
Fatma Alharbia et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 25 – 31

A Framework for the Generation of Class Diagram from Text

Requirements using Natural language Processing

Fatma Alharbia1,Shadi R .Masadeh2, Faiz Alshrouf3
1Software Engineering Department .Isra University, Amman-Jordan,ab1577047@gmail.com

2 Cyber security Department, Isra University, Amman-Jordan, shadi.almasadeh@iu.edu.jo
3Computer Science Department, Isra University, Amman-Jordan, faiz.shrouf@iu.edu.jo

ABSTRACT

The software development procedure begins with
identifying the requirement analysis. The process levels
of the requirements start from analysing the requirements
to sketch the design of the program, which is very critical
work for programmers and software engineers. Moreover,
many errors will happen during the requirement analysis
cycle transferring to other stages, which leads to the high
cost of the process more than the initial specified process.
The reason behind this is because of the specifications of
software requirements created in the natural language. To
minimize these errors, we can transfer the software
requirements to the computerized form by the UML
diagram. To overcome this, a device has been designed,
which plans can provide semi-automatized aid for
designers to provide UML class version from software
program specifications using natural Language
Processing techniques. The proposed technique outlines
the class diagram in a well-known configuration and
additionally facts out the relationship between
instructions. In this research, we propose to enhance the
procedure of producing the UML diagrams by utilizing
the Natural Language, which will help the software
development to analyze the software requirements with
fewer errors and efficient way. The proposed approach
will use the parser analyze and Part of Speech (POS)
tagger to analyze the user requirements entered by the
user in the English language. Then, extract the verbs and
phrases, etc. in the user text. The obtained results showed
that the proposed method got better results in comparison
with other methods published in the literature. The
proposed method gave a better analysis of the given
requirements and better diagrams presentation, which can
help the software engineers.

Key words: Part of Speech,UML, NLP, SRS and Class
Diagram.

1. INTRODUCTION

The software development method is a lengthy and
tiresome process. It works with getting the client
demands (requirements) because of this, the backbone
against which the complete software will
be created [2] . This phase includes several agreements
and meetings until the final plan of requirements
specifications are provided. This documented
representation of the specifications named Software
Requirement Specification document or the SRS
document [10].The developers use the Software
Requirement Specification (SRS) for developing the
software. It provides information about the classes that
should be modern, the characteristics and techniques they
should include, and so on. This document is human-
universal. But large projects have various pages of the
SRS and henceforth virtually infeasible for a human to
investigate. Therefore, we need to find a powerful
approach to systemize this process [1]
In general, these approaches have been used to find the
class diagrams form the requirements specification are
categorized into two main approaches: traditional
approaches and object-oriented approaches. These
approaches are assigned to getting out the purposes and
functions of the system only whereas the latter method is
involved with the object-oriented standard. It represents
classes, characteristics (attributes), and processes
(methods). It also determines the connection between
classes if they are existent [9], [12].The first-rate manner
to achieve basic factors of a category diagram from
natural language (NL) is NLPC (natural language
Processing for class). Those necessities are provided by
the person in a simple statement of English and NLPC
(herbal language processing for class) bids natural
language processing (NLP) methods to examine enter
said. In order to purchase training, member features and
records participants, and herbal Language text is
semantically examined. With accurate inputs, NLPC finds
stages like Pre-processing, Tagging part of Speech (POS,
identification of class, characteristic, and function
recognition and after that plotting the classes [12].
As mentioned before, obtaining critical data from the
requirement specification report can be tedious and
occasionally unpractical. It is here; we need the assistant

ISSN 2278-3091
Volume 10, No.1, January - February 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse041012021.pdf

https://doi.org/10.30534/ijatcse/2021/041012021

Fatma Alharbia et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 25 – 31

26

of natural language processing to solve this problem. We
aim to work on this analysis stage in a precise and more
intelligent process so that we can preserve time. The main
aim of Natural Language Processing (NLP) is to produce
and generates software that can check, review,
understand, and create languages that help humans apply
directly. But, with experience and more complicated, the
NLP methods began to produce different results with the
extraordinarily unsolved and un-resolved variables
constructed as tangible outputs. [12].
The proposed method is used to extract the class diagram
from the requirements specification. The proposed
method helps analysts by implementing an effective and
speedy process to create a class diagram from the class
requirements. It maintains excellent cooperation with
users by providing a familiar human unified user
interface.

2. RELATED WORK

This section shows the relevant work and discusses its
main procedures.The central problem that arises in the
SDLC is through the requirements analysis and
designation. The issues faced through the first stage of the
transfer process to other steps, resulting in a high-cost
process in comparison with the original method. The
human language style can assist developers in
determining the software specifications by changing the
elements in an electronic design using UML diagrams
[12]. Here, this article focused on producing the sequence
design and activity design diagrams by utilizing the
requirements by presenting them in the natural language
[16]. The parser and the PSO tagger methods are used to
analyze the user input, provided in the English language,
when selecting the procedures and expressions, and
others from the text.
In this paper [3], a novel technique is introduced to
improve the overall processing of the NL specification,
and the proposed approach detects defects in NL
specifications. Moreover, they show from the papers of
the previously published work, how well the proposed
method support even non-software-engineers in editing
texts for generating software engineering requirements.
The obtained results in this research showed that the
proposed method could speed up creating texts with more
scattered defects significantly.
This paper represents the NLP mechanism, which
endeavors to help the investigation step of software
improvement in an object-oriented structure [4]. This
NLP procedure is to investigate software demand texts
reproduced in English and make a combined dialogue
paradigm of the prepared text, described in a
Grammatical System. This system is then applied by
itself with little or no direct human control to build a
UML class diagram such as class design illustrating the
terms types specified in the given text and the relations
between them and a sequence diagram of the electric
model. The specification review defines the user needs
for a specific purpose.

Software specifications are an essential action of the
software process, as failures at this step necessarily direct
to difficulties later on in system configuration and
implementation. The demands are formulated in NL, with
the potential for uncertainty, inconsistency or mistake, or
naturally a failure of programmers to deal with a large
volume of knowledge. This paper proposed a novel
technique for the natural language processing of
requirement descriptions of the universal natural language
and their automatic changing to the object-oriented
interpretation system [5].
To change the human language into use case and class
diagrams, a new method is introduced to perform these
operations; two states have been produced. Firstly, the
recursive object design, which changes from human
language to graphic style (writing). Also, convert the
recursive object design to the UML style. As well, to
change the UML designs to the human language,
introduced a new system using a grammatical structure to
convert the class design diagram into a common linguistic
or human language. Then, the linguistic form converts
into the human language (text).
The class diagram's automatic generator is introduced as
an approach that aggregates the human language (NL)
methods' analytical and design verification
characteristics. Various models were determined to
generate the class diagram. When the ideas are created,
the XML metadata file was generated and transmitted
with a computer-aided tool to generate the UML design
diagram [6], [7].
A new algorithm is introduced to facilitate the extraction
rulein generating UML design diagrams from the human
language produced by various people [17]. In terms of
improving the UML's regular syntax and identifies the
legal issue in the initial stage will decrease the time as
well as the cost. This work also give a symmetrical
syntax model for UML diagram and use case diagram [6].
There is usually a means of existing domain-specific, NL
data possible to improve lead developers of object-
oriented methods. This information is frequently
manageable to NLP in order to get valuable configuration
information. However, from a review of the field, they
contend that popular methods have not been capable of
extracting all the semantic and design specification that is
present in such data. For example, they notice that there is
a lack of sufficient system descriptions; they discover
doubt for scholars to use fusion solutions - where users
establish and detailed automated reports, and they
recommend that there is work required to define a
comprehensive review of potential associations between
arrangement elements [8]. In partial pursuance of such a
declaration, this paper discusses the proposed algorithmic
for treating NL into UML diagrams with supplemental
user study quickly.

3. THE PROPOSED METHODOLOGY
In this section, we present the proposed method that is
transforming the problem of the users' requirements into
the UML class diagram to make these processes easy for

Fatma Alharbia et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 25 – 31

the users, which is illustrated in Figure 1. The
requirement specification is an element created by the
user, which describes the system employing simple
natural language.

3.1 Main steps of the proposed method

The proposed method decreases the complexity by
distributing applications in smaller modules as follows:

3.1.1 Tokenizer and Sentence selection

In the first step, the tokenizer will determine the different
stop words in the sentence, such as a, the, in, you, me,
and, no, etc. various approach has been proposed to
identify the stop words. However, these approaches are
not useful in obtaining knowledge. In this research, we
will collect the most common stops words, and then a
matching system will extract these words from the text
[9]. Moreover, we will use the stemming algorithm to get
the root for each word for more examination by removing
the affixes and suffixes.

Figure 1: The proposed method

3.1.2 Part of Speech tagger and knowledge

Here, the method will parse the output to find out the
nouns, verbs, adjectives, adverbs. We suggest using the
Open NLP POS Tagger to do this analysis. “The other
Library System is used by Informatics students.”

3.1.3 NLP-based class diagram

In this part, we introduce a new approach to the
computerized generation of class diagrams. The input of
this process will be a regular text and structural text,
while the output will provide the class diagram with its
class and attributes, and relationship. The inter-class
connections can arrange toward association, aggregation,
generalization. The association connections can organize
into three fundamental relations: one-to-one, one-to-
many, and many-to-many [10]
The proposed approach implements the NPL to explore
classes of case, that is, we distinguish main classes of the
field as an origin point, for which we usually are highly
positive, and besides find classes that are linked with the
known ones. The strength of this process is that it defines
types and connections in one step. Before going into this
stage, we perform the following fundamental elements of
the method and how they are ordered in this research,
which will support in defining its rationale.

Class Identification

Both the POS tagger and the sentence parser provide
fundamental candidates. On the other hand, the semantic
network approach and word sense explicit implemented
to get the original candidates.

Relationship Identification

To extract the relationship, it uses a linkage range to
define all concept pairs with robust grammatical relations
within the sentence. We allow several weights for all
concept pair to show how robust the relationship is
according to the elements the notions serve as in the
sentence.

Attribute Identification

The attribute Identification system describes the class
attributes. Then, two notions are obtained to be strongly
correlated together; we require to decide if the
assumptions are related to the class attribute or the class.

Naming Relationship

Naming Relationship implements the patterns semantic,
which helps to obtain an aggregation association and an
aggregation association. This model uses several
relationship recognition approaches to classify the
relationship type like one-to-one, one-to-many, and
many-to-many.
The proposed approach uses the repetition procedure, to
determine the classes and the attributes. In all steps, it
picks one notion from the detailed set with the highest
relationship score and associated with the defined classes.
The relationship score is an indicator of how the new
concept semantically joins with all other ideas of the set
of nominee ideas. If the correspondence score is smaller

Fatma Alharbia et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 25 – 31

28

than the assemblage threshold, the flow ends. Differently,
it will include the concept of the selection of classes or
the set of attributes toward the number of features the
idea owns.
Lastly, utilizing the previous outcome of the analysis,
UML Class diagrams are created, and the code template
will be generated by C#. The method manipulates the
graphical design of the UML diagrams and permits the
user to rename classes, add, delete, and relationships in
the produced diagram. As a member of UI, concept
management UI is a primary interface that allows the user
to view, add, modify, and organize concepts and
relationships. Users can add new ideas and change the
concept type. The concept management method gives the
user the resilience to drive the processing as the user
wants.

4. EXPERIMENTS AND RESULTS

4.1 Case study

In this section, an implementation of the conceptual
model production procedure is presented with moderate
results. The given requirements specification and details
are obtained from the ATM dilemma statement [12]. The
first part is manually changed to eliminate kinds of
references, pronouns, and wh-pronouns (who, whose,
whom, whatever, whichever, etc.). It is further adjusted to
assure regular usage of a term for a regular function, i.e.,
one function per conversation.

Figure 2: Modified ATM statement

4.2 Performance Evaluation

The effectiveness assessment of this method was a
difficult because there is no explanation of an ‘accurate’
conceptual model. The theoretical models that are
typically performed were determined to include
substantially added experience by the investigator.
Specific knowledge in the conceptual model is similar to
classes or\and relations, that are not specified in the text
of the demand. For example, in the ATM case, Bank
owns Bank Computer describes a particular opinion on a
connection. At the same time, the class Remote

Transaction is a constitutional theory that a specific class
endures, although it is not declared in the requirements
text.

4.3 Evaluation criteria

In this part, evaluation criteria are utilized to analyze the
proposed automatically created conceptual model with a
conventional published design or a human design model
in the literature [11]. The used criteria are:
Recall percentage means the capacity of the
computerization to create all classes, as shown in
Equation (1).
ܴ݈݈݁ܿܽ = ே௧

ே௧ାே௦௦
 (1)

Where N correct means the amount of true classes
recognized; N missing means the number of classes
selected by the human expert and ignored by the
proposed conceptual method.
Precision means the accuracy or the relevance of the
categories recognized in the proposed conceptual model,
as shown in Equation (2).
݊݅ݏ݅ܿ݁ݎܲ = ே௧

ே௧ାே௧
 (2)

Where N incorrect means the amount of correct levels
classified as wrong;
The over-specification rate (Over_SR) means the number
of useless, but the right classes that the computerization
process adds in the created conceptual model by the
proposed, as shown in Equation (3).
ܴܵ_ݎ݁ݒܱ = ௫௧	(௩ௗ)

ே௧ାே௦௦
 (3)

Where extra(valid) is the amount of correct additional
classes regained.
Even though the model is not intended for assuming
specific knowledge, we assess it to match it with human-
created rules. To determine this, we propose another
variable, N implicit, which means the number of classes
that are calculated that are true and correct but not
pronounced in the requirements text. The equations
utilized to assign certain knowledge are as follows:
ݐ݈݅ܿ݅݉݅_݈݈ܴܽܿ݁ = ே௧

ே௧ାே௦௦ାே௧
(4)

ݐ݈݅ܿ݅݉݅_݊݅ݏ݅ܿ݁ݎܲ = ே௧
ே௧ାே௧

 (5)

ݐ݈݅ܿ݅݉݅_ܴܵ_ݎ݁ݒܱ = ே௫௧	(௩ௗ)
ே௧ାே௦௦ାே௧

(6)
While exceptional reference rates are possible for
evaluating that do not constitute N implicit, published
objective values do not survive for any of the criteria.
Therefore, for the goal of the testing process, we set
advantageous positions to assess the achievement. Recall
and Precision should be as powerful as feasible (high) to
correctly express the objective model. Over_SR should be
low to evade attaching to various extra features.

4.4 Results of conceptual class modelling versus other
comparative standard models

Table 1 presents the obtained results of the achievement
measures versus various case studies. These cases were
employed by several researchers to illustrate the

Fatma Alharbia et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 25 – 31

production of class diagrams, and similar results are
obtained in the corresponding references. It is observed
that these conventional designs were not developed for
the requirement investigation, nor generated
automatically, and therefore include a component of
human knowledge, which our implementation requires

Table 1: Evaluation results

The drop-in precision illustrates the importance of human
judgment to add related classes. Our approach combined
some classes that may be acknowledged wrong. The
recall measure is very high due to the all used classes are
regularly recognized, candidate classes. Nevertheless, the
over-specification weight should remain at a low rate, and
it gives high values, although high over-specification
costs cause visual clutter in the produced models.
The proposed method got better results in all studied
cases according to the used evaluation measure, which
means that the proposed method able to generate the
classes accurately than other comparative methods. The
recall values were similar for all comparative methods.
However, the precision values were better obtained by the
proposed method. As well as the Over_SR values were
better achieved by the proposed method compared to
other methods. We concluded from the mentioned results
that the proposed method got better results overall.

Figure 3: Statistical analysis results

Because of the need for a standard text and specialty
models, the experiment was carried on individual
subjects. The obtained results of the final CASE tools lab
test were used for reference. Figure 3 presents the final
statistical results for the results.

4.5 Performance evaluation

Recall, precision, and over-specification are utilized to
assess the effectiveness of the proposed method for the
connections between the classes, as presented in Table 6.
The obtained results versus human subjects additionally
give comparable outcomes for relations. The relationships
that are associations show that the over-SR is very high
when connected to standard results. Generally, the
proposed method got better results.The results of the
proposed method are comparable for relations. The
connections that are associations confirm that the over-
SR is very powerful when compared to standard
outcomes.
Table 2: Performance evaluation

5. CONCLUSION AND FUTURE WORK
Most of the problems that happened in the software
development stages occur during the requirements
analysis and specification. Generating the UML diagram
from these specifications from the natural language is
profoundly challenging work. This research presents a
technique to improve the procedure of constructing the
UML diagrams by employing the Natural Language,

0
20
40
60
80

100

Proposed
Method Recall
(%)
Proposed
Method
Precision (%)

Fatma Alharbia et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 25 – 31

30

which will help the software development to analyze the
software requirements with fewer errors and effective
way. The proposed approach uses the parser analyses and
Part of speech (POS) tagger to analyze the user
requirements entered by the user in the English language.
The obtained results showed that the proposed method
got better results in comparison with other methods
published in the literature. The proposed method gave a
better analysis of the given requirements and better
diagrams presentation, which can help the software
engineers. As result, the recall measure is very high due
to the all used classes are regularly recognized, candidate
classes. Nevertheless, the over-specification weight
should remain at a low rate, and it gives high values,
although high over-specification costs cause visual clutter
in the produced models. The proposed method got better
results in all studied cases according to the used
evaluation measure, which means that the proposed
method able to generate the classes accurately than other
comparative methods. The recall values were similar for
all comparative methods. However, the precision values
were better obtained by the proposed method. As well as
the Over_SR values were better achieved by the proposed
method compared to other methods. We concluded from
the mentioned results that the proposed method got better
results overall.
From this research, we have classified two groups of
future work directions that we find interesting. The first
group is to create other views to catch the requirements
specification. The second group is to get more use of the
syntactic structure. So far, we have seen the inactive
construction of the class diagram. A different aspect
deserves more investigation, which is the dynamic action
of the software requirements. This can be accomplished
by changing the language code into textual observations,
using the results from Translatable Unified Modeling
Language and Model-Driven Architecture. This will later
be mixed with NL details of the difficulty machines
because they perform a vital function in the rule of
objects. There are various ways to gain more value from
the syntactic framework. Improve their created texts with
the LATEX tool, something that can be utilized to
encourage the motives for interest in the structure of the
document. We also need to take more advantage of the
syntactic framework's potential for some particular
languages to give the same theoretical syntax. Being
capable of creating a difference of methods from internal
system designations would suggest that the rules can be
obtained and assessed by those stakeholders that are not
self-sufficient in utilizing English. One of the different
languages can be the NL for reporting any system
requirements, and then the syntactic framework can be
utilized to create NL descriptions, legal requirements, and
change among the two. Both groups of activity will, in
the end, need an also critical evaluation, both to achieve
the wanted construction and content of the books but
additionally to examine in which area they can follow the
original Computational Independent Model.

ACKNOWLEDGEMENT

The authors owe thanks to Scientific Research Deanship
at Isra University for facilitating procedures of
conducting this research and its financial support for this
research.

REFERENCES

[1] Amdouni, S., Karaa, W. B. A., & Bouabid, S. J. a. p.
a. (2011). Semantic annotation of requirements for
automatic UML class diagram generation.

[2] Bajwa, I. S., & Choudhary, M. A. (2006).
Naturallanguage processing based automated system
for uml diagrams generation. Paper presented at the
The 18th Saudi National Computer Conf. on
computer science (NCC18). Riyadh, Saudi Arabia:
The Saudi Computer Society (SCS).

[3] Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh,
A., Dey, N., S. Ashour, A., & Ben Ghazala, H.
(2016). Automatic builder of class diagram (ABCD):
an application of UML generation from functional
requirements. Software: Practice and Experience,
46(11), 1443-1458.

[4] Bhagat, S., Kapadni, P., Kapadnis, N., Patil, D.,
Baheti, M. J. I. J. o. E., Communication, Science, S.
C., & Engineering. (2012). Class Diagram Extraction
Using NLP. 2, 125.

[5] Burden, H., & Heldal, R. (2011). Natural language
generation from class diagrams. Paper presented at
the Proceedings of the 8th International Workshop on
Model-Driven Engineering, Verification and
Validation.

[6] Chanda, J., Kanjilal, A., Sengupta, S., &
Bhattacharya, S. (2009). Traceability of requirements
and consistency verification of UML use case,
activity and Class diagram: A Formal approach.
Paper presented at the 2009 Proceeding of
International Conference on Methods and Models in
Computer Science (ICM2CS).

[7] Friedrich, F., Mendling, J., & Puhlmann, F. (2011).
Process model generation from natural language text.
Paper presented at the International Conference on
Advanced Information Systems Engineering.

[8] Hamza, Z. A., & Hammad, M. (2019). Generating
UML Use Case Models from Software Requirements
Using Natural Language Processing. Paper presented
at the 2019 8th International Conference on
Modeling Simulation and Applied Optimization
(ICMSAO).

[9] Jaafar, Y., & Bouzoubaa, K. (2018). A survey and
comparative study of Arabic NLP architectures
Intelligent Natural Language Processing: Trends and
Applications (pp. 585-610): Springer.

[10] Kar, S. K. (2014). Generation of UML class diagram
from software requirement specification using
natural language processing.

[12] Landhäußer, M., Körner, S. J., & Tichy, W. F.
(2014a). From requirements to UML models and
back: how automatic processing of text can support
requirements engineering. Software Quality Journal,
22(1), 121-149.

Fatma Alharbia et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 25 – 31

31

[13] More, P., & Phalnikar, R. J. I. J. o. A. I. S.,
Foundation of Computer Science. (2012). Generating
UML diagrams from natural language specifications.
1(8), 19-23.

[14] Platt, R., & Thompson, N. (2019). The Past, Present,
and Future of UML Advanced Methodologies and
Technologies in Network Architecture, Mobile
Computing, and Data Analytics (pp. 1452-1460): IGI
Global.

[16] Shinde, S. K., Bhojane, V., & Mahajan, P. (2012a).
Nlp based object oriented analysis and design from
requirement specification. International Journal of
Computer Applications, 47(21).

[17] Tazin, A. (2017). UML Class Diagram Composition
Using Software Requirements Specifications. Paper
presented at the MODELS (Satellite Events).

