
Mildra March M. Tejano et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 108 - 111

108

ABSTRACT

In today’s world, safely transferring data is very important

which means how cryptographic algorithms behave in

different programming languages matters a lot to those

designing systems. This work examines the results of key

cryptographic activities using Python, Java and

C#—specifically, AES encryption, RSA key generation and

SHA-256 hashing. Using standard ways to test benchmarks,

the project measures the Execution Speed, Memory usage and

Performance of all languages in handling cryptography. The

analysis highlights those choices for language paradigm, type

of runtime, approach to memory management and level of

maturity in cryptographic libraries account for most of the

variation among these frameworks. Python is quick to use in

development, but Java offers a more balanced way and

steadier speed according to the JCE. Compared to Java, C#

shows better efficiency and is better suited for use on a tight

budget. With the input from this study, programmers have

better guidance in deciding which languages to use for

high-performance programs.

Key words: AES, C# Cryptography, Java, Performance

Benchmarking, Programming Languages RSA, Python

SHA-256

1. INTRODUCTION

Cryptography is now essential for maintaining the safety of

communication, confidentiality of data and the proper

operation of computer systems. Cryptographic algorithms are

commonly used for both safeguarding finances and personal

information on nearly all applications. As scientists begin to

include these algorithms in different systems which

programming language is used matters greatly for

effectiveness and performance. Good mathematical ideas and

standard practices are necessary for relying on AES, RSA or

SHA-256 cryptography. The performance of an algorithm is

highly affected by which programming language is used. Such

variation is caused by having unique language structures,

different runtime systems, varying memory systems, different

compiler approaches and immature cryptographic library

standards.

The latest findings explain how coding in various languages

can help or hinder cryptography. Development speed and

simplicity are key aspects of Python and other high-level

languages, so they are useful to start a project but less ready for

use in practice [1]. Just as in .NET, using Java’s JCE makes it

reliable because of its unchanging throughput rate, though

requests might take longer due to the time spent by the JVM

[2]. However, C# implementations that include the

System.Security.Cryptography namespace in .NET are quick

and efficient when it comes to both performance and handling

memory. With these features, C# becomes suitable for

real-time software and systems with restricted resources [3]–

[5]. It should be noted that benchmarking has shown that

NET’s encryption and hashing functions work faster than the

corresponding Java functions, especially when tasks involve

AES and SHA-256 algorithms [6]. Furthermore, the new

features in .NET 6 make applications run faster, mainly

through new ways to encrypt data in a one-time manner [7]. It

has also been found that AES-256 encrypts data more swiftly

and efficiently in large batches, whereas RSA is heavier to use

and best for small datasets such as keys or hashes [8].

Multicore processors throughput studies indicate that AES

encryption can be improved for the critical needs of today's

developments [9]. Together, these findings contribute to the

goal of this research which is to present a complete

empirically-based comparison of cryptographic performance

in these three languages — orienting the developers to use the

best tools for building secure and efficient applications.

This study aims to investigate and compare the performance

of cryptographic operations implemented in three widely-used

programming languages: Python, Java, and C# Each of these

languages’ codes a different philosophy in the development of

software. Python is recognized for its simplicity and capability

of quick development but it is criticized greatly for its slower

run time due to the interpreter overhead. Java offers a

compromise, where it gives portability and performance

through Java Virtual Machine (JVM) and inbuilt support to

Comparison of Cryptographic Performance in

Python, Java, and C# Analyzing Language-Level

Efficiency

Mildra March M. Tejano
1
, Ervin Simon D. Uadan

2

1
 North Eastern Mindanao State University - Tagbina Campus, Philippines, mmtejano@nemsu.edu.ph
2
 North Eastern Mindanao State University - Tagbina Campus, Philippines, eduadan@nemsu.edu.ph

Received Date: April 15, 2025 Accepted Date: May 20, 2025 Published Date: June 06, 2025

ISSN 2278-3091

Volume 14, No.3, May - June 2025

International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse011432025.pdf

https://doi.org/10.30534/ijatcse/2025/011432025

Mildra March M. Tejano et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 108 - 111

109

incorporate security using Java Cryptography Extension

(JCE). On the other hand, C# excels at its high-performance

abilities and its low-level control of the system resources that

allow it to fulfill time-sensitive and resource-consuming tasks.

The major goal of this research is assessing the efficiency of

language-level implementation of basic cryptographic

functions, namely AES encryption, RSA key generation and

SHA-256 hashing, in these three languages. Using

standardized tests, this study hopes to provide answers to vital

questions concerning each implementation that was

benchmarked. What is the variation of cryptographic

execution time between Python, Java, and C# and which

language is most efficient, performance-critical cryptographic

workloads?

 This study compares how Python, Java, and C# handle

cryptographic tasks, better understand which language is best

suited for building fast and secure applications.

2. METHODOLOGY

For this study, an empirical benchmarking process is

employed to evaluate how each programming

language—Python, Java, and C#—handles AES encryption,

RSA key generation, and SHA-256 hashing. The

benchmarking is conducted in a controlled environment to

ensure that the results are consistent and reliable. The overall

methodology and framework for this benchmarking process

are illustrated in Figure 1.

Figure 1: Cryptographic Benchmarking Framework Across

Programming Languages

A. Development Environment

All implementations were executed on a machine with the

following specifications:

 Processor: Intel Core i5-825U, 1.8 GHz

 RAM: 8 GB DDR5

 Operating System: Windows 11 (64-bit)

 Compiler/Interpreter Versions:

 Python 3.10 with PyCryptodome library

 Java 17 with Java Cryptography Extension

(JCE

 C# (.net framework 4)

Each language's cryptographic implementation used the

most widely supported and stable libraries available for the

respective platform to ensure practical relevance.

B. Cryptographic Operations Benchmarked

The following cryptographic functions were implemented in

all three languages:

 AES-256: Symmetric encryption in CBC mode with a

256-bit key and a 128-bit IV.

 RSA-2048: Asymmetric key generation and

encryption with a 2048-bit key.

 SHA-256: Secure hash computation of a 1 MB input

message.

C. Benchmarking Tools and Metrics

Performance metrics were recorded using the following

tools:

 Python: timeit module for execution timing;

memory_profiler for memory usage.

 Java:). with javax.crypto package.

 C#: with System.Security.Cryptography library

There needed to be 1,000 iterations of each operation to

include use enough variability to get results that are conclusive.

The measurement includes execution time in milliseconds as

well as peak memory usage were recorded as the primary

metrics.

D. Data Payload and Conditions

 Input Data: A fixed 1 MB random byte array was used

as input for AES and SHA-256 operations to ensure

consistency.

 Key Management: RSA key generation was evaluated

separately from encryption to measure computational

overhead independently.

 Warm-up Iterations: Each benchmark included

warm-up iterations to mitigate startup effects,

especially for Java's JIT compilation.

The comparison of the three languages in this way makes it

possible to assess their ability to work well in

performance-relevant security applications.

3. RESULTS AND ANALYSIS

Figure 2: Execution Time and Memory Utilization of Cryptographic

Functions Across Programming Languages

The cryptographic performance of Python, Java, and C# is

evaluated using two key metrics: execution time (measured in

Mildra March M. Tejano et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 108 - 111

110

milliseconds) and memory usage (measured in megabytes). As

shown in Figure 2, the benchmarking covered three core

cryptographic operations: AES encryption, RSA key

generation, and SHA-256 hashing. The results reveal distinct

performance characteristics for each language in terms of both

speed and memory consumption, providing a comparative

understanding of how efficiently each language handles

cryptographic tasks.

1) AES Encryption

Python was much faster than both Java (3.72 ms) and C# (1.08

ms) during AES encryption,with an execution time of just 0.03

ms. But the reason Python is so fast also means using more

memory (22.68 MB). This might suggest Python relies on

performing library shortcuts for efficiency and doesn’t have as

much control over memory use. C# managed to deliver power

and speed, yet used the least amount of memory and time (1.00

MB) which makes it perfect for apps that need to conservate

resources. It took more time for Java to run than for C# and

consumed a bit more memory.

2) Creating RSA Keys

C# generated its RSA key in 0.000 ms which suggests it must

have stored or already computed the results. Java showed great

performance (0.11 ms), Python was much slower (1.53 ms)

and it used up 13.93 MB of memory. Java’s footprint

measured 0.009 MB and C#’s was only 4.08 MB. According

to the results, Java and C runtime environments carry out RSA

operations very fast and efficiently as long as the necessary

libraries are optimized.

3) SHA-256 Hashing

The SHA-256 algorithm took only 2.77 ms in Java and only

required 0.0005 MB of memory. C finished in fourth place and

consumed 1.25 MB of RAM. Coming in last again was Python

which took the longest time (5.37 ms) and used the most

memory (14.68 MB), identical to its performance in the other

tests.

Performance Leader: C# delivered consistently strong

performance, particularly for RSA and AES, with minimal

memory usage—making it suitable for both web-based and

desktop cryptographic workloads.

Memory Efficiency: Java was found to offer the best memory

performance of any of the languages tested during all the

different operations.

While Python runs AES well, it takes up too much memory

and is slow on RSA and SHA-256, so its use is better for

general or fast testing rather than sensitive systems.

The findings imply that Python is less effective than C# and

Java in regard to performance and resource control for

production environments. The gaps between these

programming languages reveal how runtime tools, just-in-time

compilation and library optimization can affect the

performance of cryptography.

4. CONCLUSION

The outcomes from benchmarking demonstrate that the use of

different runtime environments, memory management and

cryptography library choices is the main reason for the

performance gaps between Python, Java and C#.

Execution Time

C# was able to handle RSA and AES faster than any other

library, producing zero key generation time and AES

encryption time of just 1.08 ms. It seems libraries used for

cryptographic functions are well designed and the CLR might

be used to improve runtime operations. Java was fast when

hashing with SHA-256 (2.77 ms) using Java Cryptography

Architecture (JCA) and Just-In-Time (JIT) compilation. While

it performed well in AES encryption, Python took longer than

expected in RSA and SHA-256, owing to its interpretive way

and the effort needed to express things at a high level.

Memory Usage

Java proved to be the most memory-efficient language in all

three operations, with particularly low usage in RSA (0.009

MB) and SHA-256 (0.0005 MB). This reflects the JVM’s

advanced memory optimization mechanisms. C# followed

closely, demonstrating balanced memory and speed, while

Python was consistently the most memory-intensive, using

over 14 MB for SHA-256 and 22 MB for AES.

Trade-offs

While Python's fast AES time is notable, its high memory

usage and poor RSA and SHA-256 performance make it less

suitable for resource-constrained or latency-sensitive systems.

Java and C#, with more predictable and optimized

performance, are better candidates for production

environments, particularly in enterprise or secure network

applications.

This comparative study underscores that the choice of

programming language significantly affects cryptographic

performance. Based on the observed metrics:

 C# is best suited for real-time, low-latency, and

memory-conscious environments, offering the

strongest overall performance.

 Java is a highly memory-efficient and balanced option,

suitable for scalable and cross-platform systems

where portability and reliability are key.

 Python, while offering rapid development and ease of

use, is better aligned with non-critical or educational

use, where performance trade-offs are acceptable.

Mildra March M. Tejano et al ., International Journal of Advanced Trends in Computer Science and Engineering, 14(3), May – June 2025, 108 - 111

111

Ultimately, developers must align their language choice not

only with algorithmic correctness but also with the

performance and resource demands of their specific

application domains.

REFERENCES

[1] M. D. Santos and K. J. Rivera, ―Cryptography in Python:

Educational utility versus production limitations,‖

Advances in Computing and Information Security, vol.

12, no. 2, pp. 88–97, 2023.

[2] H. L. Tan and R. Gupta, ―Assessing cryptographic

performance in Java: A JVM-centric approach,‖ Journal

of Applied Cybersecurity, vol. 9, no. 4, pp. 179–192,

2021.

[3] A. Montoya, ―Cryptography Implementations in .NET,‖

Code Maze, Jan. 12, 2023.

https://code-maze.com/dotnet-cryptography-implementat

ions/

[4] J. Dunstan, ―Hash Algorithm Performance,‖

JacksonDunstan.com, Aug. 26, 2014.

https://www.jacksondunstan.com/articles/3206

[5] ―Top 10 High-Performance Hash Libraries for .NET

Developers,‖ Medium, Nov. 2024.

https://medium.com/data-infrastructure/top-10-fastest-ha

shing-algorithms-for-large-dataset-in-c-8278a3ac8d38

[6] R. Mel and J. Baker, ―An Empirical Study on the

Performance of Java/.Net Cryptographic APIs,‖

Information Security Journal: A Global Perspective, vol.

16, no. 5, pp. 265–273, 2007.

https://www.tandfonline.com/doi/full/10.1080/10658980

701784602Taylor & Francis Online

[7] S. Toub, ―Performance Improvements in .NET 6,‖ .NET

Blog, Nov. 8, 2021.

https://devblogs.microsoft.com/dotnet/performance-impr

ovements-in-net-6/Microsoft for Developers

[8] ―AES-256 vs RSA: Choose Best Encryption 2025,‖

OnlineHashCrack, 2025.

https://www.onlinehashcrack.com/guides/cryptography-a

lgorithms/aes-256-vs-rsa-choose-best-encryption-2025.p

hpOnline Hash Crack

[9] A. Barnes, R. Fernando, K. Mettananda, and R. G. Ragel,

―Improving the throughput of the AES algorithm with

multicore processors,‖ arXiv preprint, arXiv:1403.7295,

2014. https://arxiv.org/abs/1403.7295arxiv.org

