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ABSTRACT 
 
Continuous monitoring of k nearest neighbor (kNN) queries 
has attracted significant research attention in the past few 
years. A safe region is an area such that as long as a kNN 
query remains in it, the set of its k nearest neighbors does not 
change. Hence, the server does not need to update the query 
results unless the query moves out of its safe region. Previous 
work uses time-parameterized kNN (TPkNN) queries to 
construct the safe region. In this paper, we present an efficient 
technique to construct safe regions by using much cheaper 
RangeNN queries. Moreover, unlike TPkNN queries, the cost 
of a RangeNN query is not significantly affected as the value 
of k increases. Hence, our proposed algorithm scales better 
with the increase in the value of k. We also present a 
technique to efficiently update the safe regions when the 
underlying dataset is dynamic (i.e., objects appear or 
disappear from the dataset). Extensive experimental results 
show that the proposed algorithm provides an order of 
magnitude improvement over existing approach on both the 
static and dynamic datasets.  

Key words: Continuous kNN Queries, Nearest Neighbor 
Query, Safe Region, Spatial Database.  

1.  INTRODUCTION 
 
With the availability of inexpensive mobile devices, position 
locators and cheap wireless networks, location based services 
are gaining increasing popularity. Examples of location based 
services include location based games, geo-social networking, 
traffic monitoring, location based SMS advertising, enhanced 
911 services and army strategic planning etc. Due to the 
popularity of these location based services, continuous 
monitoring of spatial queries has gained significant attention. 
The continuous monitoring of range queries [4, 12, 2], k 
nearest neighbor (kNN) queries [13, 22, 20, 9, 18] and reverse 
nearest neighbor queries [10, 19, 3] has been widely studied 
in recent past. 

In this paper, we study the problem of moving kNN queries 
over static data objects, i.e., the queries are constantly moving 
whereas the data objects do not change their locations. We 
also consider the case where the data objects may appear or 

 
 

disappear from the dataset. The moving kNN queries have 
many applications. Consider the example of a car driver who 
is interested in five nearest gas stations. He may issue a kNN 
queries to continuously monitor the nearby gas stations. As 
another example, a ship sailing through an ocean may 
continuously monitor nearest icebergs to avoid accidents. A 
fighter plane may also issue a kNN query to continuously 
monitor the nearest enemy bases to attack. 

Recently, several safe region based approaches have been 
developed to answer various spatial queries. Safe region is an 
area such that the expensive computation to update the results 
is not required as long as the moving object remains inside the 
safe region. In our earlier work, we developed the safe region 
based approaches to continuously monitor range queries [2] 
and reverse k nearest neighbor queries [3]. In this paper, we 
propose a safe region based approach to continuously monitor 
kNN queries. Therefore, the results of the kNN query are not 
required to be updated unless the query leaves the safe region. 
We next discuss two computational models [2] to monitor 
spatial queries and show that our safe region based approach 
is suitable for both models. 

Safe region based approach to monitor spatial queries has 
gained significant attention. The safe region is an area such 
that as long as the query stays in it, the set of its results remain 
same. We have studied the safe region concept in case of 
range query in [2] and reverse nearest neighbors query in [3]. 
In this paper, we propose a safe region based approach to 
continuously monitor the moving kNN queries. 

Client-server model. In this model, a central server 
computes the results for all the queries issued by the clients. 
Several existing techniques [13, 22, 20] assume that the 
server maintains the data objects and related information in 
the main memory. In contrast, our safe region based approach 
does not require the server to maintain any information in the 
main memory. Once a query arrives, the server computes the 
safe region and sends it to the client. When the client leaves 
the safe region, it sends its new location and old safe region to 
the server. The server uses this information to compute a new 
safe region. An advantage of this approach is that the server 
can provide on-demand service, i.e., the server can go to sleep 
mode if there is no query in the system or if there is no request 
from a client to get a new safe region. 

Local computation model. In this model, the client (e.g., a 
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GPS device) stores the data objects in its memory card and 
processes the query using its own computational power. Due 
to limited main memory and less computational power of the 
clients, it is challenging to compute the result whenever the 
query moves. Our technique ensures that the results are not 
required to be updated as long as the query remains in the safe 
region. Also, we do not require the objects to be stored in the 
main-memory. These features enable our technique to be used 
by the clients that have less main-memory and computational 
capacity. Below, we provide some of the advantages of our 
safe region based approach. 

The safe regions based approach reduces the overall 
computational cost. This is because the results are updated 
only when a query leaves its safe region. 

The safe region is a polygon that consists of around six edges 
[23] on average. The time complexity to check whether a 
client is inside its safe region or not is linear in number of 
edges. Hence, even the clients with low computational powers 
can efficiently check if they are within their safe regions or 
not. 

As mentioned earlier, the server can provide the service 
on-demand because we do not need to maintain any 
information in the main memory. Moreover, the clients are 
required to contact the server only when they leave the safe 
regions. In contrast, the techniques that do not use safe 
regions require the clients to report their exact locations at 
every timestamp (i.e., after every t time units). Hence, our 
approach may reduce the communication cost between clients 
and server assuming that the clients contact the server only 
for the kNN queries. 

It is important to note that the safe region corresponds to the 
Voronoi cell of the query [15]. For a kNN query, an order k 
Voronoi diagram can be constructed and the order k Voronoi 
cell can be treated as safe region. However, the Voronoi 
diagram based solution has several major limitations as 
mentioned in [23]. For example, the value of k is usually not 
known in advance and pre-computing several order k Voronoi 
diagrams for different values of k is computationally 
expensive and incurs high space requirement. 

To address the above mentioned problems, [23] use time 
parameterized k nearest neighbor (TPkNN) [17] queries to 
create the Voronoi cell on the fly. However, a TPkNN query is 
expensive and its cost increases as the value of k increases. 
Another problem is that this solution does not handle 
dynamic dataset (i.e., where the objects may appear or 
disappear from the dataset). To address these issues, we 
present an efficient technique to construct and update the safe 
region. Below, we summarize our contributions: 

We devise an efficient safe region construction approach that 

uses RangeNN 1  queries to construct the safe region in 
contrast to relatively much expensive2 TPkNN queries used in 
the previous approach [23]. Moreover, unlike the TPkNN 
queries, the value of k does not have a significant effect on the 
cost of RangeNN queries. This leads to a substantial 
improvement in computation time for larger values of k. 

 We extend our approach to efficiently update the safe 
regions of the queries for dynamic datasets where the objects 
may appear or disappear. 

 Extensive experimental study demonstrates more than 
an order of magnitude improvement for both the static and 
dynamic datasets. 

 The rest of the paper is organized as follows. Section 2 
discusses the related work. We present our technique in 
Section 3. In Section 4, we present the experimental results 
followed by conclusion in Section 5.  
 
2. RELATED WORK 
 
Continuous monitoring of the kNN queries has gained 
significant research attention [18, 8, 9, 21]. Based on the 
problem setting and framework used for continuous 
monitoring of kNN queries, we divide this section into two 
parts. First, we briefly describe the related works that use the 
timestamp model and then, we discuss the works that use safe 
region concept. 

2.1 Timestamp Model 
In timestamp model, the server receives exact locations of all 
the moving objects and queries at each timestamp (e.g., after 
every t time units) and updates the results accordingly. If the 
length of the timestamp is large then the result of the moving 
query may become invalid between two timestamps. On the 
other hand, if the timestamp length is smaller then the 
computation cost increases because the results are to be 
updated more frequently. 

YPK-CNN [22], SEA-CNN [20] and CPM [13] are some of 
the notable algorithms for continuous monitoring of the kNN 
queries using the timestamp model. These algorithms index 
data with a grid and the initial results are retrieved by 
searching the cells around the query point. SEA-CNN 
proposed a shared execution algorithm which improves the 
performance for large number of queries. CPM finds the 
result of a kNN query by traversing the cells around query 
point. The algorithm processes only the cells that intersect the 
circle centered at the query point q with radius equal to the 
distance between q and the kth NN. 

 
1RangeNN query finds the nearest object of the query q with in a given radius 

from a specific point p. 
2 Our experimental study demonstrates that a RangeNN query is more than 

an order of magnitude faster than a TPkNN query. 
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These algorithms are specifically designed for moving objects 
and are sensitive to query movement (i.e., if the query moves, 
the algorithms compute almost everything from scratch). On 
the other hand, our algorithm is specifically designed for 
moving queries. Moreover, these algorithms follow the 
timestamp model (i.e., the results are updated after every t 
time units). If the timestamp length is large the results are less 
accurate and if the timestamp length is small the computation 
and communication cost increases. On the other hand, in our 
approach the results remain correct as long as the query is in 
the safe region. 

2.2 Safe Region Model 
Voronoi diagram based approach. A Voronoi Diagram is 
constructed by drawing perpendicular bisectors between the 
objects of the underlying dataset. In a Voronoi Diagram, each 
object of the dataset lies within a cell called its voronoi cell. 
The voronoi cell of an object o has a property that any point 
that lies in it is always closer to o than any other object in the 
dataset. Figure 1 demonstrates the Voronoi diagram. The 
voronoi cell of the object o2 is shown shaded in Figure 2. The 
NN of the query q is o2 as long as q resides in the voronoi cell 
of o2. Hence, the safe region of this query is the voronoi cell of 
o2. The result of the query changes only when it moves out of 
this cell. In Figure 2, q moves to a new location q0 and the safe 
region of q is now the voronoi cell of the object o5. For a kNN 
query, a k order Voronoi Diagram can be constructed and k 
order voronoi cells can be treated as safe regions. 

 
       Figure 1:Voronoi Diagram         Figure 2: Voronoi Cell 

LBSQ. In [23], the authors use time-parameterized k nearest 
neighbor (TPkNN) queries to create the Voronoi cell on the 
fly. Before we present the LBSQ, we first discuss the time- 
parameterized query. Tao et al. [17] define time 
parameterized kNN (TPkNN) queries. Given the velocity 
vector of the query q, the TPkNN query finds the set of current 
kNNs and the time at which the set of kNNs of the query is 
changed. A TPkNN query also returns the object that causes 
the change to the set of kNNs. This object is known as the 
influence object and the time at which the object affects the 
result is known as the influence time. 

Figure 3 shows an example of a TPkNN query (k=1). The 
trajectory of the query q is also shown. The NN of q is o3. To 
find, the earliest time at which the NN of the query q changes, 

we may find the influence time for each object oi such that at 
that time oi becomes closer to q than o3. The smallest of these 
influence times is the result influence time and the related 
object is the influence object. In Figure 3, the perpendicular 
bisectors between o3 and other objects are drawn (Bo3:oi is the 
bisector between the objects o3 and oi). By the property of a 
perpendicular bisector, when the query crosses a bisector 
Bo3:oi it becomes closer to oi than it is to o3. Hence, the 
influence time of any object oi is the time at which the query 
crosses its bisector. Figure 3 shows influence time of each 
object. The influence time of o1 is infinity because its bisector 
Bo3:o1 does not intersect the query trajectory. The object o4 has 
the smallest influence time, hence the answer is the object o4, 
which influences the result at time t = 1.0. A tree structure can 
be used to answer TPkNN queries by applying any kNN 
algorithm where the distance metric is the influence time of 
the entry. For details, please see [17]. 

 
             Figure 3: TP query                Figure 4: LBSQ (1st Step) 

The most relevant work to our approach is [23]. Based on 
TPkNN queries, the authors present an algorithm (called 
LBSQ in this paper) that constructs the safe region of a kNN 
query on the fly. Initially, the safe region is the whole space 
bounded by the vertices of the data space (v1, v2, v3 and v4 in 
Figure 4). The NN of the query q is o2. The algorithm 
randomly chooses a vertex (v4 in the example) and issues a TP 
query towards it which returns o6 as answer. The bisector 
between o2 and o6 is drawn and the safe region is updated (the 
shaded region in Figure 4). The algorithm continues by 
selecting a random vertex v and issuing a TP query towards it. 
For any returned object oi, the algorithm updates the safe 
region by drawing the bisector between oi and the NN (o2).  

  
       Figure 5: LBSQ (2nd Step)      Figure 6: LBSQ (Final Step) 
A vertex is marked confirmed if either the TP query does not 
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return any object or it returns an object for which the bisector 
has already been drawn. The algorithm stops when all the 
vertices are confirmed. Figure 5 shows the TP queries issued 
towards vertices v5 and v6 and the shaded area is the safe 
region after the bisectors between o2 and the returned objects 
(o1 and o5) have been drawn. Figure 6 shows the final safe 
region where all the vertices of the safe region (v9 to v13) have 
been confirmed. The problem with this algorithm is the TP 
queries. Since, these queries are very expensive and the 
computation time increases substantially by increasing the 
value in k. 

Incremental Rank Updates. [11] present an algorithm 
called incremental rank updates (IRU) that uses (n-1) 
bisectors to maintain the order of n objects according to their 
distances from q. Figure 7 shows an example where the 
dataset consists of three objects and their ranking is <o1, o2, 
o3> based on their respective distances from q (e.g., o1 is the 
closest and o3 is the furthest object). The bisectors between 
rank adjacent objects are drawn (see the bisectors Bo1:o2 and 
Bo2:o3). If q crosses any bisector Boi:oi+1, the ranks of the objects 
oi and oi+1 are swapped. For example, if the query crosses the 
bisector Bo1:o2 (as shown in the figure), the ranks are swapped 
and o2 becomes the closest object and o1 becomes the second 
closest object. The problem with this approach is that it needs 
to access all n data objects and checks (n-1) bisectors every 
time the query moves.  

  
       Figure 7: LRU Algorithm             Figure 8: V*-Diagram 
SR. In order to monitor a kNN query, Song and Roussopoulos 
(2001) present a technique that computes and sends (k+x) 
NNs to the client. Let dist(q, ok) and dist(q, o(k+x)) be the 
distances of the kth NN and (k+x)th NN of q. It can be proved 
that if q moves to a new location q0, the new kNNs of q are 
among the (k+x) objects provided that 2*dist(q, q0)+dist(q, ok) 
≤dist(q, o(k+x)). 

V*-diagram. Similar to SR [16], in V*-Diagram, [14] 
compute and send (k+x)NNs to the client. Let oi be one of the 
(k+x)NNs of q, they prove that oi remains one of the 
(k+x)NNs if q moves to a position q0 such that dist(q0, 
oi)≤dist(q, o(k+x)) - dist(q, q0). Figure 8 shows the example 
where object oi remains one of the (k+x)NNs as long as q 
remains in the shaded area. These k+x objects are sent to the 
client and the client uses IRU [11] to maintain the ranks of 

these k+x objects. 

SR and V* diagram have two major problems: 1) It is difficult 
to estimate the proper value of x. A high value increases the 
network overhead, storage requirements at clients and 
computation power consumption of the client objects. On the 
other hand, a low value may not be useful; 2)The client objects 
have to continuously compute kNNs from the k+x objects and 
hence the algorithm somehow shifts the computation task to 
the clients. This has direct impact on power consumption of 
the clients. In contrast, our proposed approach does not 
heavily rely on the computation power of the clients. In our 
approach, the safe region that is sent to the client consists of 
around 6 edges [23] and it is easy for a client to check whether 
the client is inside the safe region or not. 
 
 
3. TECHNIQUE 
 
In Section 3.1, we formally define the problem and then study 
the problem characteristics. Then, we present our algorithm 
for static datasets in Section 3.2. In Section 3.3, we present 
the techniques for the dynamic datasets where objects may 
appear or disappear from the dataset. Discussion is presented 
in Section 3.5. 

3.1 Definitions and Problem Characteristics 
Given a set of objects, a query point q, and a positive integer k, 
the kNN query is to report the k closest objects to q. We 
formally define the problem below. 

Let O be a set of objects and q be a query. A set of k nearest 
neighbors (kNNs) of a query N={n1, …, nk} is a set of objects 
from O such that for every niЄN and every ojЄO-N, dist(q, 
ni)≤ dist(q, oj) where dist is a distance metric that is assumed 
to be Euclidean distance in this paper. 

Definition 1: Safe Region S is a region such that as long as a 
kNN query q remains in it, the set of its k nearest neighbors N 
does not change. 

If a client (that issued query q) is aware of its safe region, it 
does not need to contact the server to update its set of kNNs as 
long as q resides in the safe region. This saves the 
computation cost. Before we formally define the safe region, 
we introduce the notion of perpendicular bisectors and 
half-spaces. 

A perpendicular bisector Bn:o between two points n and o 
divides the space into two half-spaces. Let Hn:o be the half- 
space containing n and Ho:n be the half-space containing o. By 
definition of a perpendicular bisector, every point p in Hn:o is 
always closer to n than it is to o (i.e., dist(p, n) < dist(p, o)). 
Figure 9 shows a bisector Bn:o2 between two points n and o2 
and the two corresponding half-spaces Hn:o2 and Ho2:n. The 
query point q is closer to n then it is to o because q lies in Hn:o2. 
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Figure 9: Safe region for 1NN   Figure 10: Safe region for 2NN 

Intuitively, if a point p lies in every half space Hn:oj for every 
object oj then dist(p, n)≤dist(p, oj) for every object oj . In other 
words, n would be the closest object of such point p. In Figure 
9, the bisectors between n and four objects (o1 to o4) have been 
drawn. The shaded area corresponds to the intersection of the 
half spaces Hn:oj for j={1, 2, 3, 4}. Hence, every point p in the 
shaded area lies in every half space Hn:oj for j={1, 2, 3, 4}. For 
this reason, n is the closest object for any point in the shaded 
area. In other words, the object n is the nearest neighbor of a 
query q as long as the query remains in the shaded area (i.e., 
the shaded area is the safe region of q if k=1). Lemma 1 
formalizes and generalizes this observation for arbitrary 
values of k. 

Lemma 1: Let N={n1, … , nk} be the set of kNNs of a query q. 
The intersection of all half-spaces Hni:oj for every niЄN and 
every ojЄO-N defines a region such that as long as the query 
resides in it, the set of its kNNs N is unchanged.  

Proof 1: We prove this by contradiction. Assume that q 
resides in its safe region and ojЄO-N is an object such that 
dist(q, oj) < dist(q, ni) for any niЄN. Since safe region is the 
intersection of all half-spaces Hni:oj, a query q that resides in it 
satisfies dist(q,ni) < dist(q,oj) which contradicts the 
assumption. 

Figure 10 shows an example of the safe region for a 2NN 
query where the two NNs are n1 and n2. The bisectors between 
the two NNs and the objects o1 to o3 are drawn. For clarity, the 
bisectors between n1 and the objects are shown by solid lines 
and the bisectors between n2 and the objects are shown by 
dashed lines. The shaded area is the safe region and 
corresponds to the intersection of every half space Hni:oj for 
i={1, 2} and j = {1, 2, 3}.  

A straight forward approach to compute the safe region is to 
consider every bisector Bni:oj and take the intersection of each 
half space Hni:oj . However, this approach requires computing 
the bisectors of all objects with each of the kNNs. In Lemma 
3, we show that we do not need to consider all the bisectors in 
order to create the safe region. Before we present the details, 
we define few terms and notations. 

A bisector Bni:oj that forms an edge of the safe region is called 
a representative bisector. Note that not all the bisectors 
contribute in defining the safe region. The bisector Bn:o2 in 

Figure 9 is a representative bisector and the bisector Bn:o4 is 
not a representative bisector. 

The object that is associated with the representative bisector is 
called an influence object. An object o is called a visited object 
if its bisector with all kNNs have been considered for 
constructing the safe region. The objects o1, o2 and o3 in 
Figure 9 are the influence objects whereas o4 is not an 
influence object. The bisectors for all the objects shown in 
Figure 9 and Figure 10 have been considered so they are 
visited objects. 

A vertex is the intersection of two bisectors Bni:oj and Bnx:oy. A 
confirmed vertex is the vertex of the safe region (i.e., it is an 
intersection of two representative bisectors). Vertex v in 
Figure 9 is a confirmed vertex whereas the vertex v0 is not a 
confirmed vertex. Please note that a confirmed vertex lies at 
the boundary of the safe region. Now, we present lemmas that 
can be used to see if a vertex is a confirmed vertex or not (i.e., 
if the vertex is lies at the boundary of the safe region or not). 
First, we present the lemma for k = 1 and then we extend it for 
arbitrary values of k. 

Lemma 2: Let n be the NN of a query q and v be a vertex. The 
vertex v is a confirmed vertex if no object lies in the circle of 
radius R centered at v where R = dist(v, n). 

Proof 2: Assume that the circle does not contain any object 
and o4 (as shown in Figure 9) is any object that lies outside the 
circle. If the vertex v does not lie in the safe region then there 
must be a half-space Ho4:n such that v lies in Ho4:v (i.e., v is 
closer to o4 than it is to n). Any point p that lies in the 
half-space Ho4:n satisfies dist(p, o4) < dist(p, n). However, for 
vertex v, dist(v, o4) > dist(v, n) because the object o4 lies 
outside the circle. Hence there is no such half-space Ho4:n that 
contains v. Therefore, the vertex v lies in the safe region and 
is a confirmed vertex. 

Lemma 3: Let N = {n1,… , nk} be the set of kNNs of query q 
and v be any vertex. The vertex v is a confirmed vertex if no 
object oЄO-N lies in the circle centered at v with radius R = 
maxdist(v,N) where maxdist(v,N) is max(dist(v, ni)) for every 
niЄN. 

Proof 3: Figure 11 shows a vertex v and the circle with radius 
R = maxdist(v,N). Assume that the circle does not contain any 
object and o4 is any object that lies outside the circle (as shown 
in Figure 11). The vertex v satisfies dist(v, ni) < dist(v, o4) for 
every niЄN, hence v lies in every Hni:o4. For this reason, the 
vertex v lies in the safe region and is a confirmed vertex. 
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  Figure 11: Lemma 3 illustration     Figure 12: First RangeNN 

Table 1: Notations 
Notation Defination 

Bx:q a perpendicular bisector between point x and q 
Hx:q a half-space defined by Bx:q containing the 

point x 
Hq:x a half-space defined by Bx:q containing the 

point q 
Ha:b ∩ Hc:d the intersection of the two half-spaces 
Dist(x, y) the distance between two points x and y 

v <Bni:oj ∩ Bnx:oy> a vertex v formed by the intersection of the two 
bisectors 

N the set of k nearest neighbors {n1, …, nk} 
maxdist(v,N) max(dist(v, ni)) for every niЄN where v is a 

vertex 
 

3.2 Algorithm for Static Datasets 
Before we present the details of the algorithm, we describe the 
main idea. Initially, the whole data space is assumed to be the 
safe region. Then, the objects are retrieved iteratively (in a 
certain order) and their bisectors are considered to update the 
safe region. At any stage, if all the vertices of the safe region 
are the confirmed vertices, the algorithm stops and reports the 
safe region to the client. 

Algorithm 1 presents the details. The algorithm maintains a 
set of vertices V (initialized to four vertices of the universal 
data space). All data objects are indexed by R-tree [5]. First, 
the set N containing k nearest neighbors of the query q is 
computed by using best-first search algorithm [7] on Rtree. 
Then, the algorithm selects an unconfirmed vertex v from V 
that has minimum range (e.g., its R = maxdist(v,N) is 
minimum among all vЄV ) and checks whether it is a 
confirmed vertex or not by using Lemma 3. More specifically, 
the algorithm checks whether there is any object in the circle 
of range R = maxdist(v,N) centered at v. If there is no object in 
the circle, the algorithm marks the vertex as confirmed. The 
intuition behind selecting a vertex with minimum range is 
that such vertex has higher chances to be a confirmed vertex 
(i.e., it has a smaller circle and has lower chances to contain 
any object). 

Algorithm 1:  Construct Safe Region (q) 
Output: Returns V and I (associated with safe region) 
1: V = {Vertices of the data space}  
2: compute kNNs of q and store in N 

3: while there is an unconfirmed vertex in V do 
4:   select a vertex v <Bni:oj∩Bnl:om> that has minimum maxdist(v,N) 
5:   R = maxdist(v,N) = dist(v, oj) /* Lemma 4 */ 
6:   o = RangeNN(q, v, R) 
7:   if o ≠ NULL then 
8:     update V using bisectors between o and each ni Є N 
9:   else 
10:   confirm v 
 
If there are more than one objects in the circle, the algorithm 
selects the nearest object to the query q. This operation can be 
regarded as finding the nearest object o of q from the objects 
lying within the range R of a vertex v. Hence, we call it 
RangeNN query. We present the implementation of RangeNN 
query later. The safe region is updated by considering the 
bisectors between kNNs of q and the object o. For a given 
bisector Bni:o, the safe region is updated by removing the 
vertices from V that lie in Ho:ni and adding the intersection 
points of Bni:o and the safe region. The algorithm stops when 
all the vertices are confirmed. To show the correctness of the 
algorithm, we need to show that the algorithm finds all the 
vertices of the safe region and does not include any 
unconfirmed vertex. The proof of correctness is similar to 
Lemma 3.1 in [23] and is omitted. 

Algorithm 2: RangeNN(q, v, R) 
Output: Returns the nearest neighbor of q from the objects that lie 
within distance R from v 
1: Initialize a min-heap H with root entry of the tree 
2: while H is not empty do 
3:   deheap an entry e 
4:   if e is an intermediate or leaf node then 
5:     for each of its children c do 
6:       if mindist(c, v) < R then 
7:         insert c into H with key mindist(c, q) 
8:   else if eЄO and e not in kNNs of q then 
9:     return e 
10: return ø 
 
Algorithm 2 represents detailed implementation of the 
RangeNN3 query. The algorithm assumes that the objects are 
indexed by a tree structure (e.g., R-tree). A min-heap is 
initialized with the root of the tree and the algorithm starts 
deheaping the entries iteratively. If a deheaped entry e is an 
intermediate or leaf node, the algorithm inserts all of its 
children that lie within the range (line 6) into the heap. The 
key of each inserted children is its minimum distance from 
the query. If the deheaped entry is an object which is not one 
of the kNNs, the algorithm returns it. If no such object is 
found, the algorithm returns null. 

Example 1: Figure 12 illustrates our algorithm for a 2NN 
query where n1 and n2 are the NNs of q. Initial safe region is 
 
3 Note that RangeNN query does not access all the objects within the range. It 
accesses the entries in ascending order of their minimum distances from q and 
stops when the NN is found. 



Mahady Hasan, International Journal of  Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47 

42 
@ 2012,  IJACST   All Rights Reserved 
 
 

 

the data space bounded by four vertices v1 to v4. First, a 
RangeNN query is issued on vertex v1 with range R=dist(v, 
n1) which returns the object o3. Then, the bisectors between o3 
and the NNs are drawn. In Figure 13, the bisector between o3 
and n1 is shown in solid line and the bisector between o3 and 
n2 is shown by dashed line. These bisectors update the set of 
vertices V and the new safe region (the shaded area) now 
contains vertices v3, v5, v9 and v8. Then, a RangeNN query is 
issued on vertex v9 with range R=dist(v9, n1) and it is marked 
confirmed because no object is found within the range. The 
algorithm continues in this way until all the vertices are 
confirmed. The final safe region (shown shaded in Figure 14) 
contains the vertices v9 to v13. The objects o1 to o3 are retrieved 
during the construction of the safe region (i.e., the objects o1 
to o3 are the influence objects). 

  
     Figure 13: Safe region step1      Figure 14: Final safe region 
Finally, we show that to compute the range R=maxdist(v,N) of 
a vertex v (at lines 4 and 5 of Algorithm1), we do not need to 
compute distance of v from every nearest neighbors niЄN. 
More specifically, we show that the range R=dist(v, oj) where 
the vertex v is the intersection of two bisectors Bni:oj and Bnx:oy. 

Lemma 4: Range for a vertex v <Bni:oj ∩ Bnx:oy> is R = 
maxdist(v,N) = dist(v, ni) = dist(v, oj) = dist(v, nx) = dist(v, oy) 
where both oj and oy are visited objects. 

Proof 4: By definition of the perpendicular bisector, dist(v, ni) 
= dist(v, oj) and dist(v, nx) = dist(v, oy). First, we show that 
dist(v, ni) = dist(v, nx) and then we will show that dist(v, ni) = 
maxdist(v,N). 

Assume dist(v, ni) > dist(v, nx). Then, the circle of radius R = 
dist(v, ni) centered at v contains the object oy (Figure 15). So 
the bisector Bni:oy removes the vertex v from V. The object oy is 
a visited object (its bisector with all nearest neighbors have 
been considered to update V) and v is still present in V. Hence, 
the assumption does not hold. Similarly, the assumption that 
dist(v, ni) < dist(v, nx) also does not hold. Hence, dist(v, ni) = 
dist(v, nx). 

Now, we show that maxdist(v,N) = dist(v, ni). Assume there is 
an object naЄN such that dist(v, na) > dist(v, ni). Then, the 
circle centered at v with radius dist(v, na) contains the objects 
oj and oy (see Figure 15). Bisectors Bna:oj and Bna:oy would 
remove the vertex v from V because oj and oy have been 

visited. Hence, the assumption does not hold and 
maxdist(v,N) = dist(v, ni). 

Note that the set of vertices V is initialized to the vertices of 
the data space. For such vertices, the observation does not 
hold and we compute maxdist(v,N) for such vertices. 

  
         Figure 15: Lemma 4               Figure 16: Impact Region 

3.3 Algorithm for Static Datasets 
First, we define impact region. The impact region is an area 
such that as long as a query remains in its safe region and no 
object appears (disappears) in (from) the impact region, the 
safe region of the query is unchanged. It is easy to prove that 
the impact region consists of circles around vertices with 
radius set to their corresponding nearest neighbors. In Figure 
16, the impact region is shown shaded. Below, we formally 
define the impact region. 

  
  Figure 17: Query moves           Figure 18: Change in NN 

Definition 2: Let V be a set of vertices of a safe region. Let 
Circv be a circle centered at a vertex v <Bni:oj ∩ Bnx:oy> with 
radius Rv = dist(v, oj). The impact region is the area covered 
by all circles Circvi for each viЄV. 

Object updates in the impact region can change the results of 
a query in following two ways; 

1. The set of its kNNs is changed. 
2. The set of influence objects of the query is changed. 

Below, we present our approach to handle each case. 

Case 1 The set of kNNs may be changed if at least one or more 
of the following three happens: 1) the query moves out of the 
safe region (as in Figure 17); 2) one or more of the kNNs 
disappear (n1 disappears in Figure 18); 3) a new object 
appears and becomes one of the kNNs (n3 in Figure 18). To 
handle the case when the kNNs of a query change, we first 
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compute new kNNs of the query. Then, we construct an initial 
safe region by drawing the bisectors between the new kNNs 
and the existing influence objects. Finally, we issue RangeNN 
queries to confirm its vertices as in Algorithm 1. The 
algorithm stops when all the vertices are confirmed. 

Example 2: Figure 18 shows an example of 2NN query. The 
NN n1 disappears and a new object n3 appears. First, we 
compute the new NNs (n2 and n3). Then, we draw 
perpendicular bisectors between the NNs (n2 and n3) and the 
existing influence objects (o1, o2 and o3). The intersection of 
these bisectors forms an initial safe region with vertices v11, 
v14, v15 and v16 (Figure 19). Finally, we issue RangeNN 
queries to confirm these vertices. 

  
     Figure 19: Handling Case 1         Figure 20: Objects appear  
Case 2 If one or more of the influence objects disappear, we 
draw the bisectors between kNNs and the remaining influence 
objects to construct an initial safe region. Then, all the 
vertices are confirmed by issuing RangeNN queries. If an 
object o appears in the impact region and it does not affect the 
set of kNNs of the query, we update the safe region as follows; 
Every vertex vi is marked unconfirmed that contains the 
object o in its circle Circvi . The RangeNN queries are issued 
to confirm all the vertices that have been marked 
unconfirmed. 

Example 3: Consider the example of Figure 20 where two 
new objects o5 and o6 appear. The vertex v13 contains o5 and o6 
in its circle hence v13 is marked unconfirmed. The RangeNN 
query is issued to confirm v13 which returns the object o5. The 
bisectors between o5 and the NNs (n1 and n2) are drawn, 
which change the safe region by adding two new vertices v14 
and v15 (see Figure 21). These two vertices are confirmed by 
issuing RangeNN queries. The final safe region is shown 
shaded. 

  
   Figure 21: Handling Case 2      Figure 22: Conceptual grid tree  

3.4 Data structure  
First, we describe the data structure that is common for both 
the static and dynamic datasets. The system stores a query 
table that contains the information about the queries. More 
specifically, for each query it maintains its id, the set of its 
kNNs, the vertices of its safe region and the set of its influence 
objects. Now, we present the data structure that is different for 
the static dataset and the dynamic dataset. 

For the static dataset, we index the objects with an R-tree. For 
the dynamic dataset, we use grid based structure because a 
more complex structure (like R-tree) would be very expensive 
to maintain dynamically [13]. To efficiently determine 
whether an object update lies in the impact region or not, we 
maintain impact list for each cell of the grid. The impact list 
of a cell c contains the id of every query that has its impact 
region overlapping with the cell. In addition, each cell c 
contains a list of objects that lie within this cell. 

To efficiently answer RangeNN queries, we use conceptual 
grid-tree (introduced in [3] and further studied in [6]). Figure 
22 shows an example of the Conceptual Grid-Tree (CGT) of a 
4×4 grid. For a grid-based structure containing 2n×2n cells 
where n≥0, the root of our conceptual grid-tree is a rectangle 
that contains all 2n×2n cells. Each entry at lth level of this 
grid-tree contains 2n-l×2n-l cells (root being at level 0). An 
entry at l-th level is divided into four equal non-overlapping 
rectangles such that each such rectangle contains 2n-l-1×2n-l-1 
cells. Any n-th level entry of the tree corresponds to one cell of 
the grid structures. Figure 22 shows root entry, intermediate 
entries and the cells of grid. Note that the grid-tree does not 
exist physically, it is just a conceptual visualization of the 
grid. Algorithm 2 can be directly applied on the grid-tree. 

3.5 Discussion 
First, we compare our algorithm with LBSQ [23] for static 
datasets. 

1. LBSQ [23] issues a TPkNN query to confirm a vertex 
whereas we issue a RangeNN query to confirm the vertices. 
The advantage of using TPkNN query is that it guarantees 
that the returned object is an influence object. However, to 
find such an object the TPkNN query has to do expensive 
computation of influence time for the objects. On the other 
hand, although the RangeNN query does not provide such 
guarantee, it is significantly less expensive than the TPkNN 
query. As expected, experimental results show that although 
the number of RangeNN queries issued is more than the 
number of TPkNN queries (4% to 5% more), our algorithm 
gives an order of magnitude improvement in computation 
time because a RangeNN query is around 40-50 times less 
expensive than a TPkNN query. 

2. The cost of RangeNN query is not significantly affected as 
the value of k increases. Although the increase of k value 
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results in a larger range of the RangeNN query, the cost of 
RangeNN is not significantly affected because the RangeNN 
query traverses the R-tree in best-first order and stops 
(regardless the value of k) as soon as one closest object is 
found. Our experiments (see Figure 23) confirm that the cost 
of a RangeNN query is not significantly affected by the value 
of k. On the other hand, the cost of TPkNN increases with 
increase in the value of k. For this reason, our algorithm 
scales better as the value of k increases. 

 In addition to the above mentioned advantages, our approach 
has following advantages over LBSQ [23] on the dynamic 
datasets. 

1. Our algorithm uses impact region and as long as there is no 
update in the impact region of a query, its results are 
unaffected. In other words, on receiving object updates, our 
algorithm updates the results of only the affected queries. In 
contrast, LBSQ cannot determine whether an update has 
affected the results of a query or not. Hence, upon receiving 
the object updates it needs to re-compute/verify the safe 
region of all the queries. 

2. Even if an object update affects the results of a query, we 
may update the results by verifying only the vertices that have 
been affected (please see Example 3). In contrast, LBSQ 
needs to verify all the vertices by issuing TPkNN queries. 

3. In case of an object update, LBSQ needs the exact location 
of all the queries to check if kNNs of any query have been 
changed by this update. On the other hand, our algorithm 
does not retrieve the location of any query that has no object 
update in its impact region. This reduces the communication 
cost. 
4. EXPERIMENTS 
 
In this section, we present the results of our experiments. We 
compare our algorithm with LBSQ [23] because other 
algorithms use timestamp model [22, 20, 13], assume known 
query trajectory path [17, 18] or assume that clients have 
sufficient computation resources to maintain kNNs from 
given (k+x) or more NNs [11, 16, 14] (see Section 2). First, 
we discuss the experimental setup in Section 4.1. Then, we 
present results for static and dynamic datasets in Section 4.2 
and Section 4.3, respectively. 

4.1 Setup 
We use real dataset4 as well as normal and uniform datasets. 
The real dataset contains 128,700 unique data points in a data 
space of 350km×350km. In dynamic datasets, each object 
reports a status update (the object appears or disappears) at a 
timestamp with a probability ρ. The timestamp length is one 
second. The moving queries were simulated using the spatio- 

 
4 http://www.census.gov/geo/www/tiger/ 

temporal data generator [1]. The results of each query are 
monitored for hundred seconds. Table 2 shows the parameters 
used in our experiments and the default values are shown in 
bold. 
All the experiments were conducted on Intel Xeon 2.4 GHz 
dual CPU with 4 GBytes memory. Our algorithm is called 
RSR (RangeNN based Safe Region) and the previous work is 
referred as LBSQ. The algorithms are compared in terms of 
total CPU time and the number of nodes accessed. 

Table 2: System parameters 
Parameter Range 

Number of objects (£1000) 20, 40, 60, 80, 100 ,128 
Datasets Uniform, Normal, Real 
Number of queries 100, 200, 500, 1000, 2500, 5000 
Value of k 1, 3, 10, 30, 100 
Query Speed (km/hr) 25, 50, 75, 100, 125 
Object update probability 0.01, 0.02, 0.03, 0.05, 0.1, 0.3 
 

4.2 Static Dataset 
First, we show that although the number of RangeNN queries 
issued by our algorithm is slightly higher than the number of 
TPkNN queries issued by LBSQ, our algorithm outperforms 
LBSQ because the average cost of a RangeNN query is much 
lower than that of a TPkNN query. 

     
Figure 23: RangeNN/TPkNN cost  Figure 24: # of RangeNN/TPkNN 

Figure 23 shows the average time taken by a RangeNN query 
and a TPkNN query for the increasing value of k. The cost of 
RangeNN query is less affected by the increase in k. Figure 24 
shows that the difference in the number of RangeNN queries 
and TPkNN queries issued by both the algorithms is 
negligible. The number of the RangeNN queries and TPkNN 
queries increase for larger value of k mainly because the size 
of safe region becomes smaller. Hence, the query moves out of 
the safe region more frequently and a new safe region is 
computed more often. The costs of RangeNN queries and 
TPkNN queries are the most considerable costs for both of the 
algorithms (e.g., RangeNN queries takes 70% to 80% of the 
total time in our approach and TPkNN queries take 95% to 
99% of the total time in LBSQ). 

4.2.1 Effect of data distribution 
In Figure 25, we show the performance of our algorithm for 
different data distributions. Our algorithm gives an order of 
magnitude improvement for all data distributions. Next, we 
focus only on the real dataset. 
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       Figure 25: data distribution           Figure 26: k Vs time 

4.2.2. Effect of k 
Figure 26 studies the effect of k on the computation times of 
both algorithms. Our algorithm not only outperforms LBSQ 
but also scales better. Figure 27 shows the number of nodes 
accessed by both the algorithms for the kNN queries, 
RangeNN queries and TPkNN queries. The results show that 
the number of nodes accessed by the kNN queries is much 
lower as compared to that of the RangeNN queries and the 
TPkNN queries. 

  
    Figure 27: k vs # of nodes          Figure 28: query speed vs time 

4.2.3. Effect of query speed 
Figure 28 shows the effect of query speed on both the 
algorithms. The computation costs of both the algorithms rise 
with the increase in speed. This is because the query leaves its 
safe region more frequently and new safe region is computed 
more often. Our algorithm performs around 15 times better 
than LBSQ. Figure 29 shows the number of nodes accessed by 
both algorithms. Our RangeNN queries based algorithm 
accesses lesser nodes than the TPkNN queries based 
approach. 

  
Figure 29: query speed vs # of node  Figure 30: # of query vs time 

4.2.4. Effect of number of queries 
Figure 30 and Figure 31 demonstrate the performance of the 
algorithms for different number of queries. Our algorithm 
provides an order of magnitude improvement over LBSQ in 
terms of CPU time and scales better (note the log scale). 
Moreover, our algorithm accesses lesser number of nodes. 

  
Figure 31: # of queries vs node  Figure 32: # of objects vs time 

4.2.5. Effect of number of objects 
Our experiments show that both of the algorithms are not 
significantly affected by the number of objects. The reason is 
that the number of objects does not have substantial effect on 
the costs of the TPkNN queries and the RangeNN queries 
which are the most influential costs in both the algorithms. 
Nevertheless, our algorithm performs better in terms of both 
CPU time and the number of nodes accessed. Figure 32 shows 
that our algorithm performs around 20 times better than 
LBSQ in terms of computation time. Figure 33 shows that 
LBSQ accesses around 2.5 times more nodes than our 
algorithm. 

4.3. Dynamic Dataset 
Now, we show the performance of both the algorithms on 
dynamic datasets where the objects may appear or disappear. 
We use grid structure for our algorithm and refer to it as GSR. 
For LBSQ, we load R-tree into main memory before 
evaluating the queries. For fair evaluation, we do not consider 
time taken in updating the R-tree for their algorithm. We 
extended LBSQ for dynamic datasets as follows; At each 
timestamp, the algorithm marks every query for which the set 
of its kNNs has been affected. For such queries, the safe 
region is computed from scratch. For any other query, all 
vertices of its safe region are marked unconfirmed and 
TPkNN queries are issued to confirm these vertices. Note that 
if the vertices are not confirmed, a new influence object 
affecting the safe region may be missed. 

  
 Figure 33: # of objects vs nodes    Figure 34:grid cardinality vs 
time 

4.3.1. Effect of grid size 
Since we use grid structure, we first study the effect of grid 
cardinality. Figure 34 shows the performance of our 
algorithm on different grid sizes for different values of k. In 
accordance with previous works that use grid based 
approaches, the performance degrades if the grid size is too 
small or too large. More specifically, if the grid has too low 
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cardinality the cost of RangeNN and kNN queries increase 
because each cell contains larger number of objects. On the 
other hand, if the grid cardinality is too high then many of the 
cells are empty and it affects the performance of the RangeNN 
and kNN queries. We find that our algorithm performs better 
on 32×32 grid and we use this grid size for the rest of the 
experiments. 

4.3.2. Effect of object update probability 
Figure 35 demonstrates the effect of object update probability 
on both of the algorithms. The costs of both algorithms rise as 
the object update probability increases. However, our 
algorithm performs much better than LBSQ. This is because 
LBSQ needs to confirm all vertices of the safe region at every 
timestamp whereas our algorithm confirms only the affected 
vertices of the queries affected by the object updates. The cost 
of LBSQ increases with the higher number of updates because 
the set of kNNs of the queries change more frequently and the 
safe regions are required to be computed from scratch. 

Figure 36 shows the number of TPkNN queries issued by 
LBSQ algorithm and the number of RangeNN queries issued 
by our algorithm. As expected, the number of RangeNN 
queries is much less than the number of TPkNN queries 
because our algorithm only recomputes the safe regions of the 
queries that are affected by the object updates. We note that 
the average costs of the RangeNN query and TPkNN query 
are not affected by change in the object update probability so 
we do not include the results. 

  
    Figure 35: update probability   Figure 36: update probability vs 
#    
                      vs time                           of RangeNN/TTkNN 
 

4.3.3. Effect of k 
Figure 37 studies the effect of k on both of the algorithms for 
dynamic datasets. Clearly, our algorithm outperforms LBSQ 
and scales better because the average cost of the RangeNN 
query is not substantially affected by k. 

  
            Figure 37: k vs time         Figure 38: query speed vs time 

4.3.4. Effect of query speed 
Figure 38 shows the effect of query speed for both of the 
algorithms. The results show that the effect of query speed is 
not as significant as was noted in static datasets. The reason is 
that for dynamic datasets the total time of both algorithms 
increases because safe regions are recomputed more often due 
to the object updates. So, the effect of recomputation of safe 
regions for the query movement becomes less significant. 

  
   Figure 39: query size vs time      Figure 40: object size vs time 

4.3.5. Effect of number of queries and objects 
Figure 39 studies the effect of number of queries on both 
algorithms. Our algorithm provides an order of magnitude 
improvement over the previous algorithm. Figure 40 shows 
that both the algorithms are not significantly affected by the 
number of objects (as for static datasets). The reason is 
already stated in Section 4.2.5. 
 
5. CONCLUSION 
 
Previous algorithm uses TPkNN queries to compute the safe 
region of a kNN query. In this paper, we present an efficient 
algorithm to construct the safe region by using much cheaper 
RangeNN queries. Moreover, RangeNN queries are not 
substantially affected by the value of k. We also present an 
efficient technique to update the safe region for the dynamic 
datasets. Experimental results show an order of magnitude 
improvement for both the static and dynamic datasets. 
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