 

XK & BlueGene/P 

Prediction Acc. - Scalability issues 

- Generalizability issues 

Jingweng et al.[16] Decision Tree 

(DT), RF, kNN 

GBDT, LR 

N/A System logs of IT 

financial system 

server clusters 

F-Score, 

Precision, 

Recall 

- The main weakness of the model 

was that it would only detect 

software failure using resource 

parameter. 

Brown et al. [6] RNN, Attention 

mechanism 

Language 

Modelling- 

Tokenization 

Los Alamos 

National 

Laboratory 

(LANL) -Network, 

DNS and 

Authentication logs 

AUC-RoC 

Curve Score 
- Its main weakness is that it 

focused on a single parameter 

which limits future growth of the 

model. 

Nam [9] CNN Word2vec Openstack logs 

simulation 

Prediction Acc. - It uses workload logs only so 

failure to use different logs limits 

future growth of the model in 

relation failure prediction. 

Mantyla et al. [13] LSTM, N-

GRAM 

N/A HDFS, Profilence 

Dataset 

F-Score & 

Prediction Acc. 
- Focused on comparing the 

performance of N-Grams and 

Deep leaning to figure out which 

one uses lesser time to predict 

errors and which is more accurate. 

It gave less concentration on 
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future growth which can be 

shown through scalability 

- Used only one log parameter in 

the comparison in system logs. 

- Focused more on the performance 

of different machine learning 

algorithms rather than failure 

prediction 

Benaddy at al. [7] RNN N/A Failure data from 

commercial, word 

processing apps 

Prediction Acc. - It used security logs only.  

- Was limited to numerical events 

only and it did not use text-based 

logs. 

Das et al., [10] [12] the LSTM 

combined with 

RNN 

of events 

augmented with 

expected lead 

time to failure.  

Controller 

(bcsysd), 

Boot-logs, SEDC 

differ from XE 

Recall 

Precision 

- Challenges is that it focused node 

failure using resources logs only  

- There is need to work on the 

continuous learning ability of a 

model 

As indicated in Table 3 a consistent pattern observed is the 

reliance on a single type of log parameter—such as 

workload, resource, hardware, or network logs without 

integrating multiple log types for more comprehensive 

failure prediction. For instance, models like those proposed 

by Ali et al. [37], Lu et al. [39], and Gao et al. [11] 

predominantly rely on workload logs, limiting their scope 

and potentially reducing the robustness of failure detection 

when dealing with diverse system environments. Similarly, 

other studies such as those by B. Mohammed et al. [38] and 

Lin et al. [25] utilize only resource logs or system 

component failure logs, often without incorporating time-

related parameters or other contextual information, which 

may affect prediction accuracy and limit scalability. 

In addition, several approaches such as those presented by 

Jingweng et al. [16] and Brown et al. [15] focus on specific 

parameter types (e.g., resource logs or network logs), which 

hampers generalizability and adaptability to broader 

software environments. The models developed by Savaranan 

and Sangeetha [24] and Aarohi Framework [40] also suffer 

from scalability challenges, suggesting a need for solutions 

that can scale effectively in high-performance computing 

(HPC) or cloud environments. Overall, the analysis reveals 

that while there has been substantial progress in the use of 

ML for log-based software failure detection, most existing 

models suffer from limitations related to generalizability, 

scalability, and limited use of log parameter diversity. Future 

research should aim to develop classifiers for instance a 

multiple log parameter classifier using a Random Forest 

algorithm that can integrate diverse log types to improve the 

robustness, scalability, and accuracy of software failure 

detection systems. 

RQ 2: Which are the Log Parameter Attributes to 

Predict Software Failures? 

The second objective  of this study the key system log 

parameters and their attributes that can be used to predict 

software failure.  The classification and understanding of log 

parameters are crucial in the development of reliable 

machine learning models for software failure detection. 

Table 4 outlines four primary types of log parameters 

commonly found in system logs: security logs, workload 

logs, network logs, and resource or hardware logs. Each log 

type provides unique and complementary insights into the 

software environment, and collectively, they can greatly 

enhance the ability of a classifier to detect and predict 

failures accurately. 

 

Table 4: Types of System Log Parameters and Key Attributes 

Log Type Description  Key Attributes  No. of 

References 

in the 

Literature 

Security 

logs 

Handle data that is 

related to the security 

of the software. This 
data shows 

irregularities that may 

appear if unauthorized 
personnel access the 

software. It holds the 

time of access, device 
mac addresses, Source 

user, Destination user, 

Source pc, 
Destination pc, 

Authentication type, 

Logon type, 
Authentication 

orientation, 

Success/failure.  
 

Unauthorized 

Access Logs [8], 

[11], [18],  [19], 
[41] 

5 

Intrusion 

Detection Logs 
[18], 11], [18], 

[19] 

 

4 

Malware Activity 
Logs [8], [11], 

[18], [19], [41] 

5 

Authentication 

Failure Logs [8], 

[11], [18],  [19], 

[41] 

5 

Security Patch 
Logs [11], [18], 

[19],  [41] 

4 

Workload 
logs 

Dataset was as a 
result of classes, 

functions and other 

parts of programming 
weakness that caused 

the failure of the 

software. These 
failures arise because 

of poor programming 

and are mostly found 
during testing. When 

the software is not 

well tested, then the 

Traffic Load 
Logs [2], [11], 

[15], [35] 

4 

Transaction 
Processing Logs 

[2], [5], [29], 

[30],[35} 

5 

Response Time 
Logs [2], [5], 

[12], 30] 

4 

System Overload 

Logs 5], [12], 

[35] 

3 
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failure occurs. Workload 

Balancing 
Logs[2],  [5], 

[38] 

3 

Network 

log 

Network logs are 

structured records of 
events and activities 

associated with 

network 
communications 

within a computer 

network. These logs 
provide insights into 

network traffic 

patterns, security 
incidents, 

performance metrics, 

and network device 
activities, facilitating 

network monitoring, 

troubleshooting, and 
security analysis 

Latency Logs [2], 

[5], [14], [36] 

4 

Bandwidth 
Utilization Logs 

[5], [14], [36] 

3 

Packet Loss Logs 

[2], 5], [14], [36] 

4 

Connectivity 
Logs [2], 5], [14], 

[36] 

4 

Network Error 

Logs [2], 5], [14], 
[36] 

4 

Resources 

or 
Hardware’

s logs 

Are datasets that were 

as a result of failure in 
devices needed for the 

running of the 

software. This device 
may include the CPU, 

Memory, Network 

and Disk I/O devices. 

CPU Usage Logs 

[5], [10], [11], 
[13], [28], [36] 

3 

Memory 

Utilization Logs 
[5], [10], [11], 

[13], [36] 

5 

Disk Space Logs 

[5], [10], 
[13],[36] 

4 

Power Supply 

Logs [5] 

1 

  Process 
execution logs. 

5], [10], [13] 

3 

 

As indicated in Table 4, security logs play a vital role in 

monitoring access-related anomalies. They include details 

such as the time of access, MAC addresses of devices, 

authentication types, and success or failure of login attempts. 

This log type is instrumental in identifying security breaches 

or unauthorized access, which could potentially lead to 

system compromises or software failures. Despite their 

value, many machine learning models have yet to fully 

incorporate security logs in failure prediction, thus missing 

out on detecting failures caused by external intrusions or 

internal misconfigurations. Workload logs, on the other 

hand, capture the software’s operational behavior, especially 

during testing or runtime. These logs highlight functional 

weaknesses, such as programming errors or faulty logic, 

which may not be discovered until later stages of 

development. They are particularly important for models 

focused on detecting software bugs or malfunctions that 

stem from poor coding practices or insufficient testing. 

Network logs contribute to a different dimension, offering 

visibility into the interactions and communications within a 

system’s network. They record data related to IP addresses, 

protocol usage, packet transmission, and device activity. 

Analyzing these logs helps identify failures arising from 

network disruptions, latency issues, or unauthorized network 

activity. Yet, models that focus only on network logs tend to 

overlook software faults not related to connectivity or 

communication errors. Lastly, resource or hardware logs 

monitor the performance and health of physical and virtual 

components, such as the CPU, memory, and disk I/O. These 

logs are essential for detecting hardware-induced failures 

that could severely impact software performance. However, 

relying solely on these logs could result in overlooking 

software-related anomalies unrelated to hardware 

performance. 

 

Empirical Validation 

To empirically validate the findings, a survey was conducted 

using a questionnaire to gather expert opinions on systems 

and their attributes, to determine whether the information 

from literature aligned with expert perspectives. The 

questionnaire attracted 55 more respondents from different 

disciplines, such as Technologists, Network Engineers, 

Security Analysts, Data Scientists, Data Analysts, Software 

Developers, Cloud Engineers, IT Consultants, and others, 

with varying levels of experience ranging from 1-5 years, 6-

10 years, 11-15 years, and over 16 years. To ensure more 

reliable results, the researcher chose to eliminate responses 

from interns and attachment people reducing the number to 

52 respondents whose responses were used to validate the 

literature. Figure 3 illustrates the years of experience of the 

52 experts while figure 4 indicates their areas of 

specialization. 

 

Figure 3: Experts years of experience  

 

Figure 4: Experts area of specialization 
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Following the reliability test, as shown in Figure 5.the 

Cronbach’s Alpha was found to be 0.842, which was 

regarded as acceptable. Generally, a value above 0.7 is 

considered adequate for research, while higher values, 

particularly between 0.8 and 0.9, signal stronger reliability. 

With a value of 0.842, the result indicates high reliability, 

suggesting that the 20 items on the scale are consistently 

measuring the same construct with great effectiveness. 

 
Figure 5: Reliability test for the Questionnaire 

 

System Log Parameter Attributes to Predict Software 

Failures 

Table 5 results summarized the relevance of various system 

log parameter attributes in predicting software failures. 

Respondents rated each parameter attributes based on their 

perceived effectiveness in comparison with no. of references 

in the literature 

 

Table 5: Relevance of various log parameters attributes in predicting software failures 

 Respondents Expert Mean Expert Std. Deviation 

"CPU Usage Logs High CPU usage logs indicate potential system 

failure risks." 

52 4.77 .807 

"Memory Utilization Logs Memory exhaustion logs are a key 

predictor of software crashes." 

52 4.75 .682 

"Disk Space Logs Logs showing low disk space often correlate with 

system instability." 

52 4.65 .789 

"Power Supply Logs Resource logs capturing power fluctuations are 

useful in predicting system failures." 

52 4.12 .855 

"Process Execution Logs Logs indicating excessive process execution 

time are a sign of potential system failure." 

52 4.65 .905 

"Traffic Load Logs Logs showing peak user loads correlate with 

software performance degradation." 

52 4.73 .689 

"Transaction Processing Logs System failures increase when 

workload logs indicate high transaction volumes." 

52 4.65 .789 

"Response Time Logs Logs showing prolonged response times are a 

sign of potential system crashes." 

52 4.54 .896 

"System Overload Logs Excessive workload logs often precede 

software failures." 

52 4.67 .785 
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"Workload Balancing Logs Logs indicating poor workload balancing 

can predict software breakdowns." 

52 4.52 .874 

"Latency Logs High latency in network logs is a strong predictor of 

software failure." 

52 4.31 1.164 

"Bandwidth Utilization Logs Insufficient bandwidth logs often 

indicate impending system failure." 

52 4.58 .997 

"Packet Loss Logs Frequent packet loss logs correlate with degraded 

software performance." 

52 4.63 .971 

"Connectivity Logs Logs showing frequent connection failures often 

precede software crashes." 

52 4.44 .978 

"Network Error Logs High occurrences of network errors in logs are 

a sign of potential system failure." 

52 4.63 .768 

"Unauthorized Access Logs Logs showing multiple unauthorized 

access attempts are linked to system vulnerabilities." 

52 4.56 .850 

"Intrusion Detection Logs Security logs detecting frequent intrusion 

attempts are a precursor to software failure." 

52 4.60 .934 

"Malware Activity Logs Logs indicating malware infections are a 

major predictor of software crashes." 

52 4.69 .673 

"Authentication Failure Logs A high number of failed logins in 

security logs is associated with system risks." 

52 4.06 .958 

"Security Patch Logs Infrequent security updates in logs increase 

software failure risks." 

52 4.56 .938 

Valid N (listwise) 52   

 

As exhibited in Table 5, CPU usage logs (4.77), memory 

utilization Logs (4.75), traffic load logs (4.73), malware 

activity logs (4.69), and system overload logs (4.67) 

received the highest ratings, consequently, these logs are 

considered as strong predictors of software performance 

failure due to their direct link to system resource exhaustion 

and abnormal usage patterns. Response time logs (4.54), 

connectivity logs (4.44), and power supply logs (4.12) were 

rated slightly lower but still indicate meaningful 

contributions to early failure detection. Authentication 

failure logs (4.06) was perceived as less impactful in failure 

prediction, potentially due to its more specific relevance to 

security incidents than to system stability. 

 

Pearson Correlation Test Between Literature and Expert 

Opinions  

To further assess the alignment between expert opinion and 

literature review, a correlation analysis was conducted as 

indicated in Table 6. 

 

 

 

Table 6: Pearson Correlation Test Between Literature and 

Expert Opinions 

 Literature Expert 

Literature 

Pearson 

Correlation 
1 .479* 

Sig. (2-tailed)  .032 

N 20 20 

Expert 

Pearson 

Correlation 
.479* 1 

Sig. (2-tailed) .032  

N 20 20 

*. Correlation is significant at the 0.05 level (2-tailed). 

As indicated in Table 6 the correlation coefficient is 0.479 

with a p-value of 0.032, indicating a moderate but 

statistically significant positive relationship. This means that 

attributes commonly cited in academic and industry 

literature also tend to be rated highly by experts, suggesting 

consistency and validation between theoretical frameworks 

and practical expertise. 

5.CONCLUSIONS AND FUTURE WORKS 

The study was designed around two primary research 

questions. The first aimed to investigate the machine 

learning algorithms and datasets employed in software 
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failure prediction, as well as to identify the limitations of 

these models. The second sought to examine the attributes of 

various log parameters identified in the literature. The study 

finding revealed that various models ranging from traditional 

algorithms like SVM and Decision Trees to deep learning 

approaches such as LSTM, RNN, CNN, and Bi-LST have 

been applied to different types of logs. However, many of 

these models suffer from limitations such as reliance on a 

single type of log, scalability issues, lack of generalizability, 

and neglect of critical parameters like time and context. 

Through an empirical validation involving ICT professionals 

from diverse specializations, the study confirmed the 

significance of twenty log attributes in predicting software 

failures. The analysis highlights that log types such as 

security, workload, resource, and network logs all play vital 

roles. Parameters like CPU and memory usage, transaction 

volumes, malware activity, and unauthorized access attempts 

were consistently rated highly, indicating their practical 

utility in early failure detection. Also, different types of 

system logs require different analytical models depending on 

their specific characteristics. For instance, workload logs 

may require models focused on anomaly detection, while 

security logs may be better suited for classification models. 

This theory contributes to the analytical perspective by 

highlighting the importance of context-based model 

selection, guiding practitioners to choose the most 

appropriate machine learning models for the type of data 

they are analyzing. This ensures that predictive models are 

tailored to the specific context of the logs, optimizing their 

performance. 

In conclusion, the diversity of system log parameters 

provides a strong foundation for developing robust machine 

learning classifiers and models. The major limitation in 

many existing models is their reliance on a single log type, 

which constrains their effectiveness and scalability. To 

overcome this, integrating multiple log parameters—as 

suggested in the proposed multiple log parameter classifier 

using a Random Forest algorithm—could significantly 

improve the accuracy, generalizability, and resilience of 

failure detection systems across different environments and 

use cases. 

Building on these findings, several directions for future work 

are proposed: Future models should integrate multiple types 

of log-resource, workload, network, and security, rather than 

relying on a single source. This will enhance the 

generalizability and accuracy of failure predictions. 

Upcoming research should focus on incorporating time-

based parameters and contextual relationships within logs to 

improve the interpretability and precision of ML models. By 

addressing these areas, future research will not only improve 

software reliability and reduce downtime but also contribute 

to more intelligent and self-healing computing systems. 
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