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Abstract— This project presents an online loss-minimization 
algorithm (LMA) for a fuzzy-logic-controller (FLC)-based 
interior permanent-magnet synchronous-motor (IPMSM) drive 
to yield high efficiency and high dynamic performance over a 
wide speed range. LMA is developed based on the motor 
model. In order to minimize the controllable electrical losses 
of the motor and thereby maximize the operating efficiency, 
the d-axis armature current is controlled optimally according 
to the operating speed and load conditions. For vector-control 
purpose, FLC is used as a speed controller, which enables the 
utilization of the reluctance torque to achieve high dynamic 
performance as well as to operate the motor over a wide speed 
range.  
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I.  INTRODUCTION  
RECENTLY, the permanent magnet synchronous motors 
(PMSMs), which have advantages such as high efficiency and 
low inertia, have been extensively utilized in ac motor drive 
applications along with the rapid development in power 
electronics and especially digital signal processors (DSPs) that 
can quickly perform advanced vector control algorithms. To 
control  PMSM, linear control schemes, e.g., proportional-
integral (PI) controller and linear-quadratic regulator have 
been widely applied due to their relatively simple 
implementation [1]–[4].  Unfortunately, PMSM servo system 
is a nonlinear system with unavoidable and unmeasured 
disturbances, as well as parameter variations. Moreover, in 
practical applications, PMSM systems are always confronted 
with various disturbances that may be generated internally, 
e.g., friction force and unmodeled dynamics, or externally, 
e.g., load torque. As a result, it is very difficult for linear 
control schemes to achieve high performance.Therefore, 
nonlinear control methods can become an alternative solution 
to accurately track the reference trajectory of PMSM. In recent 
years, various nonlinear control algorithms have been 
presented, such as adaptive control [5], [6], robust control [7], 
backstepping control [8], feedback linearization control [9], 
direct torque control [10]–[12], and intelligent control [13].  In 
particular, sliding mode control (SMC) [14], [15] is one of the 
most attractive methods that can precisely regulate PMSM. It 
is well known that the most salient advantage of this technique 
is robustness to system uncertainties and disturbances. 
However, its implementation suffers from a chattering 
problem which occurs when the control input switches is 
continuously across the boundary. This is undesirable because 
it involves high control activity and may excite high-
frequency dynamics [16]. To suppress the chattering, various 

methods such as SMC with boundary layer [16] and SMC 
with sliding sector [17] have been proposed. The basic idea 
behind these works is to smooth the control action across the 
sliding surface while preserving the traditional SMC law. To 
improve the system response of the traditional SMC, in [18], a 
two-phase SMC law that incorporates the distance of the 
system state from the sliding surface into the controller design 
was presented. The principle of this method is to include an 
extra distance dependent on variable term that helps reduce the 
hitting time because the switching control action in SMC is 
usually not strong enough to attenuate chattering. However, 
chattering may still occur under certain operating conditions. 
 
  

II. SYSTEM MODELING  
In the dq rotor reference frame, a surface-mounted PMSM can 
be expressed as the following dynamic model ,where TL is the 
load torque, . is the electrical rotor angular position, . is the 
electrical rotor angular speed, iqs is the q-axis current, Vqs is 
the q-axis voltage, ids is the d-axis current, Vds is the d-axis 
voltage, d1(t) and d2(t) are the disturbance inputs representing 
the system nonlinearity or the unmodeled uncertainty, p is the 
number of poles, motor parameters Rs, Ls, J, B, and .m are the 
nominal values of the stator resistance, the stator inductance, 
the rotor inertia, the viscous friction coefficient, and the 
magnetic flux, respectively, and ki> 0, i =1, ..., 6 are the 
parameter values depending on Rs, Ls, J, B, and .m. In this 
paper, the following assumptions will be made to design an 
observer-based fuzzy sliding mode speed controller.  
1)  iqs, and ids are measurable.  
2) TL is unknown and T.L is equal to zero [6], [19].  
3) The desired speed .d is constant and ..d =¨.d =0.  
4) di(t), i =1, 2 is unknown but bounded as |di(t)|=di,  
where di =0 is known.  

III. FUZZY SLIDING MODE SPEED CONTROLLER 
DESIGN  

 
A. Sliding Surface Design  
In SMC, the system dynamics is only determined by the 
dynamics of the sliding surface. In this section, the sliding 
surface will be designed.  
B. Switching Law Design  
Let the control inputs Vqs and Vds be decomposed as the 
following control law  

Vqs =(Vqf +Vqbf ) 
Vds =(Vdf +Vdbf ) 
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where Vqf and Vdf are the nonlinear decoupling control terms 
to compensate for the nonlinearities of PMSM, and Vqbf and 
Vdbf are the switching control terms to force the system 
trajectory to the sliding surface.  
 
Define the nonlinear decoupling control law Vqf and Vdf as  

Vqf =k1k4iqs +k1k5. +k1ids. +k2ß 
Vdf =-.iqs. 

a switching feedback control strategy can straightforwardly be 
designed such that the system trajectory is driven onto the 
switching surface s =0 and it is maintained there for all 
subsequent time.  
 
Let the switching control law Vqbf and Vdbf be defined as  

Vqbf =-cß -(k1d1+e1)·sgn(s1) 
Vdbf =-(d2+e2)·sgn(s2)  

where di is already defined in A4 and ei > 0.  
 
C. Stability of Sliding Mode Controller  
Stability analysis of an SMC system is decoupled into two 
phases. The first is to show the stability of the reduced-order 
sliding mode dynamics. The second is to verify the reach 
ability condition.  
 
First, from the relationship ß =..e, the sliding surface (4) can 
be rewritten as  

s1=c.e +..e, s2=ids.  
By setting s =.s =0and using the equivalent control method  
[20], it can be shown that the sliding mode dynamics restricted 
to s =0 is given by  

..e =-c.e 
which is asymptotically stable if c > 0.  
 
 
 
 
 
 
 
 
 
 
 

IV. LOAD TORQUE OBSERVER DESIGN  
 
The proposed fuzzy SMC law requires the knowledge of load 
torque TL, so the control performance can be seriously 
degraded in the presence of load torque variations if the term 
TL is not properly considered. In this section, a simple load 
torque observer will be designed.  
 
 
 
 
 
 

theta (rad)

n (r/min)

PI PI

PI d

q

theta

a

b

c

dq0->abc 550
Udc

Te (N.m)Step

Ua

Ub

Uc

TL

Idq

Iabc

n

theta

Te
PMSM

Nref1

0
Idref

Iabc(A)1

Iabc(A)

Demux

Uaref

Ubref

Ucref

Udc

Ua

Ub

Uc

3-level

 

 
 
 
 
 
Fig 1:load torque observation design 
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V. CONCLUSION 
 

This paper proposed a fuzzy sliding mode speed controller 
with a third-order load torque observer for a robust speed 
tracking of a IPMSM. The proposed observer-based fuzzy 
SMC method took into account the disturbance inputs 
representing the system nonlinearity or the unmodeled 
uncertainty to guarantee the robustness under motor parameter 
and load torque variations. Simulation and experimental 
results clearly demonstrated that the proposed control system 
can not only attenuate the chattering to the extent of other 
control methods (e.g., PI control, fuzzy control, etc.) but can 
also give a better transient performance in comparison with 
the non-fuzzy sliding mode controller under the conditions of 
motor parameter and load torque variations.  
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