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ABSTRACT 

 Data sharing is an important functionality in cloud  
storage. In this paper, we show how to securely, 
efficiently, and flexibly share data with others in cloud 
storage. We describe new public-key cryptosystems that 
produce constant-size cipher texts such that efficient 
delegation of decryption rights for any set of cipher texts 
are possible. The novelty is that one can aggregate any set 
of secret keys and make them as compact as a single key, 
but encompassing the power of all the keys being 
aggregated. In other words, the secret key holder can 
release a constant-size aggregate key for flexible choices 
of cipher text set in cloud storage, but the other encrypted 
files outside the set remain confidential. This compact 
aggregate key can be conveniently sent to others or be 
stored in a smart card with very limited secure storage. We 
provide formal security analysis of our schemes in the 
standard model. We also describe other application of our 
schemes. In particular, our schemes give the first public-
key patient-controlled encryption for flexible hierarchy, 
which was yet to be known. 
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encryption, patient-controlled encryption 

 

1. INTRODUCTION 
 
LOUD storage is gaining popularity recently. In enterprise 
settings, we see the rise in demand for data Outsourcing, 
which assists in the strategic management of corporate 
data. It is also used as a core technology behind many 
online services for personal applications. Nowadays, it is 
easy to apply for free accounts for email, photo album, file 
sharing and/or remote access, with storage size more than 
25 GB (or a few dollars for more than 1 TB). Together 
with the current wireless technology, users can access 
almost all of their files and emails by a mobile phone in 
any corner of the world. 

Considering data privacy, a traditional way to ensure it is 
to rely on the server to enforce the access control after 
authentication (e.g., [1]), which means any unexpected 
privilege escalation will expose all data. In a shared-
tenancy cloud computing environment, things become 
even worse. Data from different clients can be hosted on 
separate virtual machines (VMs) but reside on a single 
physical machine. 
Data in a target VM could be stolen by instantiating 
another VM coresident with the target one [2]. Regarding 
availability of files, there are a series of cryptographic 
schemes which go as far as allowing a third-party auditor 
to check the availability of files on behalf of the data 
owner without leaking anything about the data [3], or 
without compromising the data owners anonymity [4]. 
Likewise, cloud users probably will not hold the strong 
belief that the cloud server is doing a good job in terms of 
confidentiality. A cryptographic solution, for example, [5], 
with proven security relied on number-theoretic 
assumptions is more desirable, whenever the user is not 
perfectly happy with trusting the security of the VM or the 
honesty of the technical staff. 
These users are motivated to encrypt their data with their 
own keys before uploading them to the server. Data 
sharing is an important functionality in cloud storage. For 
example, bloggers can let their friends view a subset of 
their private pictures; an enterprise may grant her 
employees access to a portion of sensitive data. The 
challenging problem is how to effectively share encrypted 
data. Of course users can download the encrypted data 
from the storage, decrypt them, then send them to others 
for sharing, but it loses the value of cloud storage. Users 
should be able to delegate the access rights of the sharing 
data to others so that they can access these data from the 
server directly. However, finding an efficient and secure 
way to share partial data in cloud storage is not trivial. 
Below we will take Dropbox1 as an example for 
illustration. 
Assume that Alice puts all her private photos on Dropbox, 
and she does not want to expose her photos to everyone. 
Due to various data leakage possibility Alice cannot feel 
relieved by just relying on the privacy protection 
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mechanisms provided by Dropbox, so she encrypts all the 
photos using her own keys before uploading. One day, 
Alice’s friend, Bob, asks her to share the photos taken 
over all these years which Bob appeared in. Alice can then 
use the share function of Drop box, but the problem now is 
how to delegate the decryption rights for these photos to 
Bob. A possible option Alice can choose is to securely 
send Bob the secret keys involved. Naturally, there are 
two extreme ways for her under the traditional encryption 
paradigm:  Alice encrypts all files with a single encryption 
key and gives Bob the corresponding secret key directly. 
Alice encrypts files with distinct keys and sends Bob the 
corresponding secret keys. 
Obviously, the first method is inadequate since all 
unchosen data may be also leaked to Bob. For the second 
method, there are practical concerns on efficiency. The 
number of such keys is as many as the number of the 
shared photos, say, a thousand. Transferring these secret 
keys inherently requires a secure channel, and storing 
these keys requires rather expensive secure storage. The 
costs and complexities involved generally increase with 
the number of the decryption keys to be shared. In short, it 
is very heavy and costly to do that. 
Encryption keys also come with two flavors—symmetric 
key or asymmetric (public) key. Using symmetric 
encryption, when Alice wants the data to be originated 
from a third party, she has to give the encryptor her secret 
key; obviously, this is not always desirable. By contrast, 
the encryption key and decryption key are different in 
public key encryption. The use of public-key encryption 
gives more flexibility for our applications. For example, in 
enterprise settings, every employee can upload encrypted 
data on the cloud storage server without the knowledge of 
the company’s master-secret key. 
Therefore, the best solution for the above problem is that 
Alice encrypts files with distinct public-keys, but only 
sends Bob a single (constant-size) decryption key. Since 
the decryption key should be sent via a secure channel and 
kept secret, small key size is always desirable. For 
example, we cannot expect large storage for decryption 
keys in the resource-constraint devices like smart phones, 
smart cards, or wireless sensor nodes. Especially, these 
secret keys are usually stored in the tamper-proof memory, 
which is relatively expensive. The present research efforts 
mainly focus on minimizing the communication 
requirements (such as bandwidth, rounds of 
communication) like aggregate signature [6]. However, 
not much has been done about the key itself (see Section 3 
for more details). 
 

1.1 Our Contributions 
 
In modern cryptography, a fundamental problem we often 
study is about leveraging the secrecy of a small piece of 

knowledge into the ability to perform cryptographic 
functions (e.g., encryption, authentication) multiple times. 
In this paper, we study how to make a decryption key 
more powerful in the sense that it allows decryption of 
multiple ciphertexts, without increasing its size. 
Specifically, our problem statement is “To design an 
efficient public-key encryption scheme which supports 
flexible delegation in the sense that any subset of the 
cipher texts (produced by the encryption scheme) is 
decrypt able by a constant-size decryption key (generated 
by the owner of the master-secret key).” 
We solve this problem by introducing a special type of 
public-key encryption which we call key-aggregate 
cryptosystem (KAC). In KAC, users encrypt a message 
not only under a public-key, but also under an identifier of 
cipher text called class. 
 

 
Figure. 1.  Alice shares files  with identifiers  2,  3,  6,  
and  8  with Bob  by sending him a single  aggregate 
key. 

That means the cipher texts are further categorized into 
different classes. The key owner holds a master-secret 
called master-secret key, which can be used to extract 
secret keys for different classes.  
More importantly, the extracted key have can be an 
aggregate key which is as compact as a secret key for a 
single class, but aggregates the power of many such keys, 
i.e., the decryption power for any subset of cipher text 
classes. With our solution, Alice can simply send Bob a 
single aggregate key via a secure e-mail. Bob can 
download the encrypted photos from Alice’s Drop box 
space and then use this aggregate key to decrypt these 
encrypted photos. The scenario is depicted in Figure. 1. 
The sizes of ciphertext, public-key, master-secret key, and 
aggregate key in our KAC schemes are all of constant 
size. The public system parameter has size linear in the 
number of cipher text classes, but only a small part of it is 
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needed each time and it can be fetched on demand from 
large (but no confidential) cloud storage. 
Previous results may achieve a similar property featuring a 
constant-size decryption key, but the classes need to 
conform to some predefined hierarchical relationship. Our 
work is flexible in the sense that this constraint is 
eliminated, that is, no special relation is required between 
the classes. The detail and other related works can be 
found in Section 3. We propose several concrete KAC 
schemes with different security levels and extensions in 
this paper. All constructions can be proven secure in the 
standard model. To the best of our knowledge, our 
aggregation mechanism2 in KAC has not been 
investigated. 
 

2. KEY-AGGREGATE ENCRYPTION 

We first give the framework and definition for key 
aggregate encryption. Then we describe how to use KAC 
in a scenario of its application in cloud storage. 
 
2.1  Framework 

 
A key-aggregate encryption scheme consists of five 
Polynomial-time algorithms as follows. The data owner 
establishes the public system parameter via Setup and 
generates a public/master-secret3 key pair via KeyGen. 
Messages can be encrypted via Encrypt by anyone who 
also decides what cipher text class is associated with the 
plaintext message to be encrypted. The data owner can use 
the master-secret to generate an aggregate decryption key 
for a set of ciphertext classes via Extract. The generated 
keys can be passed to delegates securely (via secure e-
mails or secure devices) Finally, any user with an 
aggregate key can decrypt any cipher text provided that 
the ciphertext’s class is contained in the aggregate key via 
Decrypt. 

 
Figure.2.Using KAC for data sharing in cloud storage. 

 

2.2  Sharing Encrypted Data 
 

A canonical application of KAC is data sharing. The key 
aggregation property is especially useful when we expect 
the delegation to be efficient and flexible. The schemes 
enable a content provider to share her data in a 
confidential and selective way, with a fixed and small 
cipher text expansion, by distributing to each authorized 
user a single and small aggregate key. 
Here, we describe the main idea of data sharing in cloud 
storage using KAC, illustrated in Figure. 2. Suppose Alice 
wants to share her data m1;m2; … .;m_ on the server. She 
first performs Setupð1_; nÞ to get param and execute 
KeyGen to get the public/master-secret key pair. The 
system parameter and public-key pk can be made public 
and master-secret key msk should be kept secret by Alice. 
Anyone (including Alice herself) can then encrypt each mi 
by Ci ¼ Encrypt. The encrypted data are uploaded to the 
server. With param and pk, people who cooperate with 
Alice can update Alice’s data on the server. Once Alice is 
willing to share a set S of her data with a friend Bob, she 
can compute the aggregate key KS for Bob by performing 
Extractðmsk; SÞ. Since KS is just a constant-size key, it is 
easy to be sent to Bob via a secure e-mail. 
After obtaining the aggregate key, Bob can download the 
data he is authorized to access. That is, for each i 2 S, Bob 
downloads Ci (and some needed values in param) from the 
server. With the aggregate key KS, Bob can decrypt each 
Ci by DecryptS; i; Ci for each i 2 S. 
 
 
3. RELATED WORK 

 
This section we compare our basic KAC scheme with 
other possible solutions on sharing in secure cloud storage.  
 
3.1 Cryptographic Keys for a Predefined Hierarchy 
 
We start by discussing the most relevant study in the 
Literature of cryptography/security. Cryptographic key 
assignment schemes (e.g., [11], [12], [13], [14]) aim to 
minimize the expense in storing and managing secret keys 
for general cryptographic use. Utilizing a tree structure, a 
key  for a given branch can be used to derive the keys of 
its descendant nodes (but not the other way round). Just 
granting the parent key implicitly grants all the keys of its 
descendant nodes. Sandhu [15] proposed a method to 
generate a tree hierarchy of symmetric-keys by using 
repeated evaluations of pseudorandom function/block 
cipher on a fixed secret. The concept can be generalized 
from a tree to a graph. More advanced cryptographic key 
assignment schemes support access policy that can be 
modeled by an acyclic graph or a cyclic graph [16], [17], 
[7]. Most of these schemes produce keys for symmetric-
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key cryptosystems, even though the key derivations may 
require modular arithmetic 
as used in public-key cryptosystems, which are generally 
more expensive than “symmetric-key operations” such as 
pseudorandom function. We take the tree structure as an 
example. Alice can first classify the ciphertext classes 
according to their subjects like Figure. 3. Each node in the 
tree represents a secret key, while the leaf nodes represents 
the keys for individual cipher text classes. Filled circles 
represent the keys for the classes to be delegated and 
circles circumvented by dotted lines represent the keys to 
be granted. Note that every key of the nonleaf node can 
derive the keys of its descendant nodes. 
In Figure. 3a, if Alice wants to share all the files in the 
“personal” category, she only needs to grant the key for 
the node “personal,” which automatically grants the 
delegate the keys of all the descendant nodes (“photo,” 
“music”). This is the ideal case, where most classes to be 
shared belong to the same branch and thus a parent key of 
them is sufficient. However, it is still difficult for general 
cases. As shown in Figure. 3b, if Alice shares her demo 
music at work (“work”! “casual”! “demo” and “work”! 
“confidential” ! “demo”) with a colleague who also has 
the rights to see some of her personal data, what she can 
do is to give more keys, which leads to an increase in the 
total key size. One can see that this approach is not 
flexible when the classifications are more complex and she 
wants to share different sets of files to different people. 
For this delegate in our example, the 
 

 
Figure.3. Compact key is not always  possible for a 

fixed hierarchy. 

number of granted secret keys becomes the same as the 
number of classes. In general, hierarchical approaches can 
solve the problem partially if one intends to share all files 
under a certain branch in the hierarchy. On average, the 
number of keys increases with the number of branches. It 
is unlikely to come up with a hierarchy that can save the 
number of total keys to be granted for all individuals 
(which can access a different set of leaf-nodes) 
simultaneously. 
 

 

3.2 Compact Key in Symmetric-Key Encryption 
 
Motivated by the same problem of supporting flexible 
hierarchy in decryption power delegation (but in 
symmetric- key setting), Benaloh et al. [8] presented an 
encryption scheme which is originally proposed for 
concisely transmitting large number of keys in broadcast 
scenario [18]. The construction is simple and we briefly 
review its key derivation process here for a concrete 
description of what are the desirable properties we want to 
achieve. The derivation of the key for a set of classes 
(which is a subset of all possible ciphertext classes) is as 
follows: A composite modulus N ¼ p _ q is chosen where 
p and q are two large random primes. A master-secret key 
Y is chosen at random from ZZ_N. Each class is 
associated with a distinct prime ei. All these prime 
numbers can be put in the public system parameter.5 A 
constant-size key for set S0 can be generated. 
 
3.3 Compact Key in Identity-Based Encryption (IBE) 
 
IBE (e.g., [20], [21], [22]) is a type of public-key 
encryption in which the public-key of a user can be set as 
an identity string of the user (e.g., an email address). There 
is a trusted party called private key generator in IBE which 
holds a master-secret key and issues a secret key to each 
user with respect to the user identity. The encryption can 
take the public parameter and a user identity to encrypt a 
message. 
The recipient can decrypt this cipher text by his secret key. 
Gout et al. [23], [9] tried to build IBE with key 
aggregation. One of their schemes [23] assumes random 
oracles but another [9] does not. In their schemes, key 
aggregation is constrained in the sense that all keys to be 
aggregated must come from different “identity divisions.” 
While there are an exponential number of identities and 
thus secret keys, only a polynomial number of them can be 
aggregated. Most importantly, their key-aggregation [23], 
[9] comes at the expense of OðnÞ sizes for both cipher 
texts and the public parameter, where n is the number of 
secret keys which can be aggregated into a constant size 
one. This greatly increases the costs of storing and 
transmitting ciphertexts, which is impractical in many 
situations such as shared cloud storage. 
As we mentioned, our schemes feature constant cipher text 
size, and their security holds in the standard model. In 
fuzzy IBE [21], one single compact secret key can decrypt 
cipher texts encrypted under many identities which are 
close in a certain metric space, but not for an arbitrary set 
of identities and, therefore, it does not match with our 
idea of key aggregation. 
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3.4 Other Encryption Schemes 
 
Attribute-based encryption (ABE) [10], [24] allows each 
cipher text to be associated with an attribute, and the 
master-secret key holder can extract a secret key for a 
policy of these attributes so that a ciphertext can be 
decrypted by this key if its associated attribute conforms 
to the policy. For example, with the secret key for the 
policy 2 _ 3 _ 6, one can decrypt cipher text tagged with 
class 2, 3, 6, or 8. However, the major concern in ABE is 
collusion resistance but not the compactness of secret 
keys. Indeed, the size of the key often increases linearly 
with the number of attributes it encompasses, or the cipher 
text-size is not constant (e.g., [25]). To delegate the 
decryption power of some cipher texts without sending the 
secret key to the delegate, a useful primitive is proxy re-
encryption (PRE) (e.g., [26], [27], [28], [29]). A PRE 
scheme allows Alice to delegate to the server (proxy) the 
ability to convert the cipher texts encrypted under her 
public-key into ones for Bob. PRE is well known 
to have numerous applications including cryptographic file 
system [30]. Nevertheless, Alice has to trust the proxy that 
it only converts cipher texts according to her instruction, 
which is what we want to avoid at the first place. Even 
worse, if the proxy colludes with Bob, some form of 
Alice’s secret key can be recovered which can decrypt 
Alice’s (convertible) ciphertexts without Bob’s further 
help. That also means that the transformation key of proxy 
should be well protected. Using PRE just moves the secure 
key storage requirement from the delegatee to the proxy. It 
is, thus, undesirable to let the proxy reside in the storage 
server. That will also be inconvenient since every 
decryption requires separate interaction with the proxy. 
 
 
4. PERFORMANCE ANALYSIS 
 
4.1 Compression Factors 
 
For a concrete comparison, we investigate the space 
requirements of the tree-based key assignment approach 
we described in Section 3.1. This is used in the complete 
sub tree scheme, which is a representative solution to the 
broadcast encryption problem following the well-known 
subset-cover framework [33]. It employs a static logical 
key hierarchy, which is materialized with a full binary key 
tree of height h (equals to 3 in Figure. 3), and thus can 
support up to 2h cipher text classes, a selected part of 
which is intended for an authorized delegate. 
In an ideal case as depicted in Figure. 3a, the delegate can 
be granted the access to 2hs classes with the possession of 
only one key, where hs is the height of a certain sub tree 
(e.g., hs ¼ 2 in Figure. 3a). On the other hand, to decrypt 
cipher texts of a set of classes, sometimes the delegate 
may have to hold a large number of keys, as depicted in 

Figure. 3b Therefore, we are interested in na, the number 
of symmetric keys to be assigned in this hierarchical key 
approach, in an average sense We assume that there are 
exactly 2h cipher text classes, and the delegate of concern 
is entitled to a portion r of them. That is, r is the delegation 
ratio, the ratio of the delegated cipher text classes to the 
total classes. Obviously, if r ¼ 0, na should also be 0, 
which means no access to any of the classes; if r ¼ 100%, 
na should be as low as 1, which means that the possession 
of only the root key in the hierarchy can grant the access 
to all the 2h classes. Consequently, one may expect that na 
may first increase with r, and may decrease later. We set r 
¼ 10%; 20%; . . . ; 90%, and choose the portion in a 
random manner to model an arbitrary “delegation pattern” 
for different delegates. For each combination of r and h, 
we randomly generate 104 different combinations of 
classes to be delegated, and the output key set size na is 
the average over random delegations. We tabulate the 
results in Table 2, where h ¼ 16; 18; 20 respectively.6 For 
a given h, na increases with the delegation ratio r until r 
reaches   70%. An amazing fact is that, the ratio of na to 
Nð¼ 2hþ1 _ 1Þ, the total number of keys in the hierarchy 
(e.g., N ¼ 15 in Figure. 3), appears to be only determined 
by r but irrelevant of h. This is because when the number 
of cipher text classes (2h) is large and the delegation ratio 
(r) is fixed, this kind of random delegation achieves 
roughly the same key assignment ratios (na=N). Thus, for 
the same r, na grows exponentially with h. We can easily 
estimate how many keys we need to assign when we are 
given r and h. We then turn our focus to the compression7 
factor F for a certain h, i.e., the average number of 
delegated classes that each granted key can decrypt. 
Specifically, it is the ratio of the total number of delegated 
classes (r2h) to the number of granted keys required (na). 
Certainly, higher compression factor is preferable because 
it means each granted key can decrypt more cipher texts. 
Figure. 4a illustrates the relationship between the 
compression factor and the delegation ratio Somewhat 
surprisingly, we found that F ¼ 3:2 even for delegation 
ratio of r ¼ 0:9, and F < 6 for r ¼ 0:95, which deviates 
from the intuition that only a small number of “powerful” 
keys are needed for delegating most of the classes. We can 
only get a high (but still small) compression factor when 
the delegation ratio is close to 1. A comparison of the 
number of granted keys between three methods is depicted 
in Figure. 4b. We can see that if w grant the key one by 
one, the number of granted keys would be equal to the 
number of the delegated cipher text classes. With the tree-
based structure, we can save a number of granted keys 
according to the delegation ratio. On the contrary, in our 
proposed approach, the delegation of decryption can be 
efficiently implemented with the aggregate key, which is 
only of fixed size. In our experiment, the delegation is 
randomly chosen. It models the situation that the needs for 
delegating to different users may not be predictable as 



Ashraf Sabri Waheed Alameri et. al., International Journal of  Advances in Computer Science and Technology, 4(3), March  2015, 23-30 

  28 

 

time goes by, even after a careful initial planning. This 
gives empirical evidences to support our thesis that 
hierarchical key assignment does not save much in all 
cases. 
 
 

 

 
 

Figure.4.(a)  Compression  achieved  by  the   tree-
based  approach for delegating different ratio of the 
classes. (b) Number of granted keys (na) required  for 
different approaches in the case of 65,536  classes 
of data. 

 
4.2 Performance of Our Proposed Schemes 
 
Our approaches allow the compression factor F (F ¼ n in 
our schemes) to be a tunable parameter, at the cost of sized 
system parameter. Encryption can be done in constant 
time, while decryption can be done in  group 
multiplications (or point addition on elliptic curves) with 
two pairing operations, where S is the set of cipher text 
classes decrypt able by the granted aggregate key and jSj _ 
n. As expected, key extraction requires  group 
multiplications as well, which seems unavoidable. 
However, as demonstrated by the experiment results, we 
do not need to set a very high n to have better compression 
than the tree-based approach. Note that group 
multiplication is a very fast operation. Again, we confirm 
empirically that our analysis is true. We implemented the 
basic KAC system in C with the pairing-based 

cryptography (PBC) Library8 version 0.4.18 for the 
underlying elliptic-curve group and pairing operations. 
Since the granted key can be as small as one GG element, 
and the cipher text only contains two GG and one GGT 
elements, we used (symmetric) pairings over Type-A 
(super singular) curves as defined in the PBC library 
which offers the highest efficiency among all types of 
curves, even though Type-A curves do not provide the 
shortest representation for group elements. In our 
implementation, p is a 160-bit Salinas prime, which offers 
1,024-bit of discrete-logarithm security. With this Type-A 
curves setting in PBC, elements of groups GG and GGT 
take 512 and 1,024 bits to represent, respectively. The test 
machine is a Sun Ultra Spark  system with dual CPU 
(1,002 MHz) running Solaris, each with 2-GB RAM. The 
timings reported below are averaged over 100 randomized 
runs. In our experiment, we take the number of cipher text 
classes n ¼ 216 ¼ 65,536. The Setup algorithm, while 
outputting 2n þ 1Þ elements by doing 2n _ 2Þ 
exponentiations, can be made efficient by preprocessing 
function offered by PBC, which saves time for 
exponentiation the same element (g) in the long run. This 
is the only “low-level” optimization trick we have used. 
All other operations  implemented in a straightforward 
manner. In particular, we did not exploit the fact that will 
be exponentiated many times across different encryptions. 
However, w precomputed its value in the setup stage, such 
that the encryption can be done without computing any 
pairing. Our experiment results. The execution times of 
Setup, KeyGen, and Encrypt are independent of the 
delegation ratio r. In our experiments, KeyGen takes 3.3 
milliseconds and Encrypt takes 6.8 milliseconds. As 
expected, the running time complexities of Extract and 
Decrypt increase linearly with the delegation ratio r 
(which determines the size of the delegated set S). Our 
timing results also conform to what can be seen from 
The equation in Extract and Decrypt—two pairing 
operations take negligible time, the running time of 
Decrypt I roughly a double of Extract. Note that our 
experiments dealt with up to 65,536 number of classes 
(which is also th compression factor), and should be large 
enough for fine-grained data sharing in most situations. 
Finally, we remark that for applications where the number 
of cipher text classes is large but the no confidential 
storage is limited, one should deploy our schemes using 
the Type-D pairing bundled with the PBC, which only 
requires 170-bit to represent an element in GG. For n ¼ 
216, the system 
Parameter requires approximately 2.6 megabytes, which is 
as large as a lower quality MP3 file or a higher resolution 
JPEG file that a typical cell phone can store more than a 
dozen of them. But we saved expensive secure storage 
without the hassle of managing a hierarchy of delegation 
classes. 
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5. NEW PATIENT-CONTROLLED ENCRYPTION 
(PCE) 

 
Motivated by the nationwide effort to computerize 
America’s medical records, the concept of patient-
controlled encryption has been studied [8]. In PCE, the 
health record is decomposed into a hierarchical 
representation based on the use of different ontology’s, 
and patients are the parties who generate and store secret 
keys. When there is a need for a healthcare personnel to 
access part of the record, a patient will release the secret 
key for the concerned part of the record. In the work of 
Benelux et al. [8], three solutions have been provided, 
which are symmetric-key PCE for fixed hierarchy (the 
“folklore” tree-based method in Section 3.1), public-key 
PCE for fixed hierarchy (the IBE analog of the folklore 
method, as mentioned in Section 3.1), and RSA based 
symmetric-key PCE for “flexible hierarchy” (which is the 
“set membership” access policy as we explained). Our 
work provides a candidate solution for the missing piece, 
public-key PCE for flexible hierarchy, which the existence 
of an efficient construction was an open question. Any 
patient can either define her own hierarchy according 
to her need, or follow the set of categories suggested by 
the electronic medical record system she is using, such as 
“clinic visits,” “x-rays,” “allergies,” “medications,” and so 
on. When the patient wishes to give access rights to her 
doctor, she can choose any subset of these categories and 
issue a single key, from which keys for all these categories 
can be computed. Thus, we can essentially use any 
hierarchy we choose, which is especially useful when the 
hierarchy can be complex. Finally, one healthcare 
personnel deals with many patients and the patient record 
is possible stored in cloud storage due to its huge size 
(e.g., high-resolution medical imaging employing x-ray), 
compact key size and easy key management are of 
paramount importance. 
 
6. CONCLUSION AND FUTURE WORK 
 
How to protect users’ data privacy is a central question of 
cloud storage. With more mathematical tools, 
cryptographic schemes are getting more versatile and 
often involve multiple keys for a single application. In this 
paper, we consider how to “compress” secret keys in 
public-key cryptosystems which support delegation of 
secret keys for different cipher text classes in cloud 
storage. No matter which one among the power set of 
classes, the delegatee can always get an aggregate key of 
constant size. Our approach is more flexible than 
hierarchical key assignment which can only save spaces if 
all key-holders share a similar set of privileges. A 
limitation in our work is the predefined bound of the 
number of maximum ciphertext classes. In cloud storage, 

the number of ciphertexts usually grows rapidly. So we 
have to reserve enough ciphertext classes for the future 
extension. Otherwise, we need to expand the public-key as 
we described in Section 4.2. Although the parameter can 
be downloaded with cipher texts, it would be better if its 
size is independent of the maximum number of cipher text 
classes. On the other hand, when one carries the delegated 
keys around in a mobile device without using special 
trusted hardware, the key is prompt to leakage, designing a 
leakage-resilient cryptosystem [22], [34] yet allows 
efficient and flexible key delegation is also an interesting 
direction. 
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