
 ISSN 2278 - 3091
 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol. 5 , No.1 Pages : 06 - 08 (2016)
 Special Issue of ICCEIT 2016 - Held on February 16, 2016 in The Solitaire Hotel, Bangalore, India
 http://warse.org/IJATCSE/static/pdf/Issue/icceit2016sp02.pdf

6

Abstract: Generally there are a lot of difficulties in

practical areas of Data Mining, Database Management
System, Computer Science, Networks, and Artificial
intelligence. Searching is a common fundamental
operation used in solving searching problem in a
dissimilar arrangements of these fields. In this paper we
present the basic type of searching algorithms of data
structures. An effort is made to cover some scientific
features to these searching algorithms.

Key Words: ADT, Segment Tree, Intcache-Oblivious Model,
Interval Tree.

INTRODUCTION
In computer science, data structure is a particular way of
organizing data in a computer so that it can be used
efficiently. Data structures can implement one or more
particular abstract data types (ADT), which are the
means of specifying the contract of operations and their
complexity. In comparison, a data structure
is a concrete implementation of the contract provided by
an ADT.
Different kinds of data structures are suitable for
different kinds of applications, and some are highly
specialized for specific tasks. For example, relational
databases most commonly use B-tree indexes for data
retrieval, while compiler implementations usually use
hash tables to look up identifiers.
Data structures provide a means to manage large
amounts of data efficiently for uses such as large
databases and internet indexing services. Usually,
efficient data structures are the key for designing
efficient algorithms. Some formal designing methods and
programming languages emphasize on data structures,
rather than algorithms, as the key organizing factor in
software design. Storing and retrieving operations can be
carried out on data stored in both main memory and in
secondary memory.

 LIST OF DATA STRUCTURES
The numerous types of data structures, generally built
upon simpler primitive data types are:

• An array is a number of elements in an explicit
order; characteristically all of them are of same type.
Elements are accessed using an integer directory to

specify which element is required (the elements can be of
any data type). Typical implementations assign
contiguous memory location for the elements of arrays
(but this is not always necessary). Arrays may be
fixed-length or resizable.

• An associative array (also called dictionary or map)
is a more bendable disparity on an array, in which
name-value pairs can be added and deleted freely. A hash
table is a common implementation of an associative
array.

• A record (also called tuple or struct) is an aggregate
data structure. A record is a value that contains other
values, typically in fixed number and sequence and
typically indexed by names. The elements of records are
usually called fields or members.

• A union is a data structure that specifies which
number of permitted primitive types may be stored in its
instances, e.g. float or long integer. Contrast with a
record, which could be defined to contain a float and an
integer; whereas in a union, there is only one value at a
time. Enough space is allocated to contain the widest
member data type.

• A tagged union (also called variant, variant record,
discriminated union, or disjoint union) contains an
additional field indicating its current type, for enhanced
type safety.

• A set is an abstract data structure that can store
specific values, in no particular order and with no
duplicate values.

• A graph and a tree are linked abstract data
structures composed of nodes. Each node contains a
value and one or more pointers to other nodes arranged in
a hierarchy. Graphs can be used to represent networks,
while variants of trees can be used for sorting and
searching, having their nodes arranged in some relative
order based on their values.

A class is a data structure that mainly contains data
fields like records, with various methods which operate
on the contents of the record. In the perspective of
object-oriented programming, records are known as
plain old data structures to distinguish them from
classes.

OPERATIONS ON DATA STRUCTURE
1. Traversing
2. Searching
3. Inserting

Comparative Study for Searching in Data Structures
 Kumudavalli M.V, Suraj A Jain, Nikith N Shetty

Department of Computer Applications (BU), DSI, Bangalore, India
nikithnshetty@gmail.com, surajasjain@gmail.com

 ISSN 2278 - 3091
 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol. 5 , No.1 Pages : 06 - 08 (2016)
 Special Issue of ICCEIT 2016 - Held on February 16, 2016 in The Solitaire Hotel, Bangalore, India
 http://warse.org/IJATCSE/static/pdf/Issue/icceit2016sp02.pdf

7

4. Deleting
5. Sorting
6. Merging
1. Traversing- It is used to access each data item

exactly once so that it can be processed.
2. Searching- It is used to find out the location of the

data item if it exists in the given collection of data items.
3. Inserting- It is used to add a new data item in the

given collection of data items.
4. Deleting- It is used to delete an existing data item

from the given collection of data items.
5. Sorting- It is used to arrange the data items in some

order i.e. in ascending or descending order in case of
numerical data and in dictionary order in case of
alphanumeric data.

6. Merging- It is used to combine the data items of two
sorted files into single file in the sorted form.

SEGMENT TREE
In computer science, segment tree is a tree data

structure for storing intervals, or segments. It allows
querying on the stored segments which contain a given
point. By principle, it is a static structure; that is, its
structure cannot be customized once it is made. A similar
data structure is the interval tree.
A segment tree for a set I of n intervals uses
O(n log n) storage and can be built in O(n log n) time.
Segment trees support searching for all the intervals that
contain a query point in O(log n + k), where k is the
number of retrieved intervals or segments.

Segment trees are applied in the areas
of computational geometry, and geographic information
systems. They can be generalized to higher dimension
spaces as well.

INTERVAL TREE
In computer science, an interval tree is a tree data
structure which is used to hold intervals. Particularly, it
allows one to efficiently find all intervals that surpass
with any given interval or point. It is frequently used for
windowing queries, for example, to find all roads on a
computerized map inside a rectangular viewport, or to
find all visible elements inside a three-dimensional scene.
A similar data structure is the segment tree.

The insignificant solution is to visit each interval and
check whether it intersects the given point or interval,
which requires O(n) time, where n is the number of
intervals in the set. Given that a query may return all
intervals, for example if the query is a large interval
intersecting all intervals in the collection, this is
asymptotically optimal; On the other hand, we can do
better by considering output-sensitive algorithms, where
the runtime is expressed in terms of m, the number of
intervals produced by the query. They have a query time
of O(log n + m) and an original creation time of O(n log
n), while limiting memory consumption to O(n). After
creation, interval trees may be dynamic, allowing
efficient insertion and deletion of an interval in O(log n).
If the endpoints of intervals are within a smaller integer
range (e.g., in the range [1,...,O(n)]), faster data
structures exist with preprocessing time O(n) and query
time O(1+m) for reporting m intervals containing a given
query point.

CACHE-OBLIVIOUS MODEL
The logic behind the cache-oblivious model is to design
external memory algorithms without the interruption of
memory parameters. The cache-oblivious algorithm
avoids the limitations imposed to external memory
algorithms i.e., they are not architecture independent and
it is very difficult to adapt them to multiple levels of
memory. A cache-oblivious algorithm as described by
Prokop is the one in which problem variable is
independent of the memory parameters like cache size or
block size; and is tuned to reduce the number of cache
misses. Taking into account this definition the RAM
model algorithms can also be measured as
cache-oblivious. These algorithms are evaluated in an
ideal-cache model.
The ideal-cache model consists of two-level of memory
hierarchy i.e., a small cache and a very large main
memory. The cache in ideal-cache model is of M words
and cache line of size B. But this simple idea has
surprisingly several powerful consequences.

 ISSN 2278 - 3091
 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol. 5 , No.1 Pages : 06 - 08 (2016)
 Special Issue of ICCEIT 2016 - Held on February 16, 2016 in The Solitaire Hotel, Bangalore, India
 http://warse.org/IJATCSE/static/pdf/Issue/icceit2016sp02.pdf

8

One of the consequence is that, if a cache-oblivious
algorithm performs well between two levels of the
memory hierarchy (nominally called cache and disk),
then it must automatically work well between any two
adjacent levels of the memory hierarchy. An additional
consequence is that, if the number of memory transfers is
optimal up to a constant factor between any two adjacent
memory levels, then any weighted combination of these
counts (with weights corresponding to the relative speeds
of the memory levels) is also within a steady factor of
optimality.
Lazy Evaluation using Buffers: Another approach, for
achieving sequential data processing is by using buffers.
This technique is described by Arge, and used to develop
the cache-aware buffer-tree data structure. The idea can,
however, be reused in a cache-oblivious context, if the
sizes of the buffers are not fixed to the sizes of the actual
memory hierarchy, but instead grow, beginning with a
small constant size. This way, the buffers will at some
point fit into a cache level, and processing a buffer of this
size will not incur more cache misses on that particular
level.
The advantage of this technique is that the work is
buffered in a lazy fashion. Only when the buffer is full,
the content of a buffer is moved to the next larger level,
and the elements stored in the buffer are all processed in
one operation. This way, the main data processing
occurs on the smallest level, and elements are moved up
or down in the structure in a lazy or batched fashion.

CACHE-OBLIVIOUS ALGORITHM

In computing, a cache-oblivious algorithm (or
cache-transcendent algorithm) is an algorithm designed
to take advantage of a CPU cache without having the size
of the cache (or the length of the cache lines, etc.) as an
explicit parameter. An optimal cache-oblivious
algorithm is a cache-oblivious algorithm that uses the
cache optimally (in an asymptotic sense, ignoring
constant factors). Thus, a cache oblivious algorithm is
designed to perform well, without modification, on
multiple machines with different cache sizes, or for a
memory hierarchy with different levels of cache having
different sizes. Cache-oblivious algorithms are
contrasted with explicit blocking, as in loop nest
optimization, which explicitly breaks a problem into
blocks that are optimally sized for a given cache.
Further machine-specific tuning may be required to
obtain nearly optimal performance in an absolute sense.
The goal of cache-oblivious algorithms is to reduce the
amount of such tuning that is required.
Characteristically, a cache-oblivious algorithm works by
a recursive divide and conquer algorithm, where the
problem is divided into smaller and smaller sub
problems. Eventually, one reaches a sub problem size

that fits into cache, regardless of the cache size. For
example, an optimal cache-oblivious matrix
multiplication is obtained by recursively dividing each
matrix into four sub-matrices to be multiplied,
multiplying the sub matrices in a depth-first fashion. In
tuning for a specific machine, one may use a hybrid
algorithm which uses blocking tuned for the specific
cache sizes at the bottom level, but otherwise uses the
cache-oblivious algorithm.

CONCLUSION
We are trying to cover some scientific features to these
searching algorithms, in practical areas of Data Mining,
Database Management System, Computer Science,
Networks, and Artificial intelligence. Searching is a
common fundamental operation used in solving
searching problem in a dissimilar arrangements of these
fields. In this paper we are presenting the basic types of
searching algorithms in data structures and a conceptual
discussion about the same.

REFERENCES

 [1] AGGARWAL, A., ALPERN, B., CHANDRA, A. K., AND
SNIR, M. A model for hierarchical memory. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing (May
1987), pp. 305–314.

[2] AGGARWAL, A., CHANDRA, A. K., AND SNIR, M.
Hierarchical memory with block transfer. In 28th Annual
Symposium on Foundations of Computer Science (Los Angeles,
California, 12–14 Oct. 1987), IEEE, pp. 204–216.

[3] AGGARWAL, A., AND VITTER, J. S. The input/output
complexity of sorting and related problems. Communications of the
ACM 31, 9 (Sept. 1988), 1116–1127.

[4] AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The
Design and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, 1974.

[5] ALPERN, B., CARTER, L., AND FEIG, E. Uniform memory
hierarchies. In Proceedings of the 31st Annual IEEE Symposium on
Foundations of Computer Science (Oct. 1990), pp. 600–608.

[6] SLEATOR, D. D., AND TARJAN, R. E. Amortized
efficiency of list update and paging rules. Communications of the
ACM 28, 2 (Feb. 1985), 202–208.

[7] STRASSEN, V. Gaussian elimination is not optimal.
Numerische Mathematik 13 (1969), 354–356.

[8] SUPERCOMPUTING TECHNOLOGIES GROUP, MIT
LABORATORY FOR COMPUTER SCIENCE. Cilk-5.2 (Beta 1)
Reference Manual. Cambridge, MA, 1998. Available on the
Internet from http://supertech.lcs.mit.edu/cilk.

[9] TOLEDO, S. Locality of reference in LU decomposition with
partial pivoting. SIAM Journal on Matrix Analysis and Applications
18, 4 (Oct. 1997), 1065–1081.

[10] Dulal Chandra Samanta,Debabrata Samanta,"The Magic
Square from Myth to Mystery",International Journal of Engineering
Research and Development
ISSN: 2278-067X, Volume2, Issue 1(July 2012), PP.30-38.

[11] VITTER, J. S. External memory algorithms and data
structures. In External Memory Algorithms and Visualization, J.
Abello and J. S. Vitter, Eds., DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American
Mathematical Society Press, Providence, RI, 1999.

