Privacy Preserving Data Mining: Survey of Approaches

SANJANA
RNSIT Bangalore, INDIA
sanjana.kiran1994@gmail.com

ABSTRACT
Privacy is one of the most important properties of an information system must satisfy, in which systems the need to share information among different, not trusted entities, the protection of sensible information has a relevant role. Thus privacy is becoming an increasingly important issue in many data mining applications. For that privacy secure distributed computation, which was done as part of a larger body of research in the suppression, cryptography, randomization, summarization has achieved remarkable results. These results were shown using generic constructions that can be applied to any function that has an efficient representation as a circuit. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when data mining techniques are used in a malicious way. Privacy preserving data mining algorithms have been recently introduced with the aim of preventing the discovery of sensible information. In this paper we will describe the implementation of suppression, cryptography, randomization, summarization in that data mining for privacy preserving.

KEYWORDS
Data mining, suppression, randomization, cryptography, summarization.

INTRODUCTION
Privacy preserving data mining (PPDM) refers to the area of data mining that seeks to safeguard sensitive information from unsanctioned disclosure. Most traditional data mining techniques analyze and model the dataset statistically, in aggregation, while privacy preservation is primarily concerned with protecting against disclosure of individual data records. This domain separation points to the technical feasibility of PPDM.

Historically, issues related to PPDM were first studied by the national statistical agencies interested in collecting private social and economical data, such as census and tax records, and making it available for analysis by public servants, companies, and researchers. Building accurate socio-economical models is vital for business planning and public policy. Yet, there is no way of knowing in advance what models may be needed, nor is it feasible for the statistical agency to perform all data processing for everyone, playing the role of a “trusted third party.” Instead, the agency provides the data in a sanitized form that allows statistical processing and protects the privacy of individual records, solving a problem known as privacy preserving data publishing.

The term “privacy preserving data mining” was introduced in papers (Agrawal & Srikant, 2000) and (Lindell & Pinkas, 2000). These papers considered two fundamental problems of PPDM, privacy preserving data collection and mining a dataset partitioned across several private enterprises. Agrawal and Srikant (2000) devised a randomizationalgorithm that allows a large number of users to contribute their private records for efficient centralized data mining while limiting the disclosure of their values; Lindell and Pinkas (2000) invented a cryptographic protocol for decision tree construction over a dataset horizontally partitioned between two parties. These methods were subsequently refined and extended by many researchers worldwide.

SURVEY OF APPROACHES
The naïve approach to PPDM is “security by obscurity”, where algorithms have no proven privacy guarantees. By its nature, privacy preservation is claimed for all datasets and attacks of a certain class, a claim that cannot be proven by examples or informal considerations. We will avoid further discussion of this approach in this forum. Recently, however, a number of principled approaches have been developed to enable PPDM, some listed below according to their method of defining and enforcing privacy.

Figure 1: Methodologies
1. SUPPRESSION

Privacy can be preserved by simply suppressing all sensitive data before any disclosure occurs. Given a database, we can suppress specific attributes in particular records as dictated by our privacy policy. For a partial suppression, an exact attribute value can be replaced with a less informative value by rounding, top-coding, generalization (e.g. address to zip code), by using intervals etc. Often the privacy guarantee trivially follows from the suppression policy. However, the analysis may be difficult if the choice of alternative suppressions depends on the data being suppressed, or if there is dependency between disclosed and suppressed data. Suppression cannot be reused if data mining requires full access to the sensitive values.

Rather than protecting the sensitive values of individual records, we may be interested in suppressing the identity (of a person) linked to a specific record. The process of altering the dataset to limit identity leakage is called de-identification.

One popular definition for de-identification privacy is k-anonymity, formulated in (Samarati & Sweeney, 1998). A set of personal records is said to be k-anonymous if every record is indistinguishable from at least $k - 1$ other records over given “quasi-identifier” subsets of attributes. A subset of attributes is a quasi-identifier if its value combination may help link some record to another personal information available to an attacker, e.g. the combination of age, sex and address.

To achieve k-anonymity, quasi-identifier attributes are completely or partially suppressed.

A particular suppression policy is chosen to maximize the utility of the k-anonymized dataset. The attributes that are not among quasi-identifiers, even if sensitive (e.g. diagnosis), are not suppressed and may get linked to an identity (Machanavajjhala et al. 2006). Utility maximization may create an exploitable dependence between the suppressed data and the suppression policy. Finally, k-anonymity is difficult to enforce before all data is collected in one trusted place; however, a cryptographic solution is proposed in (Zhong et al. 2005) based on Shamir’s secret sharing scheme.

Suppression can also be used to protect from the discovery of certain statistical characteristics, such as sensitive association rules, while minimizing the distortion of other data mining results. Many related optimization problems are computationally intractable, but some heuristic algorithms were studied (Atallah et al. 1999) (Oliveira & Zaiane, 2003).

2. RANDOMIZATION

Suppose there is one central server, e.g. of a company, and many customers, each having a small piece of information. The server collects the information and performs datamining to build an aggregate data model. The randomization approach protects the customers’ data by letting them randomly perturb their records before sending them to the server, taking away some true information and introducing somenoise. At the server’s side, statistical estimation over noisy data is employed to recover the aggregates needed for data mining. Noise can be introduced e.g. by adding or multiplying random values to numerical attributes or by deleting real items and adding “bogus” items to set-valued records. Given the right choice of the method and the amount of randomization, it is sometimes possible to protect individual values while estimating the aggregate model with relatively high accuracy.

Privacy protection by data perturbation has been extensively studied in the statistical databases community. In contrast to the above scenario, this research focuses mainly on the protection of published views once all original data is collected in a single trusted repository. Many more perturbation techniques are available in this case, including attribute swapping across records and data resampling by imputation.

A popular privacy definition to characterize randomization has its roots in the classical secrecy framework and in the work on disclosure risk and harm measures for statistical databases, but received its current formulation recently. Toward the uncertainty arising from randomization, the data miner’s knowledge (belief) is modeled as a probability distribution. A simplified version of the definition is given in the next paragraphs.

Suppose Alice is a customer and Bob is a company employee interested in mining customers’ data. Alice has a private record x and a randomization algorithm R. To allow Bob to do the mining while protecting her own privacy, Alice sends Bob a randomized record $x' = R(x)$. Let us denote by $pR(_|_)$ the probability that algorithm R outputs x' on input x. We say that algorithm R achieves \triangle-leakage (also called \triangle-privacy or at most \triangle amplification) at output x' if for every pair of private records x_1 and x_2 we have:

$pR(_|x_1)/pR(_|x_2) \leq \exp(\triangle)$

We assume that Bob has some $a priori$ belief about Alice’s record, defined as the probability distribution $p(x)$ over all possible private records. Once Bob receives a randomized record, his belief changes to some $a posteriori$ distribution. If randomization R achieves \triangle-leakage at output x', then randomized record x' gives Bob only a bounded amount of knowledge of Alice’s unknown private record x. In fact, for every question Q about Alice’s record, Bob’s $a posteriori$ belief $p(Q|x')$ that the answer to Q is “yes” is
bounded with respect to his \textit{a priori} belief \(p(Q) \) as follows:
\[
p(Q| \chi_x)p(Q) \\
1 - p(Q| \chi_x) \\
1 - p(Q)
\]
If \(R \) achieves \(\Box \)-leakage at every output, Bob’s knowledge gain about Alice’s record is always bounded; if \(R \) achieves \(\Box \)-leakage at some outputs but not others, Bob’s knowledge gain is bounded only with a certain probability.

The above definition assumes that Bob cannot gain any knowledge of Alice’s record by collecting data from other customers, i.e. that all customers are independent. The parameter \(\Box \) is chosen to attain the right balance between privacy and the accuracy of the aggregate estimators used by the data miner. One advantage of randomization is that privacy guarantees can be proven by just studying the randomization algorithm, not the data mining operations. One disadvantage is that the results are always approximate; high enough accuracy often requires a lot of randomized data.

3. CRYPTOGRAPHY

The cryptographic approach to PPDM assumes that the data is stored at several private parties, who agree to disclose the result of a certain data mining computation performed jointly over their data. The parties engage in a cryptographic protocol, i.e. they exchange messages encrypted to make some operations efficient while others computationally intractable. In effect, they “blindly” run their data mining algorithm. Classical works in secure multiparty computation such as Yao (1986) and Goldreich et al. (1987) show that any function \(F(x_1, x_2, \ldots, x_n) \) computable in polynomial time is also securely computable in polynomial time by \(n \) parties, each holding one argument, under quite broad assumptions regarding how much the parties trust each other. However, this generic methodology can only be scaled to database-sized arguments with significant additional research effort.

The first adaptation of cryptographic techniques to data mining is done by Lindell & Pinkas (2000), for the problem of decision tree construction over horizontally partitioned data; it was followed by many papers covering different data mining techniques and assumptions. The assumptions include restrictions on the input data and permitted disclosure, the computational hardness of certain mathematical operations such as factoring a large integer, and the adversarial potential of the parties involved: the parties may be passive (honest-but-curious), running the protocol correctly but taking advantage of all incoming messages) or malicious (running a different protocol), some parties may be allowed to collude (represent a single adversary) etc. In addition to the generic methodology such as oblivious transfer and secure Boolean circuit evaluation, the key cryptographic constructs often used in PPDM include homomorphic and commutative encryption functions, secure multiparty scalar product and polynomial computation. The use of randomness is essential for all protocols. The privacy guarantee used in this approach is based on the notion of computational indistinguishability between random variables. Let \(X_k \) and \(Y_k \) be two random variables that output Boolean vectors of length polynomial in \(k \); they are called \textit{computationally indistinguishable} if for all polynomial algorithms \(A_k \) (alternatively, for any sequence of circuits of size polynomial in \(k \)), for all \(c > 0 \) and for all sufficiently large integers \(k \):
\[
\mathbf{Prob}[A_k(X_k) = 1] - \mathbf{Prob}[A_k(Y_k) = 1] < 1/k^c.
\]
The above essentially says that no polynomial algorithm can tell apart \(X_k \) from \(Y_k \).}

4. SUMMARIZATION

This approach to PPDM consists of releasing the data in the form of a “summary” that allows the (approximate) evaluation of certain classes of aggregate queries while hiding the individual records. In a sense, summarization extends randomization, but a summary is often expected to be much shorter, ideally of sub-linear size with respect to the original dataset. The idea goes back to statistical databases, where two summarization techniques were studied and widely applied: sampling and tabular data representation. Sampling corresponds to replacing the private dataset with a small sample of its records, often combined with suppression or perturbation of their values to prevent re-identification. Tabular representation summarizes data in a collection of aggregate quantities such as sums, averages or counts, aggregated over the range of some attributes while other attributes are fixed, similarly to OLAP (On Line Analytical Processing) cubes. Verifying privacy guarantees for tabular data is challenging because of the potential for disclosure by inference. Some of more recent summarization methods are based on pseudorandom sketches, a concept
borrowed from limited-memory data stream processing.

Here is an illustration of such a method. Suppose Alice has a small private set \(S \) of her favorite book titles, and wants to send to Bob a randomized version of this set. Alice splits \(S \) into two disjoint subsets, \(S = S_0 \cup S_1 \), then constructs her randomized record \(SR \) by including \(S_1 \), excluding \(S_0 \), and for every book not in \(S \) including it into \(SR \) at random with probability 1/2. If there are 1,000,000 possible book titles, \(SR \) will contain around 500,000 items, most of them purely random. Luckily, however, \(SR \) can be shortened. Let \(G(\cdot, i) \) be a pseudorandom generator that takes a short random seed \(\cdot \) and a book number \(i \) and computes a bit \(bi \). Now Alice has a better strategy: once she selects \(S_0 \) and \(S_1 \) as before, she sends to Bob a randomly chosen seed \(\cdot \) such that \(G(\cdot, #book) = 0 \) for all books in \(S_0 \), and \(G(\cdot, #book) = 1 \) for all books in \(S_1 \). Bob can use \(G \) and \(S_1 \) to reconstruct the entire randomized record; and if \(G \) is sufficiently "well-mixing," every book not in \(S \) still satisfies \(G(\cdot, #book) = 1 \) with probability 1/2. Thus, the short seed \(\cdot \) serves as a summary of a randomized record. For complete analysis, see (Evfimievski et al. 2003) and (Mishra & Sandler, 2006).

The summarization approach is still in its infancy, more results are likely to come in the future. There has also been some work on combining sketches and approximation techniques with the cryptographic approach, observe that the disclosure of an approximate function \(\text{appr}(x) \) \(\hat{f}(x) \) over private data \(x \) may be unacceptable even if the exact result \(f(x) \) is permitted; indeed, just by learning whether \(\text{fappr}(x) \geq f(x) \) or \(\text{fappr}(x) < f(x) \) the adversary may already get an extra bit of information about \(x \). This issue is important to keep in mind when designing sketch-based PPDM protocols.

APPLICATION SCENARIOS

Surveys and data collection. Companies collect personal preferences of their customers for targeted product recommendations, or conduct surveys for business planning; political parties conduct opinion polls to adjust their strategy. The coverage of such data collection may significantly increase if all respondents are aware that their privacy is provably protected, also eliminating the bias associated with evasive answers. Th randomization approach has been considered as a solution in this domain.

Monitoring for emergencies. Early detection of large-scale abnormalities with potential implications for public safety or national security is important in protecting our wellbeing. Disease outbreaks, environmental disasters, terrorist acts, manufacturing accidents can often be detected and contained before they endanger a large population. The first indication of an impending disaster can be difficult to notice by looking at any individual case, but easy to see using data mining: an unusual increase in certain health symptoms or prescription drug purchases, a surge in car accidents, a change in on-line traffic pattern, etc. To be effective, an early-detection system would have to collect personal, commercial, and sensor data from a variety of sources, making privacy issues paramount.

Product traceability. Before a product (e.g. a car or a drug) reaches its end-user, it usually passes through a long chain of processing steps, such as manufacturing, packaging, transportation, storage, and sale. In the near future, many products and package units will carry a radio-frequency identification (RFID) tag and will be automatically registered at every processing step (Finkenzeller, 2003), (Garfinkel & Rosenberg, 2005). This will create a vast distributed collection of RFID traces, which can be mined to detect business patterns, market trends, inefficiencies and bottlenecks, criminal activity such as theft and counterfeiting, etc. However, such extremely detailed business process data is a highly valuable and sensitive asset to the companies involved. Privacy safeguards will be very important to enable cooperative RFID data mining.

Medical research. Personal health records are one of the most sensitive types of private data; their privacy standards have been codified into law in many countries, e.g. HIPAA (Health Insurance Portability and Accountability Act) in the U.S. (OCR Privacy Brief, 2003). On the other hand, data mining over health records is vital for medical, pharmaceutical, and environmental research. For example, a researcher may want to study the effect of a certain gene \(A \) on an adverse reaction to drug \(B \) (Agrawal et al. 2003). But due to privacy concerns, the DNA sequences and the medical histories are stored at different data repositories and cannot be brought together. Then, PPDM over vertically partitioned data can be used to compute the aggregate counts while preserving the privacy of records.

Social networks. In business as well as in life, the right connections make a huge difference. Whether it is expertise location, job search, or romance matchmaking, finding new connections is notoriously difficult, not least because the publicly available data is often very scarce and of low quality. Most of the relevant information is personal, copyrighted, or confidential, and therefore kept away from the Web. It is possible that
PPDM techniques can be utilized to allow limited disclosure options, prompting more people to engage in productive social networking, and guarding against abuse.

FUTURE TRENDS

The main technical challenge for PPDM is to make its algorithms scale and achieve higher accuracy while keeping the privacy guarantees. The known proof techniques and privacy definitions are not yet flexible enough to take full advantage of existing PPDM approaches. Adding a minor assumption (from the practical viewpoint) may slash the computation cost or allow much better accuracy, if the PPDM methodology is augmented to leverage this assumption. On the other hand, proving complexity lower bounds and accuracy upper bounds will expose the theoretical limits of PPDM.

One particularly interesting “minor assumption” is the existence of a computationally limited trusted third party. Computer manufacturers such as IBM produce special devices called secure coprocessors (Dyer et al. 2001) that contain an entire computer within a sealed tamper-proof box. Secure coprocessors are able to withstand most hardware and software attacks, or destroy all data if opened. For practical purposes, these devices can be considered trusted parties, albeit very restricted in the speed of computation, in the volume of storage, and in communication with the untrusted components. It is known that secure coprocessors can be leveraged to enable privacy-preserving operations over datasets much larger than their storage capacity (Smith & Safford, 2000) (Agrawal et al. 2006). Thus, applying them to PPDM looks natural.

If a data mining party cannot get accurate results because of privacy constraints enforced by the data contributors, it may be willing to pay for more data. Kleinberg, et al. (2001) suggests measuring the amount of private information in terms of its monetary value, as a form of intellectual property. The cost of each piece of data must be determined in a “fair” way, so as to reflect the contribution of this piece in the overall profit. The paper borrows the notions of fairness from the theory of coalitional games: the core and the Shapley value. Bridging game theory and PPDM could lay the theoretical foundation for a market of private data, where all participants receive appropriate compensations for their business contribution.

Among potential future applications for PPDM, we would like to emphasize data mining in healthcare and medical research. During the last few years the attention of the U. S. government has focused on transitioning the national healthcare system to an infrastructure based upon information technology (PITAC Report, 2004); a similar trend occurs or is expected in countries around the world. Within a short time, millions of medical records will be available for mining, and their privacy protection will be required by law, potentially creating an urgent demand for PPDM. In addition to the traditional data mining tasks, new healthcare-specific tasks will likely become important, such as record linkage or mining over ontology-based and semistructured data, e.g. annotated images.

CONCLUSION

Privacy-preserving data mining emerged in response to two equally important (and seemingly disparate) needs: data analysis in order to deliver better services and ensuring the privacy rights of the data owners. Difficult as the task of addressing these needs may seem, several tangible efforts have been accomplished. In this paper, an overview of the popular approaches for doing PPDM was presented, namely: suppression, randomization, cryptography and summarization. The privacy guarantees, advantages and disadvantages of each approach were stated in order to provide a balanced view of the state of the art. Finally, the scenarios where PPDM may be used and some directions for future work were outlined.

![Figure 2: privacy and secured flow in process](image_url)

REFERENCES

