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Abstract: Optimal consensus for a network of multi-
agent systems is one of the most important researched 
topics due to its importance in Network Analysis of 
Systems under Dynamic conditions. In this paper the 
problem is defined explicitly and a topological graph 
for the network is constructed. Then the Linear 
Quadratic Regulator Method (LQR) and the Linear 
Matrix Inequality (LMI) Approach are considered and 
they are used to achieve consensus. A study about the 
procedures and their behavior is carried out with 
simulation of the six vehicle network for the velocity 
parameter using the robust control toolbox of 
MATLAB. 
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I. INTRODUCTION 

A fully autonomous system must have the capacity to 
perform hardware repair, if one of its components fails. 
The autonomous systems must perform well under 
significant uncertainties in the plant and environment for 
extended periods of time under the effect of disturbances 
by compensating for system failures due to external 
interventions. Generally such systems are highly advanced 
and are used in controlled conditions. Further, most natural 
systems have autonomous nature as an internal 
characteristic When multi-agent systems are networked 
with a view of autonomous nature , as one of the major 
driving factors it can be considered as an autonomous 
network of those multi-agent systems. Such systems have 
an advantage in that they are self intelligent and correcting 
in working towards a singularity. Some of the best 
examples are neural networks of higher dimensions like 
human brain, Artificial intelligence based systems, Expert 
systems. Examples of these systems are often found in 
satellites, manoeuvres of a group of unmanned aerial 
vehicles (UAVs) for intelligence, surveillance and 
reconnaissance (ISR) missions. The paper compares the 
best optimal methods with widespread use and provides the 
distinction between them. 

II. PROBLEM DEFINATION 
A. Model Description 
                  Multi-agent teams: Consider the set of agents 
E= {i =1, 2, 3 ….N}, Where, N=number of agents. 

Further, each member of the team is governed by the 
dynamical representation system is 
           = Ai Xi + Bi  Ui, Xi € Rn ; Ui € Rm ,i=1,2,...N      (1) 
           Yi = CiXi,  Yi € Rq; i=1,2,3……N                          (2) 
 Where, 
  Xi= state vector, Ui= input vector, Yi= output vector 
 Matrices Ai, Bi, Ci  have the required dimensions. 
 Variables n, m and q mean the dimensions of the state, 
input and output vectors of the respective agents. 
For the entire team the equations can be written as  
     and             

 So,         X Nn x 1 = [(X1) T …………………. (XN)T] 
                U Nm x 1 = [(U1) T …………………. (UN)T] 
                Y Nq x 1 = [(Y1) T …………………. (YN)T] 
The matrices can be defined thus as  
                        A=Diag {A1 ………………. AN} 
                         B=Diag {B1 ………………. BN} 
                         C=Diag {C1 ………………. CN} 
B. Problem Statement: Consensus in a Team of Multi-
Agents [1] 
Our main goal is to ensure agent’s state converge to the 
same value, i.e. for all Xi → Xj. It is desired that the team 
reaches to a consensus in the subspace spanned by the 
vector 1,  
Xss = [(X1)T

ss . . . (XN)T
ss]T = [1 1 . . . 1]TØ ωss = 1Øωss 

where, ωss is the final state vector to which the states of all 
agents converge. 
Definition 1 (Consensus to subspace S [2]): Let J be an 
orthonormal matrix in RNn×1. The system achieves 
consensus to the subspace S = span{J}, if S is a minimal 
set such that for any initial condition the state X(t) 
converges to a point in J. 
In the present work we assume that the desired consensus 
Sub space S is spanned by the unity vector, i.e. J = 1.                                                    

                                   III.SPACE ANALYSIS 
Consider the state space to be composed of two parts, the 
consensus subspace and its orthonormal subspace. 

Assume the orthonormal basis for subspace S is denoted by 
JNnx1=1. The orthonormal complement of this matrix is 
denoted by which the basis for the 
corresponding subspace orthonormal to S.  

The following relationships are true for the matrices. 
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The state vector can be partitioned into two orthogonal 
components and Xs according to subspaces J  and J. 

 
Assume that the control signal has a state feedback 
structure,             U=KX 

               Where, K-matrix is feedback gain. 
To achieve consensus   must be converged to 0. 

 

 
If this part of the dynamics is stabilized asymptotically to 
zero, Xs will approach to a constant value which is in the 
consensus subspace. Therefore, the consensus would be 
achieved. Now we may design a state feedback control 
strategy to guarantee the consensus achievement by the 
closed-loop system. 
 

IV. OPTIMAL CONSENSUS SEEKING 

A. Control Design-Purpose  

To achieve consensus for the network of multi agent 
systems the previous three steps were studied in view of 
the design criteria for stability. 

 

 

 
 
              Fig.1. Procedure For consensus 
 

The team conditioning which we use here is a good index 
of the team performance and its minimization can result in 
a globally optimal (or suboptimal) solution. However, the 
solution would be centralized. Fortunately, using the LMI 
formulation, we will show that this centralized solution can 
be avoided by adding a constraint on the structure of the 
controller gain matrix. 

B. Discussion on the Solution of Riccati Equation 

The optimal control law can be obtained as follows [3] 
  If the Hamiltonian is defined as  

          H* = F(X*, U*) + λT G(X*, U*)  
 It can be written as  

H(X,U,λ) = ½ [XTOX + UTRU] + λ [AX+BU] 

To achieve optimal control, 

(δL/δU)* = 0 → (δH/δU)* = 0 as 
δH/δU = 0 → ½ [2RU*] +BT λ* = 0 
 RU* + BT λ* = 0                 U* = -R-1BT λ*  

Where, δ/δU {1/2 UTRU} = RU and δ/δU {λ*BU} = BTλ 
are used to determine the state and co-state equations. 
From,          (δH/δU)* = -λ 
            

 

  (dλ/dt)* =  -(δH/δX)* →  (dλ/dt)* = -OX*-ATλ* 

 
Now the boundary condition is clearly variable as X(tf) is 
specified to be 1 and X(0) is also specified. 

                         λ* = GX* 

So, λ* and X0 from the two point based boundary value 
problem. 
The closed loop optimal control is obtained under the 
assumption  

                   λ* = PX* where P is to be determined. 
 So, U* = -R-1BTPX* is the negative feedback of X* . 

 Differentiate with respect to t 

           
                            
       (dλ/dt)* = - OX* - ATPX* 

                                   Fig. 2.  LQR Sub-system 
Now, 

 

As P is independent of X the above equation must hold 
good for any X*. 

So,   the above equation is a matrix differential 
equation satisfied by P. 

It is a differentiable equation of the Riccati time and hence 
P can be termed as the Riccati Coefficient Matrix. 
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If    λ* = PX* = GX* then           P = G  
Optimal value is ½ XT*PX*  and U*= -R-1BTPX* = -KX* 

           K = R-1BTP – called Kalman gain – U = KX 

For the system to have controllability it is necessary 
that   

 [B AB A2B _ _ _ _ _ An-1B] 

So,   

C. Method for Subspace J 

The problem of minimizing the cost function subject to its 
dynamical conditions is a Linear Quadratic Regulator 
(LQR) problem. 

The solution for such a problem is  
Where, P must satisfy the Riccati Equation. 

 
So,  from properties of the  

matrix, K is determined. 
 for open loop 

for closed loop. 
If AJ=0 then, a stable consensus is achieved which is 
possible if and only if det(Ai) = 0 and matrix Ai is the same 
for all i.  
D. LMI METHOD 

The problem of minimizing the cost function cannot be 
solved by the Linear Quadratic Regulator (LQR) Problem 
Method. [4]-[6] In order to solve this Optimal Control 
Problem the Linear Matrix Inequalities (LMI) can be used.  

Assume P1 be a real symmetric solution of the Algebraic 
Riccati Equation (ARE). 

        ATP1 + P1A – P1BBTP1 + O1 = 0 

With O1 = O1
T and assume that Re {λ (A-BBTP1)} < 0 

Then any real symmetric solution P2 of the ARE  

ATP2 + P2A – P2BBTP2 + O2 = 0 with O2 = O2
T and O1 ≥ O2 

satisfies (P1 ≥ P2). The main aim is to solve the controller 
equation that minimizes the cost function. 

                       Here, K is the feedback control gain. 

For these conditions the Riccati Equation 
is .The optimal 
output for an initial condition X (0) is then given as 
X(0)TPX(0). Now in order to further solve the above 
conditions the concept of convexity must be introduced so 
as to ensure that the system is feasible. 

Consider the condition, 

          Subject to the ARE 

 
As the ARE must be feasible this further reduces the 
condition of solution. So, 
  
 It must be observed that  provides a single 
solution which can be replaced directly by the trace due to 
the notion that   YTLY = y1

2l11 + y1y2 (l12 + l21) + y2
2l22 

This process is obtained from matrix theory. But for this to 
be utilized the most important assumption to be considered 
is that the matrix P is always positive and linearly 
quadratic. 

So, for the dynamic system 
                  

 The inequality constraints become, 
                            

.The LMI for 
consensus analysis is given by the statement 
Theorem: Given a matrix J € RNn xP the autonomous system 
achieves consensus to S if and only if 
 
   (1)AJ = 0 and 
   (2)There exists X > 0 such that  
 Where X satisfies 
             

Proof – To prove sufficiency, 

 Assume, AJ = 0 and there exists X>0 such that conditions 
(1) and (2) are feasible. Now, consider the term , it can 

be replaced by   

Now, and  

                      

If   is replaced with P then  
which is enough to show that the system achieves 
consensus. The conditions for consensus are satisfied and 
there exists a solution P > 0 for the LMI 

                         PTG + GP < 0 

From the above it is clear the X > 0 and the consensus is 
achievable. 

So, now  and by the assumption the LMI is 
feasible. 

Now,  is achievable as  
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Replacing X with a new variable Z  
 Now,  
They are positive definite matrices with P begin perfectly 
invertible i.e. PP-1 = I 
Further,       
Now the inequality can be rewritten as  

 

Replace KZ by W 

To 
convert this inequality into an LMI the Schur’s 
Complement is used. 

E.  LMI CONCEPTION BY SCHUR’S COMPLEMENT  

 Let F: V→Sn be an affine function which is partitioned 
according to        

 

                    Where F11(x) is square. 

Then F(x) > 0 if and only if  

(1) F11(x) > 0 
(2) F22(x) - F12(x) F11

-1(x) F21(x) > 0 
Now to apply the Schur’s Complement to the problem  

 

Assume O > 0 and R > 0 and symmetric then 

 

is equivalent to         R ≥ 0, O – SRtST ≥ 0, S (I – RRt) = 0 

Where, Rt denotes the Moore Penrose of R. 
The Moore Penrose inverse is an approximate inverse of R. 
Assume U is an orthogonal matrix that diagonalizes R 
Assume, 

 
Further as   
So, if             [7]           
            V. EXISTENCE OF SOLUTIONS  
To determine the existence of solutions it is necessary to 
prove the detectability and stabilizability conditions. In 
order to explain about the usage of optimality on the 
system dynamics by LMI methodology consider the 
following lemma 

Lemma 1 -  The basic minimization problem or its related 
LMI’s under the application of the dynamic state will have 
an optimal solution if the matrices A,B and O are given 
such that satisfy the inequalities for a matrix P2 . 

(1)The stability condition is   J*(AP2 + P2A* - BB*) J < 0 
(2)The detect ability condition is   
 Where P2 > 0 satisfies 
                                       
Note – Here P2 is a new variable with similar properties as 
that of Z and P2 < 0.  

Further if 

1.           and 
2.  

Then the lemma is satisfied and P1 is a sub matrix of P2. 

If A, B and O do not satisfy above lemma then the addition 
of an internal feedback loop to each r is sufficient. 

From the above theoretical observations it can be directly 
inferred that the below conditions are possible in the space 
J. 

The conditions are – 

1. If A, B and O are given, then assume U = KX as the 
control strategy. 
Where, K = WZ-1 and matrices Ω, W and Z are obtained as 
follows 
Min trace (γ) subject to 
 

a.  

b.    

In the process of network design, the simplest tool in 
mathematics      

c.  (AZ + BW)J = 0 
d.  
 

2. The controllers are semi decentralized order  
a. Z is a diagonal matrix i.e  
b. Z=diag [Z1…………………ZN]. 
c. W (i,j) = 0 if L(i,j) = 0.  
 

The above conditions are specified in terms of W and Z. 
Neglecting the space conditions  
   Upon conversion of these terms by applying Z=P-1. 
  As,                           K=WZ   

                        K=WP-1 
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                        W=PK 
The conditions of LMI are rewritten as  
1.Ω (P-1) – I2 >0 
Post multiply P on both sides 
                    P – Ω <0 
2.Γ + ZQZ + W*RW ≤ 0 
  AZ + BW + ZA* +W*B* + ZOZ +W*RW ≤ 0 
  AP-1 + BPK + P-1A* + K*PB* + P-1OP-1 + K*B*RBK ≤ 0 
Pre and post multiplying P 

  PA + PBPKP + A*P+ PK*PB*P + O + PK*B*RBKP ≤ 0   

1. AZ + BW =0 
       K = -AB-1 
2. The fourth condition can be neglected as the space 
constraints and subspace are not considerable for the 
above application. 

The supporting concepts to achieve these phenomenons are 
discussed during the application of graph theory to achieve 
networked consensus. 
Further, for the information based matrices all the 
controllers are dependent on their adjacent controllers to 
decide on the working and exchange of the network. 

A.  Connectivity 

In the process of network design, the simplest tool in 
mathematics is graph connectivity. Further, graph 
connectivity is chosen due to its uniqueness is assigning 
values or systems and also ease of computation. 
The need for usage of Graph theory can be explained by 
the following Lemma. 
Lemma - The closed loop network of multi-agent systems 
i.e. (A + BK) represents the laplacian matrix of a weighted 
graph. The corresponding graph is a sub-graph to the 
original network graph but with different weights assigned 
to its edges. 
Proof –  The proof to the above lemma is obtained as the 
definition of matrices A & B are diagonals and the 
necessary restrictions on K, the matrix (A + BK) has a 
similar structures to that of the laplacian network with extra 
‘0’ elements. 
This matrix will satisfy   (A + BK) J = 0. 
But it doesn’t mean that the solution graph must be 
connected and hence to show that compulsory connectivity 
of the network is essential to achieve consensus can be 
shown using the theorem. 
Theorem – If the graph of the entire network of multi–
agents is not connected, then existence of a solution for 
consensus can be guaranteed if and only if (A + BK) 
represents the laplacian of a connected sub-graph of the 
original graph. 
Proof – The two necessary conditions for consensus are 
that (A + BK) J = 0 is possible and that K must be designed 

such that 

 
To ensure asymptotically stability, the matrix J 
for  must be Hurwitz i.e. it should have no zero eigen 
values.    
From, it is evident that there are Nn-1 
independent column vectors, if they are denoted as         

   

[8] 
 If it is assumed that this network graph is not connected. I 
t implies that the laplacian matrix L will have more than 1 
zero eigen value. Further, (A + BK) also equates the same. 
 (A + BK) has an eigen vector corresponding to the ‘0’ 
eigen vector which doesn’t exist in the S subspace. 

VI. RESULTS 

The detailed analysis of the presented methods for 
achieving optimal consensus can be shown using a team of 
six vehicles. In solving the consensus problem for this 
particular problem the following statements must be 
considered. 
1. Only distance and velocity are considered as the states 
and no other external disturbances are considered to affect 
this network. 
2. Only time is considered as the consensus achievement 
parameter and any such other processes are nonexistent. 
3. The network for the application of the consensus 
protocol is flexible and as such can only be assumed. 

These assumptions and/or considerations form the 
underlying paths for consensus. This is necessitated due to 
high complexity of the problem even for a two state matrix 
without any change. The solutions obtained for the 
procedures are classified under two scenario’s i.e. AJ ≠ 0 
and AJ = 0.The graph considered to show the network is as 
follows 

Fig.3. Graphed Network 

                                           Fig.4.AJ ≠ 0 Condition Output 
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Fig. 5. AJ = 0 Condition Output 

The solutions are obtained for a set of values 

A. By LQR 

B.By LMI 

In the process of applying the LMI method to the above 
network for the same model set of values as provided for 
the LQR method it must be noted that the network can be 
decentralized and the final time of network can be 
considered as the combined sum of the sub systems. 

The Robust control toolbox is used in order to solve the 
network by the LMI method. [9] 
The general code for the subsystem is  
The following program is used for the AJ = 0 cases: 
X= [    ]';      % Initial values specifiable for individual subsystem 
A= [     ];      % Constant state space array of the subsystems   
setlmis([]); 
P=lmivar(1,[2 1]); 
lmiterm([1 1 1 P],X',X); 
lmiterm([2 1 1 P],1,A,'s'); 
lmiterm([2 1 1 P],.5*1,P*A,'s'); 
lmiterm([2 1 1 P],.5*A',P,'s'); 
lmiterm([2 2 1 0],2.4494); 
lmiterm([2 2 2 0],-1); 
lmiterm([2 3 1 P],0.707,1); 
lmiterm([2 3 3 0],-1); 
lmis = getlmis 
[tmin,xfeas] = feasp(lmis) 
P=dec2mat (lmis,xfeas,P) 
As only time is the parameter of consideration  
For AJ ≠ 0 the t is 1.5499 and for AJ = 0 the t is 12.00980. 
     Upon comparing the solutions in particular the time 
period of staying in consensus of all the subsystems of the 
network, the following conclusions can be put forward: 
1. In the AJ ≠ 0 condition the time duration for which the 
subsystems are in consensus is more for the Riccati 
Equation Method(LQR) over the LMI method and thus if 
all the state space’s of the subsystems are unequal then the 
LQR method is best suitable to solve the network.     
2. In the AJ = 0 condition the time duration for which the 
subsystems are in consensus is more for the LMI method 
over the Riccati Equation Method(LQR) and thus if all the 
state space’s of the subsystems are equal then the LMI 
method is best suitable to solve the network.     
 

 

VII. CONCLUSION 
 

An optimal control design strategy is shown in this paper to 
guarantee consensus achievement in a network of multi-
agent systems. It has been shown that the approach based 
on the Riccati equation, in general, fails to provide a global 
solution for a stable consensus protocol. Therefore, we 
have shown an alternative approach for the minimization of 
a global cost function through a set of constraints that are 
expressed as LMIs. Contrary to a control methodology that 
optimizes the individual agent’s cost function, by 
introducing a global cost function, we can ensure only a 
parameter of consideration neglecting the other 
considerations. Moreover, through the LMI formulation of 
the problem, constraints on partial information availability 
can formally be taken into account. Therefore, 
corresponding to the individual agent control design, the 
only imposed requirement is that the information should be 
made available and received from the neighbours in an 
agent’s neighbouring set (defined as the agents that are 
connected to this agent in the network underlying graph). 
Finally, it should be noted that our proposed framework 
has sufficient flexibility for accommodating additional 
constraints and design criteria in the development of 
consensus seeking protocols. 
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