
Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

157

System Log Parameter Attributes for Predicting Software

Failures: Systematic Literature Review

Juliet Gathoni Muchori
1
, Gabriel Ndung’u Kamau

2
, Rachael Ndung’u

3

Department of Information Technology, Murang’a University of Technology, Kenya

jmuchori@mut.ac.ke, gkamau@mut.ac.ke, rndung’u@@mut.ac.ke

Received Date: April 18, 2025 Accepted Date: May 24, 2025 Published Date: June 06, 2025

ABSTRACT

The early prediction of software failure is important in the

field of software engineering since it leads to the

development of better quality software, along with a

reduction in maintenance cost and effort. However, even

though there is growing interest in early prediction of

software failure, the existing literature shows some gaps.

While many studies are quite reliant on static code metrics

or test case execution data, they tend to miss out on vital

dynamic and contextual information which can be obtained

by analyzing software system logs. Log data is regularly

created by computing systems during their runtime and

contains rich information including event sequences,

timestamps, error messages, and system states that can

potentially being utilized in the identification of anomalies

and predictions of failures on real-time. The objective of this

work is to categorize the existing literature on the use of

system logs for predicting software, through systematic

literature review, with the help of the guidelines from

Barbara Kitchenham. The review categorizes system logs

into four primary parameters: resource/hardware logs,

workload/performance logs, network logs, and security logs.

It also highlights the machine learning models. The findings

reveal that log attributes such as CPU usage, memory

utilization, disk space, transaction processing, and network

errors are consistently identified as key predictors of

software failure. This finding aligns with expert opinions,

demonstrating strong agreement on the relevance of these

attributes for predicting software failure. This study

contributes to the growing body of knowledge on software

failure prediction, emphasizing the importance of integrating

machine learning with systematic log monitoring to enhance

proactive system failure management. Future work should

focus on developing real-time monitoring tools that leverage

machine learning models to automate failure detection and

prediction across various system components.

Key words :Machine learning, Log parameters, System logs,

software failure

1. INTRODUCTION

In today's world, software breakdown is very costly in large

and medium critical software systems. The size and

complexity of software’s make runtime errors unavoidable.

Companies that vend software’s such as Enterprise Resource

Planning (ERPs) or High-Performance Computing (HPCs)

solutions could benefit from accurate forecasting of software

failure. Timely prediction of impeding software failure

allows the root cause of the error to be corrected before it

impacts the software. Software failure describes the inability

of a program to function correctly due to erroneous logic. It’s

also referred to as a crash or software breakdown [1].

Software failure is the instant in time where a software

projects no longer meets its expectations [2]. Software

failures caused by hardware or software errors often result in

task and job failures. Such failures can severely reduce the

reliability of software, loss of customers, fatalities in critical

systems and could demand huge number of resources to

recover the service from failures [3].

Software defect prediction aids software engineers to detect

faulty constructions, such as modules or classes, early to

avoid losses that may result from a failed software and assist

to identify security, hardware and network problems.

Software fault prediction increases software quality and

minimizes maintenance effort [4]. It helps in obtaining the

preferred software quality with improved cost and effort [4].

System logs are used to identify runtime errors, diagnose the

root cause of software failure, troubleshoot runtime errors

and monitor software behaviors [5]. On some occasions, log

parameters can provide rich data for business decision

making. The parameters may be of different types such as:

security parameter logs which are used to keep logs related

to unauthorized access to the software [6], [7].The resource

parameter logs which keep track of how the devices such as

memory, random access memory (RAM), had disk and input

and/or output I/O devices are servicing the software. In case

they are almost full it detects and registers in the log or in

ISSN 2278-3091

Volume 14, No.3, May - June 2025

International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse061432025.pdf

https://doi.org/10.30534/ijatcse/2025/061432025

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

158

case the device fails it is recorded [8]. The other type of log

is the workload parameter logs which keep track of the

events and process coordinated in the software. It can detect

database connection failure, application failure, and
components communication failure, among others [9].

Finally is the hardware parameter logs which indicates

failure of peripherals serving the software’s and lastly the

Network parameter which shows failures to communicate

with the nodes in a network. The models using one

parameter are not able to detect failures caused by other

parameters

Several researchers have developed models for software

failure predictions For instance, recent works in this area

have focused mainly on machine learning techniques such as

RNN [7], LSTM [10], [11], [12] [13] and CNN [9]. The

researchers have majored in single parameters in each model.

By identifying the attributes of system log parameters for

predicting software failures, this study analyzes and

synthesizes existing literature to describe models that have

used system logs for software failure predictions,

highlighting their weaknesses, and categorize key parameters

that contribute to successful predictions.

2.RELATED WORKS

Systems Log Parameters

Extant literature classifies system log parameters into four

main categories namely: security, workload, network and

resources or hardware [14] [15] [16] [17] [18]. [19] [20].

Security log parameters include details like login

timestamps, user IDs, IP addresses, and whether the login

attempt was successful or failed. They can provide

information about denied or allowed connections, blocked IP

addresses, and attempted attacks. For example, unauthorized

access attempts, port scanning attempts. To mitigate against

failures due to errors in security log parameters, intrusion

detection/prevention System (IDS/IPS) Logs capture

information about potential threats detected by intrusion

detection or prevention systems [18] They help identify and

block malicious activities, such as unauthorized network

access, malware, or other attacks that include malware

detection, abnormal network traffic, intrusion attempts [15]

[16] [17].

Network log parameters capture information about network

traffic, including details such as source and destination IP

addresses, port numbers, protocols used (e.g., TCP, UDP),

packet sizes, and transmission timestamps. This data

provides visibility into the volume, type, and patterns of

network communications occurring within the network [20].

Network logs are structured records that document events

and activities related to network communications within a

computer network. They play a critical role in monitoring

traffic patterns, detecting security incidents, evaluating

performance, and tracking network device activities. These

logs capture detailed data such as IP addresses, port

numbers, protocols, packet sizes, and timestamps, offering

insight into the nature and volume of network interactions.

They also record security events like intrusion attempts,

malware infections, and unauthorized access, along with

activities from devices such as routers and switches [20].

Additionally, network logs support protocol analysis and

categorize events by severity to aid in prioritizing responses.

Hardware logs are essential records that capture runtime

information related to system hardware components [19].

These records contain events and activities generated by the

hardware components. These components include servers,

routers, switches, and physical devices within a computing

environment such as peripherals, chipsets, CPU (Central

Processing Unit), memory modules (RAM), storage devices

(hard drives, SSDs), motherboard, power supply unit (PSU),

and peripheral devices. All physical issues like component

failure, overheating and power issues can be termed

hardware problems. A typical hardware log usually contains

the following details: Timestamp describing when the event

occurred, event security level that categorizes the log as

either just information, warning or an error and it also

includes event details that describe the event that occurred in

detail. [18] [21] [22] [23]. Overall, hardware logs serve as

valuable diagnostic tools for identifying hardware failures,

troubleshooting issues, monitoring system performance, and

predicting potential hardware-related failures. By analyzing

hardware logs, system administrators can take proactive

measures to maintain system reliability and minimize

downtime [24]. Hardware logs also include storage logs

which structure records of events and activities associated

with storage devices and file system operations in a

computer system. These logs provide insights into the

performance, health, and usage of storage resources,

facilitating troubleshooting, monitoring, and optimization of

storage infrastructure [14]. These logs contain information

about data reads, writes, access permissions, and storage

health. Usually, a storage log record contains Timestamp that

indicates the day and the time the storage event occurred,

data access patterns that contain details about the read and

write operations while storage health metric field contains

data about the disk space, I/O latency and error rates.

Another important feature contained in storage logs is the

security event that provides record of access attempts and

change of permissions [14].

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

159

Machine Learning Models for Prediction Software

Failures

Several machine learning models have been developed to

predict software failures. For instance, Banjongkan and

others [25] developed a job failure prediction model in HPC

systems using the decision tree algorithm. Job failure was

predicted at two distinct states namely job submit, and job

start states. Workload logs from HPC systems were used to

train the decision tree. Ali and others [26] proposed a

machine learning model to classify and predict software

incidents. In their work, they considered an abnormal process

that disrupted operational procedures. Their technique used

an active learning approach to label data that was appropriate

for building the model. K Means clustering was used to do

unsupervised labelling of the data through clustering [26]

The labelled logs were then fed to the SVM to predict the

failure. It classified results into groups It used workload logs

only which had attributes which consisted of date and time,

source, EventID and Task category. The model had some

weaknesses such as did not consider scalability issues, used

only one type of logs that is workload logs which gotten

from ECLIPSE software repository and never considered

scalability in future. A study done by Mohamed and others

[27] used machine learning to predict failure in HPC systems

and their applications. Their model considered system

components failure datasets which are under workload

dataset where he considered the use of time series and ML

algorithms to predict failure of all applications and system

components. It was noted that a process could have failed

due to several reasons such as hardware, software, human

error, network and undermined.

Das et al., [10] [12] implemented the LSTM combined with

RNN and LSTM models respectively to detect node failure.

Node failure is termed as any abnormal shutdown that may

occur on a node due to software or hardware problems. It

would identify log events that would lead to failure, predict

which specific node would fail and for how many minutes,

retrain chain recognition of events augmented with expected

lead time to failure. The study focused on resources logs due

to hardware. Gao and others [11] developed a model to

predict task failure in cloud data centers. The model was

based on bi-directional LSTM to identify job failures and

forecast their occurrence. Bi-LSTM model contains one

input layer, Bi-LSTM layer and logistic regression layer for

classification. The jobs termination status of the tasks is

classified based on the task attributes and performance data.

Their model used data center logs from Google cluster trace.

It displayed whether a task or a job has failed or completed.

It used workload log type of data.

Convolutional Neural Networks (CNN) was used to make a

model predict and alert failure risk failure of virtual

machines using log analysis. Nam [9] developed the model

to preprocess the failure using constant time gap. The model

learns to calculate the probability that a failure will occur

after gap minutes based on the input window size of the

input logs. The model preprocesses the failure messages

using word embeddings, then the embedded words were fed

as input to train the CNN model. The input had constant time

gaps that were used to ensure the CNN can calculate the

probability of failure after some gap minutes. Google

word2vec was used for word embeddings to form a log

corpus. The dataset and failure injections were simulated

using OpenStack. It uses workload logs. The challenge it

faces is failure to use different logs to allow future growth in

failure prediction.

Lin et al [28] proposed a hybrid system that combined LSTM

and Random Forest Classifier to forecast the failure of a

node in the cloud service system using a variety of attributes

such as disk sector error logs, service error, rack location,

load balancer group, IO response and the OSBuildGroup.

The dataset was borrowed from Microsoft Cloud System

logs from a live production environment. LSTM model

handles the temporal and spatial features of the data to

provide the predicted sequence. The sequence was ranked

using Random Forest and the cost-sensitive function was

used to make classifications [28].Its weakness was that it

focused on resources logs only. Another model that

combines several algorithms is Jingweng Wang et al. [8].

This technique utilized several machine learning algorithms

to predict anomalies in financial Information Technology

systems. It had KPI (Key performance indicators) which

would record the usage of the CPU, disks, and the memory

for each of the servers at all-time thus producing time series

data of KPIs. Incase an anomaly would occur it would be

recorded. Therefore, the system log parameter used to detect

software failure was resource parameter. A hierarchy of

classifiers was used with Random Forest classifier at the data

prediction phase while the anomaly detection module used

Decision Tree (DT), RF Classifier, KNN, Gradient Boosting

Decision Tree (GBDT) and Logistic Regression (LR).

Outputs of DT, RF, KNN, GBDT were fed to the LR

classifier that determined the severity of the failure while the

KNN model was used at the end of the model to classify

anomalies with different severity [4]. The main weakness of

the model was that it would only detect software failure

using resource parameters.

Also, Brown et. al [6] developed a log anomaly detection

technique that leveraged the combined strengths of Recurrent

Neural Networks and Attention Based Mechanisms. Their

solution was unsupervised since the logs were not labelled.

Language modelling was applied to the logs to assign

probabilities to sequences and tokenization was used to break

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

160

down the log lines into words and characters. The LSTM

model was fed the preprocessed logs, and it predicted the

sequences. LSTM model was optimized by dot product

attention to be selective to the relevant tokens. This feature

allowed the model to access the relevant information with

ease while making predictions. Their model used a public

dataset drawn from the Los Almos National Laboratory

(LANL), of network traffic, authentication info and DNS

logs from a vast 58 billion logs [6]. It used authentication

logs which consisted of attributes like Source user,

Destination user, Source pc, Destination pc, Authentication

type, Logon type, Authentication orientation,

Success/failure. Its main weakness is that it focused on a

single parameter which limits future growth of the model.

Hybrid models combine the strength of several learning

techniques through a combination of several ML algorithms

or DL models or both. For instance, Savaranan and

Sangeetha [29] combined the power of Adaptive

Dimensional Search based Particle Swarm Optimization

(ADS-PSO) with the Hyper Basis Function Neural Network

to improve its prediction accuracy while predicting software

failure. It used the events logs of a task to determine the

degree of accuracy and classified the result into two. The

Saravanan hybrid model [29] used event logs to predict

software failure. The initial stage of their model [29], used

the Hyper Basis Function Neural Network (HBFNN), which

is a three-layered feed-forward neural network. The

classification weights drawn from the neural network were

optimized further using the ADS-PSO algorithm to minimize

the cost of misclassification. The dataset used was made

from workload event logs from the Blue Gene/p intrepid

system. The challenge was lack of scalability.

3.RESEARCH METHOD

This research employs a systematic literature review (SLR)

methodology based on Barbara Kitchenham's original

guidelines (2007) to comprehensively analyze and synthesize

the existing literature on importances of system logs in

predicting software failure. These guidelines were chosen for

their relevance to system logs, providing domain-specific

guidance for analyzing technical papers, software failure

prediction studies, and IT initiatives. A scientific literature

review aims to identify, evaluate, and interpret relevant

research on a specific question, topic, or phenomenon. This

study qualifies as a tertiary review, focusing on systematic

reviews, which are secondary studies. The approach is

divided into three phases:

A. Planning Review Phase

The planning phase ensures the SLR is thorough, objective,

and methodical. It includes identifying the need for the

review, defining study subjects, and developing a robust

review methodology.

Objectives of the Systematic Literature Review

This literature study seeks to compile and evaluate the vast

body of knowledge on system logs by understanding their

importance in scientific research, learning how to prepare the

logs before using them in any research, understanding the

different machine learning models used in software failure

prediction and their weaknesses, and exploring the different

attributes that a log can have, along with methods for

interpreting its actual message to classify the log. Lastly, it

aims to identify the different types of system logs that can be

used for log classification. This work will contribute to

improving software failure prediction in case the researcher

wants a better understanding of logs. It will foster innovation

and future research and can also guide researchers in

determining which types of logs to focus on when

conducting research. According to Barbara Kitchenham's

original guidelines (2007), Figure 1 shows the phases that

have been followed in conducting the systematic literature

review.

Figure 1: Barbara Kitchenham's original guidelines (2007)

 Research Questions
To achieve the objectives of this research, several key

research questions were formulated to guide the investigation

and ensure comprehensive coverage of the topic. The

following primary research questions served as the basis for

this review paper:

RQ1: Which machine learning models have used system

logs to detect software failures, and what are their

weaknesses

RQ2: Which log parameter attributes can be used to

predict software failures?

Planning Review

1. Identify the need for a systematic review.

2. Formulate research goals and questions.

3. Identify relevant keywords.

4. Identify the sources of literature.

5. Define the inclusion and exclusion

criteria.

6. Establish the data extraction strategy.

Conducting Review

7. Identify relevant research.

8. Select studies.

9. Assess study quality.

10. Extract and monitor data.

11. Synthesize data.

Reporting Results

 12. Write a review report.

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

161

Search Phrases and Sources

A stepwise analysis of system logs was conducted using

well-known paper indexing engines. Some of the search

strings used include "system logs," "log collection," "log
parsing," "log anomaly," "feature extraction," "machine

learning," and "software failure." The search engines used in

this paper are listed in Table 1:

Table 1: Search engines

Finding Engine Source Address

Semantic Scholar https://www.semanticscholar.org/

Scopus https://www.scopus.com

Science Direct https://www.sciencedirect.com/

ACM Digital Library https://dl.acm.org

IEEE Xplore https://ieeexplore.ieee.org/

SpringerLink https://link.springer.com

Research Gate https://www.researchgate.net/

Google Scholar https://scholar.google.com

B. Conducting Research

The following processes were undertaken throughout the

review: eligibility criteria, the search process, study

selection, data collection process, inclusion and exclusion

criteria, and synthesis methods.

Eligibility Criteria

This section defines the inclusion and exclusion criteria for

the literature review and outlines how studies were

categorized for synthesis. These criteria establish the scope

of the review, ensuring that only the most relevant studies

are included in the data analysis. The selection process for

articles in the Systematic Literature Review was conducted

in three stages: initial selection based on the title, second

selection through abstract reading, and final selection after

reviewing the full paper. The inclusion and exclusion criteria

used in this research are as follows:

a) Articles on existing software failure detection.

b) Articles using system logs and relevant to the

machine learning field.

c) Only the most recent versions of articles (if

available) are considered.

d) Articles published between 2016 and 2024 are

included.

e) Only peer-reviewed journal publications or

conference proceedings are considered.

f) Articles, papers, and journals that are not peer-

reviewed journal or conference publications are

excluded.

Search Process

"Search criteria" refers to the specific terms, parameters, or

conditions used to define and narrow down search results,

whether in a search engine or database. Well-defined criteria

ensure that only the most relevant information is retrieved.

For instance, keywords were used to focus the search. These

included terms such as "software failure," "failure

prediction," "system logs," "log parsing," "feature

extraction," "logs," "anomaly detection," and "machine

learning." Filters were also applied to refine the results by

specifying the publication timeframe. Only journal papers

published between 2016 and 2024 were considered, as the

researcher was interested in the most recent advancements in

the field. The papers were then screened for relevance,

focusing on their titles, abstracts, and keywords. Following

this, a snowballing method was employed to expand the pool

of relevant studies. This included both backward snowballing

which involved examining the reference lists of selected

studies and forward snowballing which involves analyzing

citations to these papers to uncover additional relevant

publications.

Data Extraction Synthesis

To identify the most recent models, journal papers published

between years 2016–2024, were reviewed. Table 2 and the

pie chart present the number of papers selected from each

academic database during this period.

Table 2: No. of papers selected

Academic Databases No of Journal Papers

Reviewed

IEEE 55

Elsevier 15

SPRINGER 16

ACM Digital library 14

Citeseer Library 7

arXiv. 19

Wiley 6

Total 122

The article's abstract was gathered as a key component in the

first phase of the analysis. To address the research questions,

specific sections of the selected papers were considered,

including the abstract, introduction, literature review, and

results sections. The process for deciding whether to include

an article in the final review was carried out in two stages.

First, each abstract was read and classified as either relevant

or not, based on its alignment with the search phrases. The

relevance of each abstract was evaluated by comparing it to

predefined search criteria.

The review also considered factors such as the authors,

publication date, article type (e.g., journal or conference

proceeding), technique-based taxonomy, and datasets. These

details were crucial for answering the research questions.

Figure 2 presents a flowchart illustrating the article and

paper selection process.

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

162

C. Reporting and Review

This section discusses the responses to our research

questions based on the papers reviewed. Specifically, it

examines the, models used in software failure prediction, and

classification of logs. The research findings are structured as

follows in alignment with the research questions

4.RESULTS

RQ1: What are machine learning models for predicting

software failures?

The first objective of research was to analyze the existing

machine learning (ML) models that have been utilized to

detect software failures using system logs. Table 3 provides a

comparative summary of these models, highlighting the ML

or deep learning (DL) algorithms employed, the types of log

mining techniques used, datasets utilized, evaluation metrics

applied, and notably, the specific weaknesses of each

approach.

Figure 2: Flowchart for selection of journal papers

Table 3: Machine Learning Models for Predicting Software Failures

Publication Underlying DL

& ML models

Log Mining

Technique

Datasets Metrics Weakness

Banjongkan et al.

[25]

Decision Tree:

C5.0, CART &

CHAID

N/A Los Alamos

National

Laboratory

(LANL) &

National Electronic

and Computer

Technology Center

(NECTEC)

Prediction Acc.

Recall,

Precision, F1

Score

- It focused focusing on point of

failure and scalability issues.

- increase generalizability of the

model, network logs

-

Ali et al. [30] SVM, k-Means

Clustering

Waikato

Environment for

Knowledge

Analysis

(WEKA)

WEKA log files False Positive

Rate (FPR),

True Positive

Rate, Precision,

Recall, F-

- Did not consider scalability issues

- It used only one type of logs that

is workload logs.Therefore should

work on the ability to use

different logs parameters to detect

Identification

stage

Records discovered though
database searching (j=96)

Journals after removal
of duplicates

(J=76)

screening
stage

Screened
records
(j=76)

Journal papers
excluded dues to
titles/abstract.

Removed (j=40)

Papers selected

after screening

(j=36)

Additional
papers

screened
through

snowballing
(j=16)

Papers excluded j=10
Articles additionally

selected (j=6)

Eligibility
stage

Full articles
assessed for

eligibility j=42

Other articles
excluded for

other reasons
J=1

Included
stage

Articles included I
the research j=41

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

163

Measure, RoC

Curve

failures

B. Mohammed et al.

[31]

SVM, RF, Linear

Discriminant

Analysis (LDA),

CART, KNN

N/A NERSC I/O failure

data.

Prediction Acc.

Sensitivity ROC
- The model relied on one type of

log that is system component

failure logs and also did not

consider time parameter in its

feature selection despite it being

tested with different machine

learning algorithms.

- It mostly considered the accuracy

of the algorithms.

Lu et al. [32] k-Means Word count Spark Log Files Prediction Acc. - Data used was too small and

caused overfitting.

- Used one type of log parameters

which is resource log. Therefore

should work on the ability to use

different logs parameters to

detect failures

- Did not consider scalability of the

model which can lead to future

growth.

Savaranan and

Sangeetha [29]

Hyper Basis

Function Neural

Network

(HBFNN

N/A Blue Gene/p

intrepid system

False Positive

Rate (FPR),

Time

Complexity

- The dataset used was made from

workload event logs from the

Blue Gene/p intrepid system.

- lacked scalability issues.

Lin et al. [28] LSTM &

Random

Classifier (RF)

N/A Microsoft cloud

system logs

Precision, recall,

F1
- Its weakness was that it focused

on resources logs only, therefore

should wotk on the ability to use

different logs parameters to detect

failures

Wang et al. . [33] PCA-Q, Logistic

Regression,

SVM

N/A HDFS logs Prediction Acc.

Recall, F1 Score

- Scalability issues

- Generalizability issues

Gao and others [11] Bi-LSTM, LR N/A Google Cluster

Trace Logs

F1 Score,

Receiver

operating

Characteristic

(RoC) Curve,

Time-cost

overhead,

Prediction Acc.

- It used workload log type of data

only so the scope was limited to

one type of failure in the clouds

- Never considered future growth in

terms of wider logs coverage.

Aarohi Framework

[34]

LSTM Regular

expression, Parser

HPC logs: Cray

XK & BlueGene/P

Prediction Acc. - Scalability issues

- Generalizability issues

Jingweng et al.[16] Decision Tree

(DT), RF, kNN

GBDT, LR

N/A System logs of IT

financial system

server clusters

F-Score,

Precision,

Recall

- The main weakness of the model

was that it would only detect

software failure using resource

parameter.

Brown et al. [6] RNN, Attention

mechanism

Language

Modelling-

Tokenization

Los Alamos

National

Laboratory

(LANL) -Network,

DNS and

Authentication logs

AUC-RoC

Curve Score
- Its main weakness is that it

focused on a single parameter

which limits future growth of the

model.

Nam [9] CNN Word2vec Openstack logs

simulation

Prediction Acc. - It uses workload logs only so

failure to use different logs limits

future growth of the model in

relation failure prediction.

Mantyla et al. [13] LSTM, N-

GRAM

N/A HDFS, Profilence

Dataset

F-Score &

Prediction Acc.
- Focused on comparing the

performance of N-Grams and

Deep leaning to figure out which

one uses lesser time to predict

errors and which is more accurate.

It gave less concentration on

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

164

future growth which can be

shown through scalability

- Used only one log parameter in

the comparison in system logs.

- Focused more on the performance

of different machine learning

algorithms rather than failure

prediction

Benaddy at al. [7] RNN N/A Failure data from

commercial, word

processing apps

Prediction Acc. - It used security logs only.

- Was limited to numerical events

only and it did not use text-based

logs.

Das et al., [10] [12] the LSTM

combined with

RNN

of events

augmented with

expected lead

time to failure.

Controller

(bcsysd),

Boot-logs, SEDC

differ from XE

Recall

Precision

- Challenges is that it focused node

failure using resources logs only

- There is need to work on the

continuous learning ability of a

model

As indicated in Table 3 a consistent pattern observed is the

reliance on a single type of log parameter—such as

workload, resource, hardware, or network logs without

integrating multiple log types for more comprehensive

failure prediction. For instance, models like those proposed

by Ali et al. [37], Lu et al. [39], and Gao et al. [11]

predominantly rely on workload logs, limiting their scope

and potentially reducing the robustness of failure detection

when dealing with diverse system environments. Similarly,

other studies such as those by B. Mohammed et al. [38] and

Lin et al. [25] utilize only resource logs or system

component failure logs, often without incorporating time-

related parameters or other contextual information, which

may affect prediction accuracy and limit scalability.

In addition, several approaches such as those presented by

Jingweng et al. [16] and Brown et al. [15] focus on specific

parameter types (e.g., resource logs or network logs), which

hampers generalizability and adaptability to broader

software environments. The models developed by Savaranan

and Sangeetha [24] and Aarohi Framework [40] also suffer

from scalability challenges, suggesting a need for solutions

that can scale effectively in high-performance computing

(HPC) or cloud environments. Overall, the analysis reveals

that while there has been substantial progress in the use of

ML for log-based software failure detection, most existing

models suffer from limitations related to generalizability,

scalability, and limited use of log parameter diversity. Future

research should aim to develop classifiers for instance a

multiple log parameter classifier using a Random Forest

algorithm that can integrate diverse log types to improve the

robustness, scalability, and accuracy of software failure

detection systems.

RQ 2: Which are the Log Parameter Attributes to

Predict Software Failures?

The second objective of this study the key system log

parameters and their attributes that can be used to predict

software failure. The classification and understanding of log

parameters are crucial in the development of reliable

machine learning models for software failure detection.

Table 4 outlines four primary types of log parameters

commonly found in system logs: security logs, workload

logs, network logs, and resource or hardware logs. Each log

type provides unique and complementary insights into the

software environment, and collectively, they can greatly

enhance the ability of a classifier to detect and predict

failures accurately.

Table 4: Types of System Log Parameters and Key Attributes

Log Type Description Key Attributes No. of

References

in the

Literature

Security

logs

Handle data that is

related to the security

of the software. This
data shows

irregularities that may

appear if unauthorized
personnel access the

software. It holds the

time of access, device
mac addresses, Source

user, Destination user,

Source pc,
Destination pc,

Authentication type,

Logon type,
Authentication

orientation,

Success/failure.

Unauthorized

Access Logs [8],

[11], [18], [19],
[41]

5

Intrusion

Detection Logs
[18], 11], [18],

[19]

4

Malware Activity
Logs [8], [11],

[18], [19], [41]

5

Authentication

Failure Logs [8],

[11], [18], [19],

[41]

5

Security Patch
Logs [11], [18],

[19], [41]

4

Workload
logs

Dataset was as a
result of classes,

functions and other

parts of programming
weakness that caused

the failure of the

software. These
failures arise because

of poor programming

and are mostly found
during testing. When

the software is not

well tested, then the

Traffic Load
Logs [2], [11],

[15], [35]

4

Transaction
Processing Logs

[2], [5], [29],

[30],[35}

5

Response Time
Logs [2], [5],

[12], 30]

4

System Overload

Logs 5], [12],

[35]

3

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

165

failure occurs. Workload

Balancing
Logs[2], [5],

[38]

3

Network

log

Network logs are

structured records of
events and activities

associated with

network
communications

within a computer

network. These logs
provide insights into

network traffic

patterns, security
incidents,

performance metrics,

and network device
activities, facilitating

network monitoring,

troubleshooting, and
security analysis

Latency Logs [2],

[5], [14], [36]

4

Bandwidth
Utilization Logs

[5], [14], [36]

3

Packet Loss Logs

[2], 5], [14], [36]

4

Connectivity
Logs [2], 5], [14],

[36]

4

Network Error

Logs [2], 5], [14],
[36]

4

Resources

or
Hardware’

s logs

Are datasets that were

as a result of failure in
devices needed for the

running of the

software. This device
may include the CPU,

Memory, Network

and Disk I/O devices.

CPU Usage Logs

[5], [10], [11],
[13], [28], [36]

3

Memory

Utilization Logs
[5], [10], [11],

[13], [36]

5

Disk Space Logs

[5], [10],
[13],[36]

4

Power Supply

Logs [5]

1

 Process
execution logs.

5], [10], [13]

3

As indicated in Table 4, security logs play a vital role in

monitoring access-related anomalies. They include details

such as the time of access, MAC addresses of devices,

authentication types, and success or failure of login attempts.

This log type is instrumental in identifying security breaches

or unauthorized access, which could potentially lead to

system compromises or software failures. Despite their

value, many machine learning models have yet to fully

incorporate security logs in failure prediction, thus missing

out on detecting failures caused by external intrusions or

internal misconfigurations. Workload logs, on the other

hand, capture the software’s operational behavior, especially

during testing or runtime. These logs highlight functional

weaknesses, such as programming errors or faulty logic,

which may not be discovered until later stages of

development. They are particularly important for models

focused on detecting software bugs or malfunctions that

stem from poor coding practices or insufficient testing.

Network logs contribute to a different dimension, offering

visibility into the interactions and communications within a

system’s network. They record data related to IP addresses,

protocol usage, packet transmission, and device activity.

Analyzing these logs helps identify failures arising from

network disruptions, latency issues, or unauthorized network

activity. Yet, models that focus only on network logs tend to

overlook software faults not related to connectivity or

communication errors. Lastly, resource or hardware logs

monitor the performance and health of physical and virtual

components, such as the CPU, memory, and disk I/O. These

logs are essential for detecting hardware-induced failures

that could severely impact software performance. However,

relying solely on these logs could result in overlooking

software-related anomalies unrelated to hardware

performance.

Empirical Validation

To empirically validate the findings, a survey was conducted

using a questionnaire to gather expert opinions on systems

and their attributes, to determine whether the information

from literature aligned with expert perspectives. The

questionnaire attracted 55 more respondents from different

disciplines, such as Technologists, Network Engineers,

Security Analysts, Data Scientists, Data Analysts, Software

Developers, Cloud Engineers, IT Consultants, and others,

with varying levels of experience ranging from 1-5 years, 6-

10 years, 11-15 years, and over 16 years. To ensure more

reliable results, the researcher chose to eliminate responses

from interns and attachment people reducing the number to

52 respondents whose responses were used to validate the

literature. Figure 3 illustrates the years of experience of the

52 experts while figure 4 indicates their areas of

specialization.

Figure 3: Experts years of experience

Figure 4: Experts area of specialization

0

10

20

30

16+ 11 to
15

6 to
10

1 to
5

N
o

. o
f

ex
p

er
t'

s

Years of experience

Expert's experience

No. of
expertees

0
2
4
6
8

10

N
o

 o
f

ex
p

er
ts

Area of specialization

Experts and their area of
specialization

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

166

Following the reliability test, as shown in Figure 5.the

Cronbach’s Alpha was found to be 0.842, which was

regarded as acceptable. Generally, a value above 0.7 is

considered adequate for research, while higher values,

particularly between 0.8 and 0.9, signal stronger reliability.

With a value of 0.842, the result indicates high reliability,

suggesting that the 20 items on the scale are consistently

measuring the same construct with great effectiveness.

Figure 5: Reliability test for the Questionnaire

System Log Parameter Attributes to Predict Software

Failures

Table 5 results summarized the relevance of various system

log parameter attributes in predicting software failures.

Respondents rated each parameter attributes based on their

perceived effectiveness in comparison with no. of references

in the literature

Table 5: Relevance of various log parameters attributes in predicting software failures

 Respondents Expert Mean Expert Std. Deviation

"CPU Usage Logs High CPU usage logs indicate potential system

failure risks."

52 4.77 .807

"Memory Utilization Logs Memory exhaustion logs are a key

predictor of software crashes."

52 4.75 .682

"Disk Space Logs Logs showing low disk space often correlate with

system instability."

52 4.65 .789

"Power Supply Logs Resource logs capturing power fluctuations are

useful in predicting system failures."

52 4.12 .855

"Process Execution Logs Logs indicating excessive process execution

time are a sign of potential system failure."

52 4.65 .905

"Traffic Load Logs Logs showing peak user loads correlate with

software performance degradation."

52 4.73 .689

"Transaction Processing Logs System failures increase when

workload logs indicate high transaction volumes."

52 4.65 .789

"Response Time Logs Logs showing prolonged response times are a

sign of potential system crashes."

52 4.54 .896

"System Overload Logs Excessive workload logs often precede

software failures."

52 4.67 .785

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

167

"Workload Balancing Logs Logs indicating poor workload balancing

can predict software breakdowns."

52 4.52 .874

"Latency Logs High latency in network logs is a strong predictor of

software failure."

52 4.31 1.164

"Bandwidth Utilization Logs Insufficient bandwidth logs often

indicate impending system failure."

52 4.58 .997

"Packet Loss Logs Frequent packet loss logs correlate with degraded

software performance."

52 4.63 .971

"Connectivity Logs Logs showing frequent connection failures often

precede software crashes."

52 4.44 .978

"Network Error Logs High occurrences of network errors in logs are

a sign of potential system failure."

52 4.63 .768

"Unauthorized Access Logs Logs showing multiple unauthorized

access attempts are linked to system vulnerabilities."

52 4.56 .850

"Intrusion Detection Logs Security logs detecting frequent intrusion

attempts are a precursor to software failure."

52 4.60 .934

"Malware Activity Logs Logs indicating malware infections are a

major predictor of software crashes."

52 4.69 .673

"Authentication Failure Logs A high number of failed logins in

security logs is associated with system risks."

52 4.06 .958

"Security Patch Logs Infrequent security updates in logs increase

software failure risks."

52 4.56 .938

Valid N (listwise) 52

As exhibited in Table 5, CPU usage logs (4.77), memory

utilization Logs (4.75), traffic load logs (4.73), malware

activity logs (4.69), and system overload logs (4.67)

received the highest ratings, consequently, these logs are

considered as strong predictors of software performance

failure due to their direct link to system resource exhaustion

and abnormal usage patterns. Response time logs (4.54),

connectivity logs (4.44), and power supply logs (4.12) were

rated slightly lower but still indicate meaningful

contributions to early failure detection. Authentication

failure logs (4.06) was perceived as less impactful in failure

prediction, potentially due to its more specific relevance to

security incidents than to system stability.

Pearson Correlation Test Between Literature and Expert

Opinions

To further assess the alignment between expert opinion and

literature review, a correlation analysis was conducted as

indicated in Table 6.

Table 6: Pearson Correlation Test Between Literature and

Expert Opinions

 Literature Expert

Literature

Pearson

Correlation
1 .479*

Sig. (2-tailed) .032

N 20 20

Expert

Pearson

Correlation
.479* 1

Sig. (2-tailed) .032

N 20 20

*. Correlation is significant at the 0.05 level (2-tailed).

As indicated in Table 6 the correlation coefficient is 0.479

with a p-value of 0.032, indicating a moderate but

statistically significant positive relationship. This means that

attributes commonly cited in academic and industry

literature also tend to be rated highly by experts, suggesting

consistency and validation between theoretical frameworks

and practical expertise.

5.CONCLUSIONS AND FUTURE WORKS

The study was designed around two primary research

questions. The first aimed to investigate the machine

learning algorithms and datasets employed in software

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

168

failure prediction, as well as to identify the limitations of

these models. The second sought to examine the attributes of

various log parameters identified in the literature. The study

finding revealed that various models ranging from traditional

algorithms like SVM and Decision Trees to deep learning

approaches such as LSTM, RNN, CNN, and Bi-LST have

been applied to different types of logs. However, many of

these models suffer from limitations such as reliance on a

single type of log, scalability issues, lack of generalizability,

and neglect of critical parameters like time and context.

Through an empirical validation involving ICT professionals

from diverse specializations, the study confirmed the

significance of twenty log attributes in predicting software

failures. The analysis highlights that log types such as

security, workload, resource, and network logs all play vital

roles. Parameters like CPU and memory usage, transaction

volumes, malware activity, and unauthorized access attempts

were consistently rated highly, indicating their practical

utility in early failure detection. Also, different types of

system logs require different analytical models depending on

their specific characteristics. For instance, workload logs

may require models focused on anomaly detection, while

security logs may be better suited for classification models.

This theory contributes to the analytical perspective by

highlighting the importance of context-based model

selection, guiding practitioners to choose the most

appropriate machine learning models for the type of data

they are analyzing. This ensures that predictive models are

tailored to the specific context of the logs, optimizing their

performance.

In conclusion, the diversity of system log parameters

provides a strong foundation for developing robust machine

learning classifiers and models. The major limitation in

many existing models is their reliance on a single log type,

which constrains their effectiveness and scalability. To

overcome this, integrating multiple log parameters—as

suggested in the proposed multiple log parameter classifier

using a Random Forest algorithm—could significantly

improve the accuracy, generalizability, and resilience of

failure detection systems across different environments and

use cases.

Building on these findings, several directions for future work

are proposed: Future models should integrate multiple types

of log-resource, workload, network, and security, rather than

relying on a single source. This will enhance the

generalizability and accuracy of failure predictions.

Upcoming research should focus on incorporating time-

based parameters and contextual relationships within logs to

improve the interpretability and precision of ML models. By

addressing these areas, future research will not only improve

software reliability and reduce downtime but also contribute

to more intelligent and self-healing computing systems.

ACKNOWLEDGEMENT

The researcher wish would acknowledge my Ph.D.

supervisors and the entire faculty members for their tireless

guidance in writing this research work, my spouse, children,

and my family at large for their financial and moral support.

DECLARATIONS

Conflict of Interest

The researchers declared that they have no conflicts of

interest

Informed Consent

This may not be applicable because this is a review article,

and respondents are not involved.

Ethics Approval

It is not applicable because this is a review article, and no

respondents are required.

Funding

The study did not receive funding from any institution

REFERENCES

[1] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis and

". H. Zhang, "Automated IT System Failure Prediction: A

Deep Learning Approach," IEEE International

Conference on Big Data (Big Data), no. 7840733, 2016.

[2] D. A. Tamburri, F. Palomba and R. Kazman, "Success

and failure in software engineering: A followup

systematic literature review.," IEEE Transactions on

Engineering ManagemenT, vol. 68, no. 2, pp. 599-611,

2020.

[3] J. Gao, H. Wang and H. Shen, " Task Failure Prediction in

Cloud Data Centers Using Deep Learning," in IEEE

Transactions on Services Computing, vol. 15 , no. 3, pp.

1411-1422,, May-June 2022.

[4] Rathore, S. S and S. Kumar, " A study on software fault

prediction techniques," Springer, no. 51, pp. 255-327,

2019.

[5] A. Miranskyy, A. Hamou-Lhadj, E. Cialini and A.

Larsson, "Operational Log Analysis for Big Data

Systems: Challenges and Solutions," IEEE, vol. 33, no. 1,

pp. 1-1, 2016.

[6] A. Brown, A. Tuor, B. Hutchinson and N. Nichols, "

Recurrent neural network attention mechanisms for

interpretable system log anomaly detection.," ACM, pp. 1-

8, 2018, June..

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

169

[7] M. Benaddy, B. El Habil, O. El Meslouhi and S. Krit,

"Recurrent neural network for software failure

prediction," in in Proceedings of the Fourth International

Conference on Engineering & MIS , Istanbul, Turkey, ,

2018.

[8] J. Wang, J. Liu, J. Pu, Q. Yang, Z. Miao, J. Gao and Y.

Song, "An anomaly prediction framework for financial IT

systems using hybrid machine learning methods," Journal

of Ambient Intelligence and Humanized Computing,

Springer, pp. 1-10, 2019.

[9] S. Nam, J. Hong, J. Yoo and J. Hong, "Virtual machine

failure prediction using log analysis.," IEEE, pp. 279-285,

2021 September.

[10] A. Das, F. Mueller, C. Siegel and A. Vishnu, " Desh: deep

learning for system health prediction of lead times to

failure in hpc.," ACM, p. 4, 2018 June.

[11] J. Gao, H. Wang and H. Shen, "Task failure prediction in

cloud data centers using deep learning," IEEE, vol. 15, no.

3, pp. 1411-1422, 2020.

[12] A. Das, F. Mueller and B. Rountree, "Aarohi: Making

real-time node failure prediction feasible.," IEEE, pp.

1092-1101, 2020, May.

[13] M. Mäntylä, M. Varela and S. Hashemi, "Pinpointing

anomaly events in logs from stability testing–n-grams vs.

deep-learning.," International Conference on Software

Testing, IEEE, pp. 285-292, 2022 April.

[14] X. J. D. A. S. E. Alter J, "SSD failures in the field:

symptoms, causes, and prediction models. In Proceedings

of the International Conference for High Performance

Computing, Networking, Storage and Analysis,"

dl.acm.org, pp. 1-14, 2019.

[15] L. Max, F. Skopik, M. Wurzenberger and A. Rauber,

""System log clustering approaches for cyber security

applications: A survey." Computers & Security .,"

Elsevier, 2020.

[16] R. T. Reshmi, "Information security breaches due to

ransomware attacks-a systematic literature review.,"

International Journal of Information Management Data

Insights, Elsevier, Vols. 1(2),, p. 100013., 2021.

[17] M. R. Kumar and R. Kumar., "Utilizing windows event

logs for malware detection using machine learning." In

2nd International Conference on Computer Vision and

Internet of Things .," Science direct, pp. 19-27, 2024.

[18] A. vinaypamnani, V. Pamnani and V. paolomatarazzo,

"learn.microsoft.com," microsoft, 22 12 2022. [Online].

Available: https://learn.microsoft.com/en-

us/windows/security/threat-protection/auditing/basic-

security-audit-policy-settings. [Accessed 23 2 2024].

[19] W. P. Gholamian S, " A comprehensive survey of logging

in software: From logging statements automation to log

mining and analysis.," arxiv.org, no. 2110.12489, 2021.

[20] D. S. C. R. W. S. L. Q. Ji W, "A CNN-based network

failure prediction method with logs. In 2018 Chinese

Control And Decision Conference (CCDC)," IEEE, pp.

4087-4090, 2018.

[21] "documentation.suse.com," SUSE, [Online]. Available:

https://documentation.suse.com/sles/12-SP5/html/SLES-

all/cha-audit-

comp.html#:~:text=Linux%20audit%20provides%20tools

%20that,them%20into%20human%20readable%20format

.&text=Audit%20provides%20a%20utility%20that,User.

[22] A. Jeyashankar, "socinvestigation.com," socinvestigation,

21 June 2021. [Online]. Available:

https://www.socinvestigation.com/linux-audit-logs-

cheatsheet-detect-respond-faster/. [Accessed 23 2 2024].

[23] A. Sharif, "crowdstrike.com," crowdstrike.com, 13

February 2023. [Online]. Available:

https://www.crowdstrike.com/guides/apache-logging/.

[Accessed 2 23 2024].

[24] D. S. M. B. E. F. C. T. B. M. F. K. S. D. T. P. Das,

"Failure prediction by utilizing log analysis: A systematic

mapping study. In Proceedings of the International

Conference on Research n Adaptive and Convergent

Systems," dl.acm.org, pp. 188-195, 2020.

[25] A. Banjongkan, W. Pongsena, N. Kerdprasop and K.

Kerdprasop, "A Study of Job Failure Prediction at Job

Submit-State and Job Start-State in High-Performance

Computing System: Using Decision Tree Algorithms,"

Advances in Information Technology, Research Gate,

2021.

[26] S. Ali, M. Adeel, S. Johar, M. Zeeshan, S. Baseer and A.

Irshad, "Classification and prediction of software

incidents using machine learning techniques.," Security

and Communication Networks, , pp. 1-16, 2021.

[27] B. Mohammed, I. Awan, H. Ugail and M. Younas,

"Failure prediction using machine learning in a virtualised

HPC system and application. Cluster Computing," Cluster

Computing, no. 22, pp. 471-485., 2019.

[28] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.

Lou, C. Li, Y. Wu, R. Yao and M. Chintalapati,

"Predicting node failure in cloud service systems," ACM,

pp. 480-490, 2018, October.

[29] M. Saravanan And D. Sangeetha, "Adaptive Dimensional

Particle Swarm Optimization Based Hyper Basis Function

Neural Network Classification For Software Failure

Cause Prediction.," European Journal Of Molecular &

Clinical Medicine, Vol. 7, No. 9, Pp. 956-969, 2020.

[30] S. Ali, M. Adeel, S. Johar, 3. M. Zeeshan, S. Baseer and

A. Irshad, "Classification and Prediction of Software

Incidents UsingMachine Learning Techniques," Hindawi

Security and Communication Networks, vol. 9609823, no.

I, p. 16, 2021.

Juliet Gathoni Muchori et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 157 - 170

170

[31] M. Bashir, I. U. Awan, H. Ugail and Muhammad, "Failure

Prediction using Machine Learning in a Virtualised HPC

System and application," Cluster Computing, vol. 22, no.

2, pp. 471-485, 2019.

[32] S. Lu, B. Rao, X. Wei, B. Tak, L. Wang and L. Wang,

"Log-based Abnormal Task Detection and Root Cause

Analysis for Spark," IEEE International Conference on

Web Services (ICWS), vol. 135, no. 1, pp. 389-396, 2017.

[33] B. Wang, Q. Hua, H. Zhang, X. Tan, Y. Nan, R. Chen and

X. Shu, "Research on anomaly detection and real-time

reliability evaluation with the log of cloud platform.,"

Alexandria Engineering Journal, vol. 61, no. 9, pp. 7183-

7193., 2022.

[34] A. Das, F. Mueller and B. Rountree, "Aarohi: Making

Real-Time Node Failure Prediction Feasible," in 2020

IEEE International Parallel and Distributed Processing

Symposium (IPDPS), New Orleans, LA, USA, 2020.

[35] Z. Chen, J. Liu, W. Gu, Y. Su and M. and Lyu,

"Experience report: Deep learning-based system log

analysis for anomaly detection," arxiv, 2021.

[36] R. ranjan, "medium.com," medium.com, 30 10 2022.

[Online]. Available:

https://medium.com/@rajeevranjancom/windows-event-

log-analysis-incident-response-guide-739af79b518b.

[Accessed 23 2 2024].

[37] A. Das, A. Vishnu, C. Siegel and F. Mueller, "Desh: Deep

Learning for System Health Prediction of Lead Times to

Failure in HPC," in HPDC ’18: International Symposium

on High-Performance Paralleland Distributed

Computing, Tempe, AZ, USA, 2017.

[38] J. Gao, H. Wang and H. Shen, "Task Failure Prediction in

Cloud Data Centers Using Deep Learning," IEEE, pp.

1111-1116, 2019.

[39] M. Mäntylä, M. Varela and S. Hashemi, "Pinpointing

Anomaly Events in Logs from Stability Testing – N-

Grams vs. Deep-Learning," CoRR, vol.

arXiv:2202.09214v2, no. 2, 2022.

[40] M. Benaddy, B. E. Habil, O. E. Meslouhi and S.-D. Krit,

"Recurrent neural network for software failure

prediction," in Proceedings of the Fourth International

Conference on Engineering & MIS 2018, Istanbul,

Turkey, 2018.

[41] W. Yi-chen and Y.-l. Chang., ""Ransomware detection on

linux using machine learning with random forest

algorithm." .," preprints posted on arXiv., 2024.

