
International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 167– 172 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

167

ISSN 2278-3091

Malwise System for Packed and Polymorphic
Malware

Mr. Md. Rehaman Pasha1, Mrs. Y Prathima2, Mr. L. Thirupati3

1. Assistant Professor, Dept of C.S.E. Malla Reddy Institute of Engineering Technology. rehaman17@gmail.com.
2. Assistant Professor, Dept of C.S.E. Malla Reddy Institute of Engineering Technology. prathimayenugu@yahoo.co.in
3. Assistant Professor, Dept of C.S.E. Malla Reddy Institute of Engineering Technology. thiru1274@gmail.com.

Abstract— Signature based malware detection
systems have been a much used response to the
pervasive problem of malware. Identification of
malware variants is essential to a detection system
and is made possible by identifying invariant
characteristics in related samples. To classify the
packed and polymorphic malware, this paper
proposes a novel system, named malwise, for
malware classification using a fast application level
emulator to reverse the code packing transformation,
and two flowgraph matching algorithms to perform
classification. An exact flowgraph matching
algorithm is employed that uses string based
signatures, and is able to detect malware with near
real-time performance. Additionally, a more effective
approximate flow graph matching algorithm is
proposed that uses the decompilation technique of
structuring to generate string based signatures
amenable to the string edit distance. We use real and
synthetic malware to demonstrate the effectiveness
and efficiency of Malwise. Using more than 15,000
real malware, collected from honeypots, the
effectiveness is validated by showing that there is an
88% probability that new malware is detected as a
variant of existing malware. The efficiency is
demonstrated from a smaller sample set of malware
where 86% of the samples can be classified in under
1.3 seconds.
Index Terms— Computer security, malware, control
flow, structural classification, structured control flow,
unpacking.

1 INTRODUCTION
Malware, short for malicious software, means a
variety of forms of hostile, intrusive or annoying
software or program code. Malware is a pervasive
problem in distributed computer and network
systems. According to the Symantec Internet Threat
Report [1],499,811 new malware samples were
received in the second half of 2007. F-Secure
additionally reported, “As much malware [was]
produced in 2007 as in the previous20 years
altogether“ [2]. Detection of malware is important to

a secure distributed computing environment. The
predominant technique used in commercial anti
malware systems to detect an instance of malware is
through the use of malware signatures. Malware
signatures attempt to capture invariant characteristics
or patterns in the malware that uniquely identifies it.
The patterns used to construct a signature have
traditionally derived from strings of the malware’s
machine code and raw file contents [3, 4]. String
based signatures have remained popular in
commercial systems due to their high efficiency, but
can be ineffective in detecting malware variants.
Malware variants often have distinct byte level
representations while in principal belong to the same
family of malware. The byte level content is different
because small changes to the malware source code
can result in significantly different compiled object
code. In this paper we describe malware variants with
the umbrella term of polymorphism. Polymorphism
describes related malware sharing a common history
of code. Code sharing among variants can be derived
from autonomously self mutating malware, or
manually copied by the malware creator to reuse
previously authored code.
1.1 Existing Approaches and Motivation
Static analysis incorporating n-grams [5, 6], edit
distances [7], API call sequences [8], and control
flow [9-11] have been proposed to detect malware
and their polymorphic variants. However, they are
either ineffective or inefficient in classifying packed
and polymorphic malware. A malware's control flow
information provides a characteristic that is
identifiable across strains of malware variants.
Approximate matching of flowgraph based
characteristics can be used in order to identify a
greater number of malware variants. Detection of
variants is possible even when more significant
changes to the malware source code are introduced.
Control flow has proven effective [9, 11, 12], and fast
algorithms have been proposed to identify exact
isomorphic whole program control flow graphs [13]
and related information [14], yet approximate
matching of program structure has shown to be
expensive in runtime costs [15]. Poor performance in
execution speed has resulted in the absence of

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 167– 172 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

168

ISSN 2278-3091

approximate matching in end host malware detection.
To hinder the static analysis necessary for control
flow analysis, the malware's real content is frequently
hidden using a code transformation known as packing
[16]. Packing is not solely used by malware. Packing
is also used in software protection schemes and file
compression for legitimate software, yet the majority
of malware also uses the code packing
transformation. In one month during 2007, 79% of
identified malware was packed [17]. Additionally,
almost 50% of new malware in 2006 were repacked
versions of existing malware [18].This article has
been accepted for publication in a future issue of this
journal, but has not been fully edited. Content may
change prior to final publication.

 2 IEEE TRANSACTIONS ON COMPUTERS
Unpacking is a necessary component to perform
static analysis and to reveal the hidden characteristics
of alware. In the problem scope of unpacking, it can
be seen that any instances of malware utilize
identical or similar packers. Many of these packers
are also public, and malware often employs the u se
of these public packers. Many instances of malware
also employ modified versions of public packers.
Being able to automatically unpack malware in any
of these scenarios, in addition to unpacking novel
samples, provides benefit in revealing the malware’s
real content – a necessary component for static
analysis and accurate classification. Automated
unpacking relies on typical behavior seen in the
majority of packed malware – hidden code is
dynamically generated and then executed. The hidden
code is naturally revealed in the process image during
normal execution. Monitoring execution for the
dynamic generation and execution of the malware’s
hidden code can be achieved through emulation [19].
Emulation provides a safe and isolated environment
for malware analysis. Malware detection has been
investigated extensively, however shortcomings still
exist. For modern malware classification approaches,
a system must be developed that is not only effective
against polymorphic and packed malware, but that is
also efficient. Unless efficient systems are developed,
commercial Antivirus will be unable to implement
the solutions developed by researchers. We believe
combining effectiveness with real-time efficiency is
an area of research which has been largely ignored.
For example, the malware classification investigated
in [5, 6,9-11] has no analysis or evaluation of system
efficiency. We address that issue with our
implementation and evaluation of Malwise.In this
paper we present an effective and efficient system
that employs dynamic and static analysis to
automatically unpack and classify a malware instance

as a variant, based on similarities of control flow
graphs.

2 RELATED WORKS
2.1 Automated Unpacking
Automated unpacking employing whole system
emulation
was proposed in Renovo [19] and Pandora's Bochs
[20]. Whole system emulation has been demonstrated
to provide effective results against unknown malware
samples, yet is not completely resistant to novel
attacks [21].Renovo and Pandora’s Bochs both detect
execution of dynamically generated code to
determine when unpacking is complete and the
hidden code is revealed. An alternative algorithm for
detecting when unpacking is complete was proposed
u sing execution histograms in Hump -and-dump [22]
. The Hump-and-dump was proposed as potentially
desirable for integration into an emulator.
Polyunpack [16] proposed a combination of static
and dynamic analysis to dynamically detect code at
runtime which cannot be identified during an initial
static analysis. The main distinction separating our
work from previously proposed automated unpackers
is our use of application level emulation and an
aggressive strategy to determine that unpacking is
complete. The advantage of application level
emulation over whole system emulation is
significantly greater performance. Application level
emulation for automated unpacking has had
commercial interest [23] but has realized few
academic publications evaluating its effectiveness
and performance. Dynamic Binary Instrumentation
was proposed as an alternative to using an
instrumented emulator [24] employed by Renovo
and Pandora’s Bochs. Omni pack [25]and Saffron
[24] proposed automated unpacking using native
execution and hardware based memory protection
features.

This results in high performance in comparison to
emulation based unpacking. The disadvantage of
unpacking using native execution is evident on E-
Mail gateways because a virtual machine or emulator
is required to execute the malware. A virtual machine
approach to unpacking, using x86 hardware
extensions, was proposed in Ether [26]. The use of
such a virtual machine and equally to a whole system
emulator is the requirement to install a license for
each guest operating system. This restricts desktop
adoption which typically has a single license. Virtual
machines are also inhibited by slow start-up times,
which again are problematic for desktop use. The u
se of a virtual machine also prevents the system being
cross platform, as the guest and host CPUs must be
the same.

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 167– 172 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

169

ISSN 2278-3091

2.2 The Difference between Malwise and Previous
Work
Our research differs from previous flowgraph
classification
research by using a novel approximate control flow
graph matching algorithm employing structuring. We
are the first to use the approach of structuring and
decompilation to generate malware signatures. This
allows us to use string based techniques to tackle
otherwise infeasible graph problems. We use an exact
matching algorithm which performs in near real-time
while still being able to identify approximate matches
at a whole program level. The novel set similarity
search we perform enables the real-time classification
of malware from a large data base.No prior related
research has performed in real-time..

3 PROBLEM DEFINITIONS AND OUR
APPROACH
The problem of malware classification and variant
detection is defined in this Section. The problem
summary is to use instance based learning and
perform a similarity search over a malware database.
Additionally defined in this Section is an overview of
our approach to design the Malwise system.

3.1 Problem Definition
A malware classification system is assumed to have
advance access to a set of known malware. This is for
construction of an initial malware database. The
database is
constructed by identifying invariant characteristics in
each malware and generating an associated signature
to be stored in the database. After database
initialization, normal use of the system commences.
The system has as input a previously unknown binary
that is to be classified as being malicious or non
malicious. The input binary and the initial malware
binaries may have additionally undergone a code
packing transformation to hinder static analysis. The
classifier calculates similarities between the input
binary and each malware in the database. The
similarity is measured as a real number between 0
and 1 – 0 indicating not at all similar and 1 indicating
an identical or very similar match. This similarity is a
based on the similarity between malware
characteristics in the database. If the similarity
exceeds a given threshold for any malware in the
database, then the input binary is deemed a variant of
that malware, and therefore malicious.

3.2 Our Approach

Our approach employs both dynamic and static
analysis to classify malware. Entropy analysis
initially determines if the binary has undergone a
code packing transformation. If packed, dynamic
analysis employing application level emulation
reveals the hidden code using entropy analysis to
detect when unpacking is complete. Static analysis
then identifies characteristics, building signatures for

control flow graphs in each procedure..Two
approaches are employed to generate and compare
Flow graph signatures. The system design is
presented in figure 1.Two flow graph matching
methods are used to achieve the goal of either
effectiveness or efficiency. A brief introduction is
provided here.
Exact Matching: An ordering of the nodes in the
control flow graph is used to generate a string based
signature invariant of the flowgraph. String equality
between graph invariants is used to estimate
isomorphic graphs. Approximate Matching: The
control flow graph is structured in this approach.

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 167– 172 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

170

ISSN 2278-3091

Structuring is the process of decompiling
unstructured control flow into higher level,
Source code like constructs including structured
Conditions and iteration. Each signature representing
the structured control flow is represented as a string.
These signatures are then used for querying the
database of known malware using an approximate
dictionary search.

4 SYSTEM DESIGN AND IMPLEMENTATION
4.1 Identifying Packed Binaries Using
Entropy Analysis
Malwise performs an initial analysis on the input
binary to determine if it has undergone a code
packing transformation. Entropy analysis [34], is
used to identify packed binaries. The entropy of a
block of data escribes the amount of information it
contains. It is calculated as follows:

where p(i) is the probability of the ith unit of
information
in event x’s sequence of N symbols. For malware
packing analysis, the unit of in formation is a byte
value, N is 256,and an event is a block of data from
the malware. Compressed and encrypted data have
relatively high entropy. Program code and data have
much lower entropy. Packed data is typically
characterized as being encrypted or compressed,

therefore high entropy in the malware can indicate
packing.
4.2 Application Level Emulation
Automated unpacking requires malware execution to
be simulated so that the malware may reveal its
hidden code. The hidden code once revealed is then
extracted from the process image.

4.3 Entropy Analysis to Detect Completion of
Hidden Code Extraction
Detection of the original entry point (OEP) during
emulation identifies the point at which the hidden
code is revealed and execution of the original
unpacked code begins to take place. Detecting the
execution of dynamic code generation by tracking
memory writes was used as an estimation of the
original entry point in Renovo [19].
In this approach the emulator executes the malware,
and a shadow memory is maintained to track newly
written memory. If any newly written memory is
executed, then the hidden code in the packed binary
being will now be revealed.
4.4 Static Analysis
The static analysis component of Malwise proceeds
once it receives an unpacked binary. The analysis is
used to extract characteristics from the input binary
that can be used for classification. The characteristic
for each procedure in the input binary is obtained
through transforming its control flow into compact
representation that is am enable to string matching.
This transformation, or signature generation.

The structuring algorithm implemented in Malwise is
a modified algorithm of that proposed in the DCC d
ecompiler [38]. If the algorithm cannot structure the
control flow graph then an unstructured branch is
generated.Surprisingly, even when graphs are
reducible (a measure of how inherently structured the
graph is), the algorithm generates unstructured
branches in a small but not insignificant number of
cases. Further improvements to this algorithm to
reduce the generation of unstructured branches have
been proposed [39, 40]. However, these
improvements were not implemented.

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 167– 172 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

171

ISSN 2278-3091

The grammar for a resulting signature is d efined in
Fig.3.Fig. 4 shows an example of the relationship
between a control flow graph, a high level structured
graph, and a resulting signature.For approximate
matching,a greedy assignment is made for the best
approximate matching string where the similarity

ratio is above 0.9. An example of assignment is
shown in Fig. 5.
4.5 The Set Similarity Search
To classify the query program as malicious or benign,
a similarity search is performed to find any similar
malware in the database. The search can be
performedexhaustively.

4.6 Complexity Analysis
We assume a search complexity is O(log(N)) for both
global and local flowgraph databases. The runtime
complexity of malware classification is on average
O(Nlog(M)) where M is the number of control flow
graphs in the database, and N is the number of control
flow graphs in the input binary. N is proportional to
the input binary size and not more than several
hundred in most cases. The worst case can be
expected to have a runtime complexity of
O(Nlog(M) + ANlog(N)), where A is the number of
similar malware to the input binary. It is desirable
that the malware database is not populated with a
significant number of similar malware. In practice,
this condition is unlikely to be significant. It is
expected that the average case is processing benign
samples.
4.7 Discussion
The threshold to determine if two programs are
similar, in either exact flow graph matching or
approximate flow graph matching, is empirically
decided in Malwise. Likewise as is the similarity
ratio between flow graphs. The actual figures are
decided by investigating a huge number of real life
malware samples. This approach is currently adopted
by most Antivirus systems. It is a desirable feature
that the malware classification system can adaptively
select the threshold s. Machine learning based
approach can be taken to achieve this. As the main
focus of this research is to develop an effective and
efficient system to solve the polymorphic malware
problem, we leave this as
our future work.

5 EVALUATION
In this Section we describe the experiments to
evaluate automated unpacking and flowgraph based
classification in Malwise.

To verify our system correctly performs hidden code
extraction ,we tested the prototype against 14 public
packing tools. These tools perform various
techniques in the resulting code packing
transformation including compression, encryption,
code obfuscation, debugger detection and virtual
machine detection. The samples chosen to undergo
the packing transformation were the Microsoft

Windows XP system binaries hostname.exe and
calc.exe.hostname.exe is 7680 bytes in size, and
calc.exe is 114688bytes.The original entry point
identified by the unpacking system was compared
against what w as identified as the real OEP. To
identify the real OEP, the program counter was
inspected during emulation and the memory at that
location examined. If the program counter was found
to have the same entry point as the original binary,
and the 10 bytes of memory at that location was the
same as the original binary, then that address was
designated the real OEP.

6 CONCLUSION
Malware can be classified according to similarity in
its flowgraphs.This analysis is made more
challenging by packed malware. In this paper we
proposed different algorithms to unpack malware
using application level emulation. We alsoproposed
performing malware classification using either the
edit distance between structured control flow graphs,
or the estimation of isomorphism between control
flow graphs. We implemented and evaluated these
approaches in a fully
functionaly system, named Malwise. The automated
unpacking was demonstrated to work against a
promising number of synthetic samples using known
packing tools, with high speed. To detect the
completion of unpacking, we proposed and evaluated
the use of entropy analysis. It was shown that our
system can effectively identify variants of malware in
samples of real malware. It was also shown that there
is a high probability that new malware is a variant of
existing malware. Finally, it was demonstrated the
efficiency
of unpacking and malware classification warrants
Malwise as suitable for potential applications
including desktop and Internet gateway and Antivirus
systems.
REFERENCES
[1] Symantec, "Symantec internet security threat
report: Volume XII,"Symantec2008.
[2] F-Secure. (2007, 19 August 2009). F-Secure
Reports Amount ofMalware Grew by 100% during
2007. Available: http://www.fsecure.com/en_EMEA/
aboutus/pressroom/news/2007/
fs_news_20071204_1_eng.html

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 167– 172 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

172

ISSN 2278-3091

[3] K. Griffin, S. Schneider, X. Hu, and T. Chiueh,
"Automatic Generation of String Signatures for
Malware Detection," in Recent Advances in Intrusion
Detection: 12th International Symposium, RAID
2009, Saint-Malo, France, 2009.
[4] J. O. Kephart and W. C. Arnold, "Automatic
extraction of computer virus signatures," in 4th Virus
Bulletin International Conference, 1994, pp.178-184.
[5] J. Z. Kolter and M. A. Maloof, "Learning to
detect malicious executables in the wild," in
International Conference on Knowledge Discovery
and Data Mining, 2004, pp. 470-478.
[6] M. E. Karim, A. Walenstein, A. Lakhotia, and L.
Parida, "Malware phylogeny generation using
permutations of code," Journal in Computer
Virology, vol. 1, pp. 13-23, 2005.
[7] M. Gheorghescu, "An automated virus
classification system," in Virus Bulletin Conference,
2005, pp. 294-300.

