
Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(5), May 2014, 357 - 363

357

Testing Cloud Application System Resiliency by Wrecking the System

Tanvi Dharmarha
Adobe Systems, India, tbajajdh@adobe.com

ABSTRACT

When application architecture moves to the public cloud,
failures and outages are inevitable. Rather than panicking
when failures strike at the worst time, one should prepare
for failures in good times. The best way to tackle failure is
to fail often. This cycle of failing instances deliberately
and then testing helps an organization bulletproof its
Cloud based infrastructure.

Through this paper we will learn the steps and strategy
involved in testing cloud application systems for
resiliency and recoverability by opting in for failure.

Key words: Load Testing, Cloud Testing, Chaos Testing,
Design for Failure

1. INTRODUCTION

Most cloud infrastructure providers, Amazon being the
preeminent ones, offer the functionality to auto scale the
virtual machines instances based on the demand curve for
the application. Auto scaling allows increasing (up-scale)
or decreasing (down-scale) the number of virtual instances
depending on predefined parameters which can range
from percentage CPU utilization, specific process’s CPU
or memory utilization or number of virtual connections
over a defined continuous interval.

In case of heavy load, application should up-scale
automatically to accommodate the large number of
requests. If during such times, there is an infrastructure
failure or a system outage, there needs to be a mechanism
in place to reinstate the infrastructure so that the
application runs seamlessly for the end customer/user.

Currently organizations invest time and effort for
simulating heavy load to test for system’s load bearing
capacity but do not address the need for testing the
robustness of system in case of outages and unexpected
failures. Such failures often lead to customer
dissatisfaction, organization defamation and revenue
losses due to failed transactions.

2. SOLUTION

To test for system failures, we need a solution that can
simulate failures. To achieve this, we have designed a
service that when launched, goes and wrecks the system.

There are few services which exist in the market, such as
Netflix’s Chaos Monkey[1] which also test for resiliency
by killing random instances. However when chaos strikes;
it can bring down an instance, load balancer, zone or data
center, choke an instance’s CPU, detach a volume or
deregister an instance from the load balancer, etc. We
have also encountered situations where an entire
availability zone was sometimes giving delayed responses
and other times erratic responses. In order to simulate all
kinds of possible destruction/chaos in our application
topology we decided to implement a service in-house
rather than use an existing solution.

This custom built service first takes a system snapshot
before exhausting instances so that it can restore the
instance in case something goes wrong. Tester can control
the type of instances to exhaust and also the level of
destruction. Testers are required to observe the application
behavior and performance before and after the system
wreck.

We have deployed the services on one of the instances
inside the same cloud network as the production system so
that it can make connections with other infrastructure
elements.

This activity should be done in tandem with the load and
stress testing of the system.

Knowledge of application infrastructure is key in building
scenarios for resiliency checks. Failing the right
infrastructure elements is more important than failing any
element. From a tester’s standpoint, it is imperative to
know which all infrastructure elements are part of the
Auto scaling Group and which elements can or cannot do
without immediate recoverability.

2.1 Application Details

We have a web application hosted on the cloud with the
following topology (see Figure 1)

1. Application servers instances across regions and
zones

 ISSN 2320 - 2602
Volume 3, No.5, May 2014

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2014/ijacst10352014.pdf

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(5), May 2014, 357 - 363

358

2. Database servers across regions and zones
3. Database Configuration servers
4. Performance Monitoring Servers across regions

5. Log forwarder Servers
6. Load Balancers across regions

Once we have the information about the topology we can
unleash the script. Following are the steps, used to
configure the script for the application, and the test cases
executed to check the system mettle.

Step 1: Establish connection to the service to kill
instances

To connect to the service, tester should have an account
that has administrative privileges’ on the infrastructure
instances. A typical connection would require details

about the host, username and password or keyphrase as
applicable.

Step 2: Configure the Setup for testing

The service would have to be configured to include
information about the environment
(Development/QA/Stage or Production) and the target
cloud region.

Figure 2 shows the information required for environment
setup.

Figure 1: Application Architecture on the Cloud

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(5), May 2014, 357 - 363

359

Step 3: Tag Instances

Before executing the commands to kill random
instances, one should tag instances to limit the scope
of testing and to avoid any unnecessary snags arising
out of wrecking other instances.

Tagging should be done in a manner that it is easy to
identify what kinds of instances are being targeted.
For example, application servers could be tagged as
Kill_AppServers so when the script runs to kill
instances, it will only pickup instance Ids with the
associated tag.

Step 4: Define the degree of destruction

Testers can configure what level of destruction is
required for a particular test case. For example if the
number of instances is 10 and the tester wants to tear
down 5 instances, he/she can define the destruction
degree as 50%.

Step 5: Simulate load on the application

Before triggering the script for wrecking the system,
it is suggested to simulate consistent load on the
application and to monitor error rates, CPU utilization
and the Application Performance Index (APDEX)
score [2].

Step 6: Run the script for the desired test

There can be multiple types of tests that can be
performed to wreck the system. It is important to
monitor the right parameters for each test. Following
are some tests applicable to our application topology
and some issues observed during run on our
application listed under observations.

a. Kill Random Instances. This is the most
important and the most basic test to test the
system’s infrastructure mettle. As the name
suggests, through this test, a tester simulates
a situation where in any random instance that
is part of the cloud formation goes down.
The target instance could be an application
server, database server, monitoring server or
a load balancer. The underlying goal of this
test is to ensure that there are no hiccups for
the end users of the application during the
outage. If an instance goes down, the cloud
formation should have a mechanism to
quickly spawn a new instance to minimize
downtime or have sufficient redundancy to
redirect traffic to another running instance.

In this case tagging would be done for all
instances in the cloud.

Figure 2: Script for Environment
setup

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(5), May 2014, 357 - 363

360

Testers should constantly monitor the
application performance before and after the
environment wrecking. Important things to
watch out for after the environment wreck
include
1. APDEX score
2. Average response time
3. Throughput
4. Error rate
5. Alerts or Alarms if warned systems go

down

Observation: Alert notification mail was not
sent when the Load Balancers was failing as
the health check on the load balancer had
issues in syntax.

b. Kill Random Instances based on the Auto

Scaling Groups: Through this test, the tester
simulates a situation where in an instance
within the Auto Scaling Group goes down so
that chaos is distributed across the Auto
Scaling group (see Figure 3). Generally
servers are part of auto scaling groups, and if
for some reason one instance goes down, one
or more instances must spawn up depending
on the criterion for auto scaling. In the
meantime, the load should be distributed
across the Auto Scaling group seamlessly. In
this case tagging would be done for all
instances in the Auto Scaling Group ASG1.

Testers should watch out for the following
things during this test
1. APDEX score
2. Error Rate
3. Throughput
4. CPU utilization of remaining Servers

within the Auto Scaling Group
5. Load distribution on Servers
6. Auto Scaling of Server
7. Alert or Alarm with the target instance

details.

For simulating more destruction, say 50%,
tagging can be applied with Destruction
parameters

Observation: Instances were not auto
scaling as CPU for existing instances was
not reaching a level to meet the criteria for
auto scaling. This helped us determine that
our CPUs were going underutilized. So we
decreased the number of min application
server instances by 1
As a result, CPU utilization improved, fixed
cost of 1 CPU intensive large instance
eliminated and auto scaling worked well.

Instance_name = *,
tag_name=Kill_Any

Instance_name = *,
AutoScalingGroup = ASG1,
tag_name=Kill_ASG1

Destruction = 50

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(5), May 2014, 357 - 363

361

c. Kill Random Instances based on Instance
Type: Through this test, the tester simulates
a situation where in a particular type of
instance goes down so that chaos is
distributed across various instances types;
assuming that different instance types
categorize different functionality being
served in the application stack. Failure of
application servers which are usually part of
auto scaling groups will have different
impact on system compared to failure of
database configuration server which might
not auto scale.

In this case tagging would be done for all
instances with the substring AppServer or
DBConfSvr (Figure 4).

Or

Testers should watch out for the following
things during this test
1. APDEX score
2. Error Rate
3. Throughput

4. CPU utilization of remaining
Application Servers

5. Load distribution on Application
Servers

6. Auto Scaling of Application Server
within zone of the target Application
Server

7. Alert or Alarm with the target instance
details.

d. Chokes Random instances: This test
requires modifying the service configuration
scripts to specify the % of CPU choking to
be simulated. A small change in the shell file
that resides on the service instance does the
trick. Through this test, the tester simulates
load on specified instance(s) till the time the
CPU utilization reaches the level specified in
the file. The important thing to keep in mind
here is to continue to choke CPU for the pre-
defined amount of time so as to meet the
auto scaling criteria.

In this case tagging would be done for one
instance with its complete name.

Tester should watch out for the following
things during the test.

1. APDEX score
2. Error rate
3. Auto scaling once CPU choking times

exceeds the defined limit.

Instance_name = *AppServer*,
tag_name=Kill_AppServer

Instance_name = *DBConfSvr*,
tag_name=Kill_DBConf

Instance_name =
ec2_AppServer_UE1,
tag_name= Choke_CPU

Figure 3: Auto-scaling Application Server killed

Figure 4: One Config Server killed

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(5), May 2014, 357 - 363

362

4. Observe monitors for noticeable spike in
CPU usage of target instance.

Observation: Choking was proper and auto
scaling was successful and instance CPU’s
showed spikes but the new instance that had
spun up did not reflect in the monitoring
server. The cloud formation script was fixed
to reflect changes

e. Kill Any Process: This test requires

modifying the service configuration scripts
to specify the process name and id to be
killed. Similar to the previous case, a small
shell command fetches the process name and
id. Through this test, the tester simulates a
scenario to verify if the application can
withstand a software process failure.
Example processes include java, httpd or
nginx.

Observation: The application was able to
restart the process and was able to recover
from the failure.

f. Stops random instances in the Load
Balancer: Through this test the tester
simulates a situation where in an instance
registered in the Load Balancer goes down
so that chaos is distributed across the Load
Balancer as depicted in Figure 5.

Observations: Load Balancer redistributed
load to other application servers in the same
zone of the target instance. Load was getting
distributed based on latency and load
effectively.

 3. SUMMARY REPORTS

After each test, load testers should draw reports
of load summary and separate out the metrics
into three categories.

1. Before system Wreck
2. During Wreck
3. After Recovery

 4. COST BENEFIT ANALYSIS

The cost associated with creating and using the
service is as follows

Implementation time: 1 months approximating to 1
month salary ~$8000

Deployment on Cloud and usage rate: 0.25$/hr for
basic instance and usage of 2 hours per day for a
period of 2 months amounts to $30

Total Cost ~$8030 for 2 months

If an organization does not have failure recovery
mechanisms, it can lose overhundred thousand dollars
for every hour of downtime. A Standish study
estimated that credit card applications lose around
$2.6 million for every hour of downtime, whereas last
year’s 49-minute Amazon.com outage reportedly cost
the online retail website nearly $5 million in deferred
revenue [3]

Thus the overall costs of chaos testing are far less, on
average, than the costs of potential losses due to
application downtime.

 5. CONCLUSION

Production systems on the cloud should be tested
regularly and the best way to do that is by
automatically simulating random failures and
automatically repairing failures, wherever possible.

Testing for resiliency is not a costly approach as it
involves just another basic instance to deploy the
service.

Testing for redundancy and testing monitoring
systems are equally important as testing the
application especially when your production
infrastructure is derived from the support of other
production systems.

Figure 5: App Server registered within Load
Balancer killed

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(5), May 2014, 357 - 363

363

Remember, dedicating extra time and effort during
the load testing phase to check for stability of the
system helps reduce issues in production, downtime,
customer dissatisfaction and revenue losses.

REFERENCES
[1] http://techblog.netflix.com/2012/07/chaos-
monkey-released-into-wild.html

[2] http://en.wikipedia.org/wiki/Apdex

[3] http://www.itbusinessedge.com/slideshows/
downtime-report-top-ten-outages-in-2013.html

