
Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

36
@ 2012, IJACST All Rights Reserved

ABSTRACT

Continuous monitoring of k nearest neighbor (kNN) queries
has attracted significant research attention in the past few
years. A safe region is an area such that as long as a kNN
query remains in it, the set of its k nearest neighbors does not
change. Hence, the server does not need to update the query
results unless the query moves out of its safe region. Previous
work uses time-parameterized kNN (TPkNN) queries to
construct the safe region. In this paper, we present an efficient
technique to construct safe regions by using much cheaper
RangeNN queries. Moreover, unlike TPkNN queries, the cost
of a RangeNN query is not significantly affected as the value
of k increases. Hence, our proposed algorithm scales better
with the increase in the value of k. We also present a
technique to efficiently update the safe regions when the
underlying dataset is dynamic (i.e., objects appear or
disappear from the dataset). Extensive experimental results
show that the proposed algorithm provides an order of
magnitude improvement over existing approach on both the
static and dynamic datasets.

Key words: Continuous kNN Queries, Nearest Neighbor
Query, Safe Region, Spatial Database.

1. INTRODUCTION

With the availability of inexpensive mobile devices, position
locators and cheap wireless networks, location based services
are gaining increasing popularity. Examples of location based
services include location based games, geo-social networking,
traffic monitoring, location based SMS advertising, enhanced
911 services and army strategic planning etc. Due to the
popularity of these location based services, continuous
monitoring of spatial queries has gained significant attention.
The continuous monitoring of range queries [4, 12, 2], k
nearest neighbor (kNN) queries [13, 22, 20, 9, 18] and reverse
nearest neighbor queries [10, 19, 3] has been widely studied
in recent past.

In this paper, we study the problem of moving kNN queries
over static data objects, i.e., the queries are constantly moving
whereas the data objects do not change their locations. We
also consider the case where the data objects may appear or

disappear from the dataset. The moving kNN queries have
many applications. Consider the example of a car driver who
is interested in five nearest gas stations. He may issue a kNN
queries to continuously monitor the nearby gas stations. As
another example, a ship sailing through an ocean may
continuously monitor nearest icebergs to avoid accidents. A
fighter plane may also issue a kNN query to continuously
monitor the nearest enemy bases to attack.

Recently, several safe region based approaches have been
developed to answer various spatial queries. Safe region is an
area such that the expensive computation to update the results
is not required as long as the moving object remains inside the
safe region. In our earlier work, we developed the safe region
based approaches to continuously monitor range queries [2]
and reverse k nearest neighbor queries [3]. In this paper, we
propose a safe region based approach to continuously monitor
kNN queries. Therefore, the results of the kNN query are not
required to be updated unless the query leaves the safe region.
We next discuss two computational models [2] to monitor
spatial queries and show that our safe region based approach
is suitable for both models.

Safe region based approach to monitor spatial queries has
gained significant attention. The safe region is an area such
that as long as the query stays in it, the set of its results remain
same. We have studied the safe region concept in case of
range query in [2] and reverse nearest neighbors query in [3].
In this paper, we propose a safe region based approach to
continuously monitor the moving kNN queries.

Client-server model. In this model, a central server
computes the results for all the queries issued by the clients.
Several existing techniques [13, 22, 20] assume that the
server maintains the data objects and related information in
the main memory. In contrast, our safe region based approach
does not require the server to maintain any information in the
main memory. Once a query arrives, the server computes the
safe region and sends it to the client. When the client leaves
the safe region, it sends its new location and old safe region to
the server. The server uses this information to compute a new
safe region. An advantage of this approach is that the server
can provide on-demand service, i.e., the server can go to sleep
mode if there is no query in the system or if there is no request
from a client to get a new safe region.

Local computation model. In this model, the client (e.g., a

Efficient Algorithm to Monitor Continuous kNN Queries

Mahady Hasan
School of Engineering and Computer Science, Independent University, Bangladesh, Bangladesh,

mahadyh@yahoo.com

 ISSN 2320 - 2602
Volume 2, No.4, April 2013

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2013/ijacst01242013.pdf

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

37
@ 2012, IJACST All Rights Reserved

GPS device) stores the data objects in its memory card and
processes the query using its own computational power. Due
to limited main memory and less computational power of the
clients, it is challenging to compute the result whenever the
query moves. Our technique ensures that the results are not
required to be updated as long as the query remains in the safe
region. Also, we do not require the objects to be stored in the
main-memory. These features enable our technique to be used
by the clients that have less main-memory and computational
capacity. Below, we provide some of the advantages of our
safe region based approach.

The safe regions based approach reduces the overall
computational cost. This is because the results are updated
only when a query leaves its safe region.

The safe region is a polygon that consists of around six edges
[23] on average. The time complexity to check whether a
client is inside its safe region or not is linear in number of
edges. Hence, even the clients with low computational powers
can efficiently check if they are within their safe regions or
not.

As mentioned earlier, the server can provide the service
on-demand because we do not need to maintain any
information in the main memory. Moreover, the clients are
required to contact the server only when they leave the safe
regions. In contrast, the techniques that do not use safe
regions require the clients to report their exact locations at
every timestamp (i.e., after every t time units). Hence, our
approach may reduce the communication cost between clients
and server assuming that the clients contact the server only
for the kNN queries.

It is important to note that the safe region corresponds to the
Voronoi cell of the query [15]. For a kNN query, an order k
Voronoi diagram can be constructed and the order k Voronoi
cell can be treated as safe region. However, the Voronoi
diagram based solution has several major limitations as
mentioned in [23]. For example, the value of k is usually not
known in advance and pre-computing several order k Voronoi
diagrams for different values of k is computationally
expensive and incurs high space requirement.

To address the above mentioned problems, [23] use time
parameterized k nearest neighbor (TPkNN) [17] queries to
create the Voronoi cell on the fly. However, a TPkNN query is
expensive and its cost increases as the value of k increases.
Another problem is that this solution does not handle
dynamic dataset (i.e., where the objects may appear or
disappear from the dataset). To address these issues, we
present an efficient technique to construct and update the safe
region. Below, we summarize our contributions:

We devise an efficient safe region construction approach that

uses RangeNN 1 queries to construct the safe region in
contrast to relatively much expensive2 TPkNN queries used in
the previous approach [23]. Moreover, unlike the TPkNN
queries, the value of k does not have a significant effect on the
cost of RangeNN queries. This leads to a substantial
improvement in computation time for larger values of k.

 We extend our approach to efficiently update the safe
regions of the queries for dynamic datasets where the objects
may appear or disappear.

 Extensive experimental study demonstrates more than
an order of magnitude improvement for both the static and
dynamic datasets.

 The rest of the paper is organized as follows. Section 2
discusses the related work. We present our technique in
Section 3. In Section 4, we present the experimental results
followed by conclusion in Section 5.

2. RELATED WORK

Continuous monitoring of the kNN queries has gained
significant research attention [18, 8, 9, 21]. Based on the
problem setting and framework used for continuous
monitoring of kNN queries, we divide this section into two
parts. First, we briefly describe the related works that use the
timestamp model and then, we discuss the works that use safe
region concept.

2.1 Timestamp Model
In timestamp model, the server receives exact locations of all
the moving objects and queries at each timestamp (e.g., after
every t time units) and updates the results accordingly. If the
length of the timestamp is large then the result of the moving
query may become invalid between two timestamps. On the
other hand, if the timestamp length is smaller then the
computation cost increases because the results are to be
updated more frequently.

YPK-CNN [22], SEA-CNN [20] and CPM [13] are some of
the notable algorithms for continuous monitoring of the kNN
queries using the timestamp model. These algorithms index
data with a grid and the initial results are retrieved by
searching the cells around the query point. SEA-CNN
proposed a shared execution algorithm which improves the
performance for large number of queries. CPM finds the
result of a kNN query by traversing the cells around query
point. The algorithm processes only the cells that intersect the
circle centered at the query point q with radius equal to the
distance between q and the kth NN.

1RangeNN query finds the nearest object of the query q with in a given radius

from a specific point p.
2 Our experimental study demonstrates that a RangeNN query is more than

an order of magnitude faster than a TPkNN query.

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

38
@ 2012, IJACST All Rights Reserved

These algorithms are specifically designed for moving objects
and are sensitive to query movement (i.e., if the query moves,
the algorithms compute almost everything from scratch). On
the other hand, our algorithm is specifically designed for
moving queries. Moreover, these algorithms follow the
timestamp model (i.e., the results are updated after every t
time units). If the timestamp length is large the results are less
accurate and if the timestamp length is small the computation
and communication cost increases. On the other hand, in our
approach the results remain correct as long as the query is in
the safe region.

2.2 Safe Region Model
Voronoi diagram based approach. A Voronoi Diagram is
constructed by drawing perpendicular bisectors between the
objects of the underlying dataset. In a Voronoi Diagram, each
object of the dataset lies within a cell called its voronoi cell.
The voronoi cell of an object o has a property that any point
that lies in it is always closer to o than any other object in the
dataset. Figure 1 demonstrates the Voronoi diagram. The
voronoi cell of the object o2 is shown shaded in Figure 2. The
NN of the query q is o2 as long as q resides in the voronoi cell
of o2. Hence, the safe region of this query is the voronoi cell of
o2. The result of the query changes only when it moves out of
this cell. In Figure 2, q moves to a new location q0 and the safe
region of q is now the voronoi cell of the object o5. For a kNN
query, a k order Voronoi Diagram can be constructed and k
order voronoi cells can be treated as safe regions.

 Figure 1:Voronoi Diagram Figure 2: Voronoi Cell

LBSQ. In [23], the authors use time-parameterized k nearest
neighbor (TPkNN) queries to create the Voronoi cell on the
fly. Before we present the LBSQ, we first discuss the time-
parameterized query. Tao et al. [17] define time
parameterized kNN (TPkNN) queries. Given the velocity
vector of the query q, the TPkNN query finds the set of current
kNNs and the time at which the set of kNNs of the query is
changed. A TPkNN query also returns the object that causes
the change to the set of kNNs. This object is known as the
influence object and the time at which the object affects the
result is known as the influence time.

Figure 3 shows an example of a TPkNN query (k=1). The
trajectory of the query q is also shown. The NN of q is o3. To
find, the earliest time at which the NN of the query q changes,

we may find the influence time for each object oi such that at
that time oi becomes closer to q than o3. The smallest of these
influence times is the result influence time and the related
object is the influence object. In Figure 3, the perpendicular
bisectors between o3 and other objects are drawn (Bo3:oi is the
bisector between the objects o3 and oi). By the property of a
perpendicular bisector, when the query crosses a bisector
Bo3:oi it becomes closer to oi than it is to o3. Hence, the
influence time of any object oi is the time at which the query
crosses its bisector. Figure 3 shows influence time of each
object. The influence time of o1 is infinity because its bisector
Bo3:o1 does not intersect the query trajectory. The object o4 has
the smallest influence time, hence the answer is the object o4,
which influences the result at time t = 1.0. A tree structure can
be used to answer TPkNN queries by applying any kNN
algorithm where the distance metric is the influence time of
the entry. For details, please see [17].

 Figure 3: TP query Figure 4: LBSQ (1st Step)

The most relevant work to our approach is [23]. Based on
TPkNN queries, the authors present an algorithm (called
LBSQ in this paper) that constructs the safe region of a kNN
query on the fly. Initially, the safe region is the whole space
bounded by the vertices of the data space (v1, v2, v3 and v4 in
Figure 4). The NN of the query q is o2. The algorithm
randomly chooses a vertex (v4 in the example) and issues a TP
query towards it which returns o6 as answer. The bisector
between o2 and o6 is drawn and the safe region is updated (the
shaded region in Figure 4). The algorithm continues by
selecting a random vertex v and issuing a TP query towards it.
For any returned object oi, the algorithm updates the safe
region by drawing the bisector between oi and the NN (o2).

 Figure 5: LBSQ (2nd Step) Figure 6: LBSQ (Final Step)
A vertex is marked confirmed if either the TP query does not

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

39
@ 2012, IJACST All Rights Reserved

return any object or it returns an object for which the bisector
has already been drawn. The algorithm stops when all the
vertices are confirmed. Figure 5 shows the TP queries issued
towards vertices v5 and v6 and the shaded area is the safe
region after the bisectors between o2 and the returned objects
(o1 and o5) have been drawn. Figure 6 shows the final safe
region where all the vertices of the safe region (v9 to v13) have
been confirmed. The problem with this algorithm is the TP
queries. Since, these queries are very expensive and the
computation time increases substantially by increasing the
value in k.

Incremental Rank Updates. [11] present an algorithm
called incremental rank updates (IRU) that uses (n-1)
bisectors to maintain the order of n objects according to their
distances from q. Figure 7 shows an example where the
dataset consists of three objects and their ranking is <o1, o2,
o3> based on their respective distances from q (e.g., o1 is the
closest and o3 is the furthest object). The bisectors between
rank adjacent objects are drawn (see the bisectors Bo1:o2 and
Bo2:o3). If q crosses any bisector Boi:oi+1, the ranks of the objects
oi and oi+1 are swapped. For example, if the query crosses the
bisector Bo1:o2 (as shown in the figure), the ranks are swapped
and o2 becomes the closest object and o1 becomes the second
closest object. The problem with this approach is that it needs
to access all n data objects and checks (n-1) bisectors every
time the query moves.

 Figure 7: LRU Algorithm Figure 8: V*-Diagram
SR. In order to monitor a kNN query, Song and Roussopoulos
(2001) present a technique that computes and sends (k+x)
NNs to the client. Let dist(q, ok) and dist(q, o(k+x)) be the
distances of the kth NN and (k+x)th NN of q. It can be proved
that if q moves to a new location q0, the new kNNs of q are
among the (k+x) objects provided that 2*dist(q, q0)+dist(q, ok)
≤dist(q, o(k+x)).

V*-diagram. Similar to SR [16], in V*-Diagram, [14]
compute and send (k+x)NNs to the client. Let oi be one of the
(k+x)NNs of q, they prove that oi remains one of the
(k+x)NNs if q moves to a position q0 such that dist(q0,
oi)≤dist(q, o(k+x)) - dist(q, q0). Figure 8 shows the example
where object oi remains one of the (k+x)NNs as long as q
remains in the shaded area. These k+x objects are sent to the
client and the client uses IRU [11] to maintain the ranks of

these k+x objects.

SR and V* diagram have two major problems: 1) It is difficult
to estimate the proper value of x. A high value increases the
network overhead, storage requirements at clients and
computation power consumption of the client objects. On the
other hand, a low value may not be useful; 2)The client objects
have to continuously compute kNNs from the k+x objects and
hence the algorithm somehow shifts the computation task to
the clients. This has direct impact on power consumption of
the clients. In contrast, our proposed approach does not
heavily rely on the computation power of the clients. In our
approach, the safe region that is sent to the client consists of
around 6 edges [23] and it is easy for a client to check whether
the client is inside the safe region or not.

3. TECHNIQUE

In Section 3.1, we formally define the problem and then study
the problem characteristics. Then, we present our algorithm
for static datasets in Section 3.2. In Section 3.3, we present
the techniques for the dynamic datasets where objects may
appear or disappear from the dataset. Discussion is presented
in Section 3.5.

3.1 Definitions and Problem Characteristics
Given a set of objects, a query point q, and a positive integer k,
the kNN query is to report the k closest objects to q. We
formally define the problem below.

Let O be a set of objects and q be a query. A set of k nearest
neighbors (kNNs) of a query N={n1, …, nk} is a set of objects
from O such that for every niЄN and every ojЄO-N, dist(q,
ni)≤ dist(q, oj) where dist is a distance metric that is assumed
to be Euclidean distance in this paper.

Definition 1: Safe Region S is a region such that as long as a
kNN query q remains in it, the set of its k nearest neighbors N
does not change.

If a client (that issued query q) is aware of its safe region, it
does not need to contact the server to update its set of kNNs as
long as q resides in the safe region. This saves the
computation cost. Before we formally define the safe region,
we introduce the notion of perpendicular bisectors and
half-spaces.

A perpendicular bisector Bn:o between two points n and o
divides the space into two half-spaces. Let Hn:o be the half-
space containing n and Ho:n be the half-space containing o. By
definition of a perpendicular bisector, every point p in Hn:o is
always closer to n than it is to o (i.e., dist(p, n) < dist(p, o)).
Figure 9 shows a bisector Bn:o2 between two points n and o2
and the two corresponding half-spaces Hn:o2 and Ho2:n. The
query point q is closer to n then it is to o because q lies in Hn:o2.

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

40
@ 2012, IJACST All Rights Reserved

Figure 9: Safe region for 1NN Figure 10: Safe region for 2NN

Intuitively, if a point p lies in every half space Hn:oj for every
object oj then dist(p, n)≤dist(p, oj) for every object oj . In other
words, n would be the closest object of such point p. In Figure
9, the bisectors between n and four objects (o1 to o4) have been
drawn. The shaded area corresponds to the intersection of the
half spaces Hn:oj for j={1, 2, 3, 4}. Hence, every point p in the
shaded area lies in every half space Hn:oj for j={1, 2, 3, 4}. For
this reason, n is the closest object for any point in the shaded
area. In other words, the object n is the nearest neighbor of a
query q as long as the query remains in the shaded area (i.e.,
the shaded area is the safe region of q if k=1). Lemma 1
formalizes and generalizes this observation for arbitrary
values of k.

Lemma 1: Let N={n1, … , nk} be the set of kNNs of a query q.
The intersection of all half-spaces Hni:oj for every niЄN and
every ojЄO-N defines a region such that as long as the query
resides in it, the set of its kNNs N is unchanged.

Proof 1: We prove this by contradiction. Assume that q
resides in its safe region and ojЄO-N is an object such that
dist(q, oj) < dist(q, ni) for any niЄN. Since safe region is the
intersection of all half-spaces Hni:oj, a query q that resides in it
satisfies dist(q,ni) < dist(q,oj) which contradicts the
assumption.

Figure 10 shows an example of the safe region for a 2NN
query where the two NNs are n1 and n2. The bisectors between
the two NNs and the objects o1 to o3 are drawn. For clarity, the
bisectors between n1 and the objects are shown by solid lines
and the bisectors between n2 and the objects are shown by
dashed lines. The shaded area is the safe region and
corresponds to the intersection of every half space Hni:oj for
i={1, 2} and j = {1, 2, 3}.

A straight forward approach to compute the safe region is to
consider every bisector Bni:oj and take the intersection of each
half space Hni:oj . However, this approach requires computing
the bisectors of all objects with each of the kNNs. In Lemma
3, we show that we do not need to consider all the bisectors in
order to create the safe region. Before we present the details,
we define few terms and notations.

A bisector Bni:oj that forms an edge of the safe region is called
a representative bisector. Note that not all the bisectors
contribute in defining the safe region. The bisector Bn:o2 in

Figure 9 is a representative bisector and the bisector Bn:o4 is
not a representative bisector.

The object that is associated with the representative bisector is
called an influence object. An object o is called a visited object
if its bisector with all kNNs have been considered for
constructing the safe region. The objects o1, o2 and o3 in
Figure 9 are the influence objects whereas o4 is not an
influence object. The bisectors for all the objects shown in
Figure 9 and Figure 10 have been considered so they are
visited objects.

A vertex is the intersection of two bisectors Bni:oj and Bnx:oy. A
confirmed vertex is the vertex of the safe region (i.e., it is an
intersection of two representative bisectors). Vertex v in
Figure 9 is a confirmed vertex whereas the vertex v0 is not a
confirmed vertex. Please note that a confirmed vertex lies at
the boundary of the safe region. Now, we present lemmas that
can be used to see if a vertex is a confirmed vertex or not (i.e.,
if the vertex is lies at the boundary of the safe region or not).
First, we present the lemma for k = 1 and then we extend it for
arbitrary values of k.

Lemma 2: Let n be the NN of a query q and v be a vertex. The
vertex v is a confirmed vertex if no object lies in the circle of
radius R centered at v where R = dist(v, n).

Proof 2: Assume that the circle does not contain any object
and o4 (as shown in Figure 9) is any object that lies outside the
circle. If the vertex v does not lie in the safe region then there
must be a half-space Ho4:n such that v lies in Ho4:v (i.e., v is
closer to o4 than it is to n). Any point p that lies in the
half-space Ho4:n satisfies dist(p, o4) < dist(p, n). However, for
vertex v, dist(v, o4) > dist(v, n) because the object o4 lies
outside the circle. Hence there is no such half-space Ho4:n that
contains v. Therefore, the vertex v lies in the safe region and
is a confirmed vertex.

Lemma 3: Let N = {n1,… , nk} be the set of kNNs of query q
and v be any vertex. The vertex v is a confirmed vertex if no
object oЄO-N lies in the circle centered at v with radius R =
maxdist(v,N) where maxdist(v,N) is max(dist(v, ni)) for every
niЄN.

Proof 3: Figure 11 shows a vertex v and the circle with radius
R = maxdist(v,N). Assume that the circle does not contain any
object and o4 is any object that lies outside the circle (as shown
in Figure 11). The vertex v satisfies dist(v, ni) < dist(v, o4) for
every niЄN, hence v lies in every Hni:o4. For this reason, the
vertex v lies in the safe region and is a confirmed vertex.

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

41
@ 2012, IJACST All Rights Reserved

 Figure 11: Lemma 3 illustration Figure 12: First RangeNN

Table 1: Notations
Notation Defination

Bx:q a perpendicular bisector between point x and q
Hx:q a half-space defined by Bx:q containing the

point x
Hq:x a half-space defined by Bx:q containing the

point q
Ha:b ∩ Hc:d the intersection of the two half-spaces
Dist(x, y) the distance between two points x and y

v <Bni:oj ∩ Bnx:oy> a vertex v formed by the intersection of the two
bisectors

N the set of k nearest neighbors {n1, …, nk}
maxdist(v,N) max(dist(v, ni)) for every niЄN where v is a

vertex

3.2 Algorithm for Static Datasets
Before we present the details of the algorithm, we describe the
main idea. Initially, the whole data space is assumed to be the
safe region. Then, the objects are retrieved iteratively (in a
certain order) and their bisectors are considered to update the
safe region. At any stage, if all the vertices of the safe region
are the confirmed vertices, the algorithm stops and reports the
safe region to the client.

Algorithm 1 presents the details. The algorithm maintains a
set of vertices V (initialized to four vertices of the universal
data space). All data objects are indexed by R-tree [5]. First,
the set N containing k nearest neighbors of the query q is
computed by using best-first search algorithm [7] on Rtree.
Then, the algorithm selects an unconfirmed vertex v from V
that has minimum range (e.g., its R = maxdist(v,N) is
minimum among all vЄV) and checks whether it is a
confirmed vertex or not by using Lemma 3. More specifically,
the algorithm checks whether there is any object in the circle
of range R = maxdist(v,N) centered at v. If there is no object in
the circle, the algorithm marks the vertex as confirmed. The
intuition behind selecting a vertex with minimum range is
that such vertex has higher chances to be a confirmed vertex
(i.e., it has a smaller circle and has lower chances to contain
any object).

Algorithm 1: Construct Safe Region (q)
Output: Returns V and I (associated with safe region)
1: V = {Vertices of the data space}
2: compute kNNs of q and store in N

3: while there is an unconfirmed vertex in V do
4: select a vertex v <Bni:oj∩Bnl:om> that has minimum maxdist(v,N)
5: R = maxdist(v,N) = dist(v, oj) /* Lemma 4 */
6: o = RangeNN(q, v, R)
7: if o ≠ NULL then
8: update V using bisectors between o and each ni Є N
9: else
10: confirm v

If there are more than one objects in the circle, the algorithm
selects the nearest object to the query q. This operation can be
regarded as finding the nearest object o of q from the objects
lying within the range R of a vertex v. Hence, we call it
RangeNN query. We present the implementation of RangeNN
query later. The safe region is updated by considering the
bisectors between kNNs of q and the object o. For a given
bisector Bni:o, the safe region is updated by removing the
vertices from V that lie in Ho:ni and adding the intersection
points of Bni:o and the safe region. The algorithm stops when
all the vertices are confirmed. To show the correctness of the
algorithm, we need to show that the algorithm finds all the
vertices of the safe region and does not include any
unconfirmed vertex. The proof of correctness is similar to
Lemma 3.1 in [23] and is omitted.

Algorithm 2: RangeNN(q, v, R)
Output: Returns the nearest neighbor of q from the objects that lie
within distance R from v
1: Initialize a min-heap H with root entry of the tree
2: while H is not empty do
3: deheap an entry e
4: if e is an intermediate or leaf node then
5: for each of its children c do
6: if mindist(c, v) < R then
7: insert c into H with key mindist(c, q)
8: else if eЄO and e not in kNNs of q then
9: return e
10: return ø

Algorithm 2 represents detailed implementation of the
RangeNN3 query. The algorithm assumes that the objects are
indexed by a tree structure (e.g., R-tree). A min-heap is
initialized with the root of the tree and the algorithm starts
deheaping the entries iteratively. If a deheaped entry e is an
intermediate or leaf node, the algorithm inserts all of its
children that lie within the range (line 6) into the heap. The
key of each inserted children is its minimum distance from
the query. If the deheaped entry is an object which is not one
of the kNNs, the algorithm returns it. If no such object is
found, the algorithm returns null.

Example 1: Figure 12 illustrates our algorithm for a 2NN
query where n1 and n2 are the NNs of q. Initial safe region is

3 Note that RangeNN query does not access all the objects within the range. It
accesses the entries in ascending order of their minimum distances from q and
stops when the NN is found.

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

42
@ 2012, IJACST All Rights Reserved

the data space bounded by four vertices v1 to v4. First, a
RangeNN query is issued on vertex v1 with range R=dist(v,
n1) which returns the object o3. Then, the bisectors between o3
and the NNs are drawn. In Figure 13, the bisector between o3
and n1 is shown in solid line and the bisector between o3 and
n2 is shown by dashed line. These bisectors update the set of
vertices V and the new safe region (the shaded area) now
contains vertices v3, v5, v9 and v8. Then, a RangeNN query is
issued on vertex v9 with range R=dist(v9, n1) and it is marked
confirmed because no object is found within the range. The
algorithm continues in this way until all the vertices are
confirmed. The final safe region (shown shaded in Figure 14)
contains the vertices v9 to v13. The objects o1 to o3 are retrieved
during the construction of the safe region (i.e., the objects o1
to o3 are the influence objects).

 Figure 13: Safe region step1 Figure 14: Final safe region
Finally, we show that to compute the range R=maxdist(v,N) of
a vertex v (at lines 4 and 5 of Algorithm1), we do not need to
compute distance of v from every nearest neighbors niЄN.
More specifically, we show that the range R=dist(v, oj) where
the vertex v is the intersection of two bisectors Bni:oj and Bnx:oy.

Lemma 4: Range for a vertex v <Bni:oj ∩ Bnx:oy> is R =
maxdist(v,N) = dist(v, ni) = dist(v, oj) = dist(v, nx) = dist(v, oy)
where both oj and oy are visited objects.

Proof 4: By definition of the perpendicular bisector, dist(v, ni)
= dist(v, oj) and dist(v, nx) = dist(v, oy). First, we show that
dist(v, ni) = dist(v, nx) and then we will show that dist(v, ni) =
maxdist(v,N).

Assume dist(v, ni) > dist(v, nx). Then, the circle of radius R =
dist(v, ni) centered at v contains the object oy (Figure 15). So
the bisector Bni:oy removes the vertex v from V. The object oy is
a visited object (its bisector with all nearest neighbors have
been considered to update V) and v is still present in V. Hence,
the assumption does not hold. Similarly, the assumption that
dist(v, ni) < dist(v, nx) also does not hold. Hence, dist(v, ni) =
dist(v, nx).

Now, we show that maxdist(v,N) = dist(v, ni). Assume there is
an object naЄN such that dist(v, na) > dist(v, ni). Then, the
circle centered at v with radius dist(v, na) contains the objects
oj and oy (see Figure 15). Bisectors Bna:oj and Bna:oy would
remove the vertex v from V because oj and oy have been

visited. Hence, the assumption does not hold and
maxdist(v,N) = dist(v, ni).

Note that the set of vertices V is initialized to the vertices of
the data space. For such vertices, the observation does not
hold and we compute maxdist(v,N) for such vertices.

 Figure 15: Lemma 4 Figure 16: Impact Region

3.3 Algorithm for Static Datasets
First, we define impact region. The impact region is an area
such that as long as a query remains in its safe region and no
object appears (disappears) in (from) the impact region, the
safe region of the query is unchanged. It is easy to prove that
the impact region consists of circles around vertices with
radius set to their corresponding nearest neighbors. In Figure
16, the impact region is shown shaded. Below, we formally
define the impact region.

 Figure 17: Query moves Figure 18: Change in NN

Definition 2: Let V be a set of vertices of a safe region. Let
Circv be a circle centered at a vertex v <Bni:oj ∩ Bnx:oy> with
radius Rv = dist(v, oj). The impact region is the area covered
by all circles Circvi for each viЄV.

Object updates in the impact region can change the results of
a query in following two ways;

1. The set of its kNNs is changed.
2. The set of influence objects of the query is changed.

Below, we present our approach to handle each case.

Case 1 The set of kNNs may be changed if at least one or more
of the following three happens: 1) the query moves out of the
safe region (as in Figure 17); 2) one or more of the kNNs
disappear (n1 disappears in Figure 18); 3) a new object
appears and becomes one of the kNNs (n3 in Figure 18). To
handle the case when the kNNs of a query change, we first

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

43
@ 2012, IJACST All Rights Reserved

compute new kNNs of the query. Then, we construct an initial
safe region by drawing the bisectors between the new kNNs
and the existing influence objects. Finally, we issue RangeNN
queries to confirm its vertices as in Algorithm 1. The
algorithm stops when all the vertices are confirmed.

Example 2: Figure 18 shows an example of 2NN query. The
NN n1 disappears and a new object n3 appears. First, we
compute the new NNs (n2 and n3). Then, we draw
perpendicular bisectors between the NNs (n2 and n3) and the
existing influence objects (o1, o2 and o3). The intersection of
these bisectors forms an initial safe region with vertices v11,
v14, v15 and v16 (Figure 19). Finally, we issue RangeNN
queries to confirm these vertices.

 Figure 19: Handling Case 1 Figure 20: Objects appear
Case 2 If one or more of the influence objects disappear, we
draw the bisectors between kNNs and the remaining influence
objects to construct an initial safe region. Then, all the
vertices are confirmed by issuing RangeNN queries. If an
object o appears in the impact region and it does not affect the
set of kNNs of the query, we update the safe region as follows;
Every vertex vi is marked unconfirmed that contains the
object o in its circle Circvi . The RangeNN queries are issued
to confirm all the vertices that have been marked
unconfirmed.

Example 3: Consider the example of Figure 20 where two
new objects o5 and o6 appear. The vertex v13 contains o5 and o6
in its circle hence v13 is marked unconfirmed. The RangeNN
query is issued to confirm v13 which returns the object o5. The
bisectors between o5 and the NNs (n1 and n2) are drawn,
which change the safe region by adding two new vertices v14
and v15 (see Figure 21). These two vertices are confirmed by
issuing RangeNN queries. The final safe region is shown
shaded.

 Figure 21: Handling Case 2 Figure 22: Conceptual grid tree

3.4 Data structure
First, we describe the data structure that is common for both
the static and dynamic datasets. The system stores a query
table that contains the information about the queries. More
specifically, for each query it maintains its id, the set of its
kNNs, the vertices of its safe region and the set of its influence
objects. Now, we present the data structure that is different for
the static dataset and the dynamic dataset.

For the static dataset, we index the objects with an R-tree. For
the dynamic dataset, we use grid based structure because a
more complex structure (like R-tree) would be very expensive
to maintain dynamically [13]. To efficiently determine
whether an object update lies in the impact region or not, we
maintain impact list for each cell of the grid. The impact list
of a cell c contains the id of every query that has its impact
region overlapping with the cell. In addition, each cell c
contains a list of objects that lie within this cell.

To efficiently answer RangeNN queries, we use conceptual
grid-tree (introduced in [3] and further studied in [6]). Figure
22 shows an example of the Conceptual Grid-Tree (CGT) of a
4×4 grid. For a grid-based structure containing 2n×2n cells
where n≥0, the root of our conceptual grid-tree is a rectangle
that contains all 2n×2n cells. Each entry at lth level of this
grid-tree contains 2n-l×2n-l cells (root being at level 0). An
entry at l-th level is divided into four equal non-overlapping
rectangles such that each such rectangle contains 2n-l-1×2n-l-1
cells. Any n-th level entry of the tree corresponds to one cell of
the grid structures. Figure 22 shows root entry, intermediate
entries and the cells of grid. Note that the grid-tree does not
exist physically, it is just a conceptual visualization of the
grid. Algorithm 2 can be directly applied on the grid-tree.

3.5 Discussion
First, we compare our algorithm with LBSQ [23] for static
datasets.

1. LBSQ [23] issues a TPkNN query to confirm a vertex
whereas we issue a RangeNN query to confirm the vertices.
The advantage of using TPkNN query is that it guarantees
that the returned object is an influence object. However, to
find such an object the TPkNN query has to do expensive
computation of influence time for the objects. On the other
hand, although the RangeNN query does not provide such
guarantee, it is significantly less expensive than the TPkNN
query. As expected, experimental results show that although
the number of RangeNN queries issued is more than the
number of TPkNN queries (4% to 5% more), our algorithm
gives an order of magnitude improvement in computation
time because a RangeNN query is around 40-50 times less
expensive than a TPkNN query.

2. The cost of RangeNN query is not significantly affected as
the value of k increases. Although the increase of k value

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

44
@ 2012, IJACST All Rights Reserved

results in a larger range of the RangeNN query, the cost of
RangeNN is not significantly affected because the RangeNN
query traverses the R-tree in best-first order and stops
(regardless the value of k) as soon as one closest object is
found. Our experiments (see Figure 23) confirm that the cost
of a RangeNN query is not significantly affected by the value
of k. On the other hand, the cost of TPkNN increases with
increase in the value of k. For this reason, our algorithm
scales better as the value of k increases.

 In addition to the above mentioned advantages, our approach
has following advantages over LBSQ [23] on the dynamic
datasets.

1. Our algorithm uses impact region and as long as there is no
update in the impact region of a query, its results are
unaffected. In other words, on receiving object updates, our
algorithm updates the results of only the affected queries. In
contrast, LBSQ cannot determine whether an update has
affected the results of a query or not. Hence, upon receiving
the object updates it needs to re-compute/verify the safe
region of all the queries.

2. Even if an object update affects the results of a query, we
may update the results by verifying only the vertices that have
been affected (please see Example 3). In contrast, LBSQ
needs to verify all the vertices by issuing TPkNN queries.

3. In case of an object update, LBSQ needs the exact location
of all the queries to check if kNNs of any query have been
changed by this update. On the other hand, our algorithm
does not retrieve the location of any query that has no object
update in its impact region. This reduces the communication
cost.
4. EXPERIMENTS

In this section, we present the results of our experiments. We
compare our algorithm with LBSQ [23] because other
algorithms use timestamp model [22, 20, 13], assume known
query trajectory path [17, 18] or assume that clients have
sufficient computation resources to maintain kNNs from
given (k+x) or more NNs [11, 16, 14] (see Section 2). First,
we discuss the experimental setup in Section 4.1. Then, we
present results for static and dynamic datasets in Section 4.2
and Section 4.3, respectively.

4.1 Setup
We use real dataset4 as well as normal and uniform datasets.
The real dataset contains 128,700 unique data points in a data
space of 350km×350km. In dynamic datasets, each object
reports a status update (the object appears or disappears) at a
timestamp with a probability ρ. The timestamp length is one
second. The moving queries were simulated using the spatio-

4 http://www.census.gov/geo/www/tiger/

temporal data generator [1]. The results of each query are
monitored for hundred seconds. Table 2 shows the parameters
used in our experiments and the default values are shown in
bold.
All the experiments were conducted on Intel Xeon 2.4 GHz
dual CPU with 4 GBytes memory. Our algorithm is called
RSR (RangeNN based Safe Region) and the previous work is
referred as LBSQ. The algorithms are compared in terms of
total CPU time and the number of nodes accessed.

Table 2: System parameters
Parameter Range

Number of objects (£1000) 20, 40, 60, 80, 100 ,128
Datasets Uniform, Normal, Real
Number of queries 100, 200, 500, 1000, 2500, 5000
Value of k 1, 3, 10, 30, 100
Query Speed (km/hr) 25, 50, 75, 100, 125
Object update probability 0.01, 0.02, 0.03, 0.05, 0.1, 0.3

4.2 Static Dataset
First, we show that although the number of RangeNN queries
issued by our algorithm is slightly higher than the number of
TPkNN queries issued by LBSQ, our algorithm outperforms
LBSQ because the average cost of a RangeNN query is much
lower than that of a TPkNN query.

Figure 23: RangeNN/TPkNN cost Figure 24: # of RangeNN/TPkNN

Figure 23 shows the average time taken by a RangeNN query
and a TPkNN query for the increasing value of k. The cost of
RangeNN query is less affected by the increase in k. Figure 24
shows that the difference in the number of RangeNN queries
and TPkNN queries issued by both the algorithms is
negligible. The number of the RangeNN queries and TPkNN
queries increase for larger value of k mainly because the size
of safe region becomes smaller. Hence, the query moves out of
the safe region more frequently and a new safe region is
computed more often. The costs of RangeNN queries and
TPkNN queries are the most considerable costs for both of the
algorithms (e.g., RangeNN queries takes 70% to 80% of the
total time in our approach and TPkNN queries take 95% to
99% of the total time in LBSQ).

4.2.1 Effect of data distribution
In Figure 25, we show the performance of our algorithm for
different data distributions. Our algorithm gives an order of
magnitude improvement for all data distributions. Next, we
focus only on the real dataset.

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

45
@ 2012, IJACST All Rights Reserved

 Figure 25: data distribution Figure 26: k Vs time

4.2.2. Effect of k
Figure 26 studies the effect of k on the computation times of
both algorithms. Our algorithm not only outperforms LBSQ
but also scales better. Figure 27 shows the number of nodes
accessed by both the algorithms for the kNN queries,
RangeNN queries and TPkNN queries. The results show that
the number of nodes accessed by the kNN queries is much
lower as compared to that of the RangeNN queries and the
TPkNN queries.

 Figure 27: k vs # of nodes Figure 28: query speed vs time

4.2.3. Effect of query speed
Figure 28 shows the effect of query speed on both the
algorithms. The computation costs of both the algorithms rise
with the increase in speed. This is because the query leaves its
safe region more frequently and new safe region is computed
more often. Our algorithm performs around 15 times better
than LBSQ. Figure 29 shows the number of nodes accessed by
both algorithms. Our RangeNN queries based algorithm
accesses lesser nodes than the TPkNN queries based
approach.

Figure 29: query speed vs # of node Figure 30: # of query vs time

4.2.4. Effect of number of queries
Figure 30 and Figure 31 demonstrate the performance of the
algorithms for different number of queries. Our algorithm
provides an order of magnitude improvement over LBSQ in
terms of CPU time and scales better (note the log scale).
Moreover, our algorithm accesses lesser number of nodes.

Figure 31: # of queries vs node Figure 32: # of objects vs time

4.2.5. Effect of number of objects
Our experiments show that both of the algorithms are not
significantly affected by the number of objects. The reason is
that the number of objects does not have substantial effect on
the costs of the TPkNN queries and the RangeNN queries
which are the most influential costs in both the algorithms.
Nevertheless, our algorithm performs better in terms of both
CPU time and the number of nodes accessed. Figure 32 shows
that our algorithm performs around 20 times better than
LBSQ in terms of computation time. Figure 33 shows that
LBSQ accesses around 2.5 times more nodes than our
algorithm.

4.3. Dynamic Dataset
Now, we show the performance of both the algorithms on
dynamic datasets where the objects may appear or disappear.
We use grid structure for our algorithm and refer to it as GSR.
For LBSQ, we load R-tree into main memory before
evaluating the queries. For fair evaluation, we do not consider
time taken in updating the R-tree for their algorithm. We
extended LBSQ for dynamic datasets as follows; At each
timestamp, the algorithm marks every query for which the set
of its kNNs has been affected. For such queries, the safe
region is computed from scratch. For any other query, all
vertices of its safe region are marked unconfirmed and
TPkNN queries are issued to confirm these vertices. Note that
if the vertices are not confirmed, a new influence object
affecting the safe region may be missed.

 Figure 33: # of objects vs nodes Figure 34:grid cardinality vs
time

4.3.1. Effect of grid size
Since we use grid structure, we first study the effect of grid
cardinality. Figure 34 shows the performance of our
algorithm on different grid sizes for different values of k. In
accordance with previous works that use grid based
approaches, the performance degrades if the grid size is too
small or too large. More specifically, if the grid has too low

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

46
@ 2012, IJACST All Rights Reserved

cardinality the cost of RangeNN and kNN queries increase
because each cell contains larger number of objects. On the
other hand, if the grid cardinality is too high then many of the
cells are empty and it affects the performance of the RangeNN
and kNN queries. We find that our algorithm performs better
on 32×32 grid and we use this grid size for the rest of the
experiments.

4.3.2. Effect of object update probability
Figure 35 demonstrates the effect of object update probability
on both of the algorithms. The costs of both algorithms rise as
the object update probability increases. However, our
algorithm performs much better than LBSQ. This is because
LBSQ needs to confirm all vertices of the safe region at every
timestamp whereas our algorithm confirms only the affected
vertices of the queries affected by the object updates. The cost
of LBSQ increases with the higher number of updates because
the set of kNNs of the queries change more frequently and the
safe regions are required to be computed from scratch.

Figure 36 shows the number of TPkNN queries issued by
LBSQ algorithm and the number of RangeNN queries issued
by our algorithm. As expected, the number of RangeNN
queries is much less than the number of TPkNN queries
because our algorithm only recomputes the safe regions of the
queries that are affected by the object updates. We note that
the average costs of the RangeNN query and TPkNN query
are not affected by change in the object update probability so
we do not include the results.

 Figure 35: update probability Figure 36: update probability vs

 vs time of RangeNN/TTkNN

4.3.3. Effect of k
Figure 37 studies the effect of k on both of the algorithms for
dynamic datasets. Clearly, our algorithm outperforms LBSQ
and scales better because the average cost of the RangeNN
query is not substantially affected by k.

 Figure 37: k vs time Figure 38: query speed vs time

4.3.4. Effect of query speed
Figure 38 shows the effect of query speed for both of the
algorithms. The results show that the effect of query speed is
not as significant as was noted in static datasets. The reason is
that for dynamic datasets the total time of both algorithms
increases because safe regions are recomputed more often due
to the object updates. So, the effect of recomputation of safe
regions for the query movement becomes less significant.

 Figure 39: query size vs time Figure 40: object size vs time

4.3.5. Effect of number of queries and objects
Figure 39 studies the effect of number of queries on both
algorithms. Our algorithm provides an order of magnitude
improvement over the previous algorithm. Figure 40 shows
that both the algorithms are not significantly affected by the
number of objects (as for static datasets). The reason is
already stated in Section 4.2.5.

5. CONCLUSION

Previous algorithm uses TPkNN queries to compute the safe
region of a kNN query. In this paper, we present an efficient
algorithm to construct the safe region by using much cheaper
RangeNN queries. Moreover, RangeNN queries are not
substantially affected by the value of k. We also present an
efficient technique to update the safe region for the dynamic
datasets. Experimental results show an order of magnitude
improvement for both the static and dynamic datasets.

REFERENCES
1. T. Brinkhoff. A framework for generating

network-based moving objects. GeoInformatica 6.2, pp
153–180, 2002.

2. M.A. Cheema, L. Brankovic, X. Lin, W. Zhang and W.
Wang. Multi-guarded safe zone: An effective
technique to monitor moving circular range queries.
ICDE, pp189-200, 2010.

3. M.A. Cheema, X. Lin, Y. Zhang, W. Wang and W.
Zhang. Lazy updates: An efficient technique to
continuously monitoring reverse knn. VLDB 2, pp
1138–1149, 2009.

4. B. Gedik and L. Liu, Mobieyes: Distributed processing
of continuously moving queries on moving objects in a
mobile system, EDBT, pp. 67–87, 2004.

5. A. Guttman, R-trees: A dynamic index structure for
spatial searching, SIGMOD, pp. 47–57, 1984.

Mahady Hasan, International Journal of Advances in Computer Science and Technology, 2(4), April 2013, 36 - 47

47
@ 2012, IJACST All Rights Reserved

6. M. Hasan, M.A. Cheema, W. Qu and X. Lin, Efficient
algorithms to monitor continuous constrained nearest
neighbor queries, DASFAA (1), pp. 233–249, 2010.

7. G. R. Hjaltason and H. Samet. Distance browsing in
spatial databases. ACM Trans. Database Syst. 24,
265–318, 1999.

8. H. Hu, J. Xu and D.L. Lee. A generic framework for
monitoring continuous spatial queries over moving
objects, SIGMOD, pp. 479–490, 2005..

9. G.S. Iwerks, H. Samet and K.P. Smith. Continuous
k-nearest neighbor queries for continuously moving
points with updates, VLDB, pp. 512–523, 2003.

10. J.M. Kang, M.F. Mokbel, S. Shekhar, T. Xia and D.
Zhang. Continuous evaluation of monochromatic and
bichromatic reverse nearest neighbors, ICDE, pp.
806–815, 2007.

11. L. Kulik and E. Tanin. Incremental rank updates for
moving query points, GIScience, pp. 251–268, 2006.

12. I. Lazaridis, K. Porkaew and S. Mehrotra. Dynamic
queries over mobile objects, EDBT, pp. 269–286, 2002.

13. K. Mouratidis, M. Hadjieleftheriou and D. Papadias.
Conceptual partitioning: An efficient method for
continuous nearest neighbor monitoring, SIGMOD,
pp. 634–645, 2005.

14. S. Nutanong, R. Zhang, E. Tanin and L. Kulik. The
v*-diagram: a query-dependent approach to moving
knn queries, VLDB 1, pp 1095–1106, 2008.

15. A. Okabe, B. Boots and K. Sugihara. Spatial
tessellations: concepts and applications of Voronoi
diagrams, John Wiley and Sons Inc, 1992.

16. Z. Song and N. Roussopoulos. K-nearest neighbor
search for moving query point, SSTD, pp. 79–96,
2001.

17. Y. Tao and, D. Papadias. Time-parameterized queries
in spatiotemporal databases, SIGMOD, pp. 334–345,
2002.

18. Y. Tao, D. Papadias and Q. Shen. Continuous nearest
neighbor search, VLDB, pp. 287–298, 2002.

19. T. Xia and D. Zhang. Continuous reverse nearest
neighbor monitoring, ICDE, pp. 77, 2006.

20. X. Xiong, M.F. Mokbel and W.G. Aref. Sea-cnn:
Scalable processing of continuous k-nearest neighbor
queries in spatio-temporal databases, ICDE, pp.
643–654, 2005.

21. X. Xiong, M.F. Mokbel, W.G. Aref, S.E. Hambrusch and
S. Prabhakar. Scalable spatio-temporal continuous
query processing for locationaware services, SSDBM,
pp. 317–326, 2004.

22. X. Yu, K.Q. Pu and N. Koudas. Monitoring k-nearest
neighbor queries over moving objects, ICDE, pp.
631–642, 2005.

23. J. Zhang, M. Zhu, D. Papadias, Y. Tao and D.L. Lee.
Locationbased spatial queries, SIGMOD, pp. 443–454,
2003.

