
International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.8, Pages : 18-23 (2013)
Special Issue of ICCECT 2013 - Held during 16-17 August, 2013, Thailand

18

 ISSN 2320 -2602

Abstract : Web services have been used widely in modern

software applications since they, as networked software units,
provide certain functionality that can be incorporated into building
software applications in a flexible manner. Like other software,
Web services may experience changes and failures which make
them inaccessible to service consuming applications. In this case, it
is then necessary for those applications to find other alternative
services. One of the effective approaches is to evaluate both
structural similarity and semantic similarity between the
description of the service in use and those of other candidate
services in order to identify an alternative. This paper follows an
approach called URBE to determine structural and semantic
similarity between Web services. In particular, we enhance the
evaluation on data type similarity, by also considering family of data
types and covariance/contravariance principle, and on name
similarity, by also considering text similarity. The enhanced
algorithm is called M-URBE. An experiment shows that, in
comparison with URBE, M-URBE can improve the performance of
Web service retrieval.

Key words : Ontology, Retrieval, Web services, WSDL

INTRODUCTION
Web services have been used widely in modern software

applications since they, as networked software units, provide
certain functionality that can be incorporated into building
software applications in a flexible manner. Web Services
technology is built upon a number of standards. Two of them
that are relevant to this paper are the Web Service
Description Language (WSDL) and the Universal
Description Discovery and Integration (UDDI). WSDL [1] is
a language used by a service provider for describing the Web
service interface (or portType), service operations, input and
output messages of the operations which contain data
elements of different types, and how to access the service. To
become known to service consumers, the service provider can
make the service-related information, including the WSDL,
available through a service discovery mechanism such as a
service registry or search engine. UDDI [2] is a form of a
registry service that allows service providers to publish
business and Web service information, and allows service
consumers to look up the providers and their WSDL
information before selecting and engaging a Web service.

Like other software, Web services may experience changes
and failures which make them inaccessible to service
consuming applications. In this case, it is then necessary for

service consumers to find other alternative services for their
applications. Researchers have proposed different
approaches to discover Web services that are similar to the
one requested by a consumer, i.e. search by keywords, search
by structural similarity, and search by semantic similarity.

The search-by-keyword approach enhances a general
mechanism of a search engine. For example, Hatzi et al. [3]
provide a specialized search engine that specifically crawls
the Web for WSDL documents and semantic specifications of
Web services and builds an enhanced indexing and retrieval
mechanism. Elgazzar et al. [4] can boost keyword search for
Web services by mining WSDL documents to cluster them
into functionally similar service groups first.

The second approach discovers Web services by structural
similarity. Plebani and Pernici [5] argue that search
capability of UDDI is limited such that it provides search by
name or category of providers’ business and services but does
not exploit the content of WSDL documents during retrieval.
They propose an algorithm called UDDI Retrieval by
Example (URBE) which uses UDDI as its service registry
and analyzes the structure of WSDL documents and the
names or terms defined inside them in order to find the
services with the structure similar to the one queried by a
consumer. The evaluation compares sets of service
operations by comparing input and output messages of the
operations, which, in turn, is based on comparison of types of
the data contained by the messages. Similarly, Stroulia and
Wang [6] use structural matching in their work to compare
operation signatures in two WSDL documents.

The third approach considers semantic similarity. Plebani
and Pernici [5] and Stroulia and Wang [6] also use WordNet
[7] to determine linguistic similarity of names in the WSDL
documents. In addition, using the SAWSDL mechanism [8],
Plebani and Pernici consider similarity of ontological terms
that are annotated to different parts of the WSDL structure in
their URBE algorithm. Liu et al [9] argue that the names
specified in a WSDL document are not isolated in meaning
but have semantic connections that associate them together
to describe the service function. Hence, they employ search
results from Web search engine as a context for calculating
semantic distance of any two names from the two compared
services. Service similarity is measured upon these distances.

This paper follows the URBE approach since it is
comprehensive in terms of utilizing both syntactic and
semantic contents of service descriptions. Nevertheless, we
identify three drawbacks regarding similarity of data types
and of names in WSDL documents:

(1) In data type comparison, different data types in the

Enhancing Structural and Semantic Similarity
Evaluation for Web Service Retrieval

Nitipan Pompan1, Twittie Senivongse2
1Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand, nitipan.p@student.chula.ac.th

2Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand, twittie.s@chula.ac.th

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.8, Pages : 18-23 (2013)
Special Issue of ICCECT 2013 - Held during 16-17 August, 2013, Thailand

19

 ISSN 2320 -2602

same family are not differentiated. For example,
URBE considers all types in the Integer family – long,
int, short, and byte – as the same type and a perfect
match with each other.

(2) In data type comparison, the principle of
contravariant input and covariant output is not
employed for data type compatibility [10]. That is,
URBE does not consider that the input type of a
provider’s service can be more generalized than, and
still be compatible with, the input type of the query. It
does not consider either the reverse where the output
type of a service can be more specialized than, and
still be compatible with, the output type of the query.

(3) In name comparison, meaning of names (or terms) is
considered. However, names defined for operations
and data elements in WSDL documents may not be
full dictionary words and hence not be included in
WordNet. URBE does not consider string similarity of
the textual names.

It is seen that these drawbacks are likely to lower down the
efficiency of Web service retrieval. We present the M-URBE
as a modification to the URBE algorithm on the
aforementioned aspects, and report on its performance.

The next section of this paper gives an overview of service
similarity comparison in M-URBE, followed by a section
giving the detail of the algorithm. Then, an experiment on
the performance of M-URBE in comparison with URBE is
presented. The final section concludes the paper with future
work.

OVERVIEW OF SIMILARITY COMPARISON FOR
WEB SERVICES

In M-URBE, similarity between a service queried by a
consumer (Sq) and a provided Web service (Sp) is
determined by comparing the set of operations and related
data elements (or parameters) of the query and that of the
provided service. The comparison is pairwise, i.e.
portType-to-portType, operation-to-operation,
input-to-input, and output-to-output comparison. Fig. 1
depicts the similarity matching process of URBE which is
adopted by M-URBE. The process makes use of the following
functions:

Fig 1: Similarity matching process [5]

 parSim is a bottom-level function which gives a
similarity score for each pair of input parameters and
each pair of output parameters. The score is based on
similarity of parameter types which can be either
simpleType or complexType, and is calculated by a
function datatypeSim. In the case of complexType,
similarity of type names is additionally considered and
computed by a function nameSim, which, in turn,
considers similarity of terms that constitute each name
by using a function termSim. Since we compute a
similarity score for every possible pair of input (or
output) parameters, we consider the pairs that yield a
maximum similarity score. A function maxSim is used
to determine the maximum score that represents the
similarity score of input (or output) parameters for a
pair of operations being compared.

 opSim is a mid-level function which gives a similarity
score for each pair of operations. The score is based on
similarity of input parameters and of output parameters
using parSim, and similarity of operation names using
nameSim (and hence termSim). Again, since we
compute a similarity score for every possible pair of
operations, we use maxSim to determine the maximum
score that represents the similarity score of operations
for a pair of portTypes being compared.

 fSim is a top-level function which gives a similarity
score for a queried service and a provided service. The
score is based on similarity of operations using opSim
and similarity of portType names using nameSim (and
hence termSim).

M-URBE
This section describes the detail of URBE along with the

enhancement that M-URBE introduces to the algorithm. An
example of a query for a PolicyServiceSoap as in Fig. 2 is
used in the explanation.

Fig 2: Example of a queried service PolicyServiceSoap

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
…
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:tns="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:sawsdl="http://www.w3.org/ns/sawsdl">
 <wsdl:types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">
 <s:element name="SearchPolicy">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" name="request" type="tns:PolicyRequest" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="PolicyRequest"
sawsdl:modelReference="http://127.0.0.1/ontology/insurance.owl# Request ">
 <s:sequence>
 <s:element minOccurs="1" name="PolicyNumber" type="s:string" />
 <s:element minOccurs="1" name="ReferenceNumber" type="s:int" />
 </s:sequence>
 </s:complexType>

……..
 </s:schema>
 </wsdl:types>
 <wsdl:message name="SearchPolicySoapIn" >
 <wsdl:part name="parameters" element="tns:SearchPolicy" />
 </wsdl:message>
 <wsdl:message name="SearchPolicySoapOut" >
 <wsdl:part name="parameters" element="tns:SearchPolicyResponse" />
 </wsdl:message>
 <wsdl:portType name="PolicyServiceSoap"
sawsdl:modelReference="http://127.0.0.1/ontology/insurance.owl#PolicyInquiryService">
 <wsdl:operation name="SearchPolicy"
sawsdl:modelReference="http://127.0.0.1/ontology/insurance.owl#PolicySearching">
 <wsdl:input message="tns:SearchPolicySoapIn" />
 <wsdl:output message="tns:SearchPolicySoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.8, Pages : 18-23 (2013)
Special Issue of ICCECT 2013 - Held during 16-17 August, 2013, Thailand

20

 ISSN 2320 -2602

As with URBE, in similarity evaluation, a queried service
and a provided service will be represented by an abstract
notation, independent of WSDL versions, as follows:
 σi = (name,{op}) represents a portType of a Web service

with a name and a set of operations.
 op = (name,{inputm,outputn},modelReference)

represents an operation with a name and a set of m input
and n output parameters, together with a
modelReference that refers to a semantic term of an
ontology which is annotated to this operation using the
SAWSDL mechanism.

 input = (name,type,modelReference) represents an
input parameter with a name, data type, and annotated
ontological term denoting semantics of the input.

 output = (name,type,modelReference) represents an
output parameter with a name, data type, and annotated
ontological term denoting semantics of the output.

The query in Fig. 2 can be represented by an abstract
notation as in Fig. 3. Given a provided service in Fig. 4, we
will demonstrate the evaluation of their structural and
semantic similarity.

Structural Similarity Evaluation

A. Maximization Function (maxSim)
As mentioned earlier, for a particular WSDL element (i.e.

parameters, operations, and terms within names), the
computation of a similarity score compares every possible
pair of WSDL elements of the query (i.e. qi) and the
counterpart WSDL elements of the provided service (i.e. pi)
as in Fig. 5. We use the maximum score to represent the
similarity score. The maxSim function (1) is taken from [11]:

Fig 3: Abstract description of a queried service PolicyServiceSoap

Fig 4: Abstract description of a provided service ContractInquiryService

Fig 5: All possible matching between elements in the sets q and p, modified
from [5]

 (1)

where q = set of elements in query and qi ϵ q,
 p = set of elements in provided service and pi ϵ p,
 f = any similarity function (i.e. parSim, opSim,

 termSim); f is in [0..1], and
 maxSim is in [0..1].
For example, assume that Fig. 5 represents matching

between a set of operations (q) in a query and a set of
operations (p) in a provided service. opSim(qi,pj) would be
used in place of f(qi,pj) in (1) to determine similarity between
operations qi and pj. The similarity score of these two sets of
operations is 0.675.

B. Name Similarity Function (nameSim)
To determine similarity between any textual names, we

use the nameSim function (2) [5]:

 (2)

where nq = a name in query, comprising a set of terms tq,i,
 np = a name in provided service, comprising a set

of
 terms tp,j, and

termSim = similarity function for each pair of
 terms.

Any textual name will be tokenized into terms by using the
rules [5] in Table 1. Then we determine similarity for each
pair of terms. URBE uses the linguistic similarity score from
WordNet [7] for the function termSim. We enhance the
function by also considering string similarity since tokenized
terms may not be full dictionary words and not be included in
WordNet, e.g. the term Num is not in WordNet but it should
get some similarity score when being compared to the term
Number. String similarity is represented by Levenshtein
distance between two terms [12], i.e. the minimum number of
single-character edits (insertion, deletion, substitution)
required to change one term into the other. Our function
termSim is defined in (3):

Table 1: Tokenization rules for names [5]
Rule Name Tokenized term
Case change PolicyNumber policy, number
Underscore elimination Policy_Number policy, number
Suffix number elimination PolicyNumber1 policy, number

σ.name = PolicyServiceSoap
σ.op1 = {
 σ.op1.name = SearchPolicy,
 σ.op1.inputPar1 = {
 σ.op1.inputPar1.name = request,
 σ.op1.inputPar1.type = PolicyRequest
 σ.op1.inputPar1.modelReference =
http://127.0.0.1/ontology/insurance.owl#Request
 σ.op1.inputPar1.input1 = {
 σ.op1.inputPar1.input1.name = PolicyNumber,
 σ.op1.inputPar1.input1.type = string
 }
 σ.op1.inputPar1.input2 = {
 σ.op1.inputPar1.input2.name = ReferenceNumber,
 σ.op1.inputPar1.input2.type = int
 } …
}

σ.name = ContractInquiryService
σ.op1 = {
 σ.op1.name = InquiryContract,
 σ.op1.inputPar1 = {
 σ.op1.inpuPar1.name = contractRequest,
 σ.op1.inputPar1.type = ContractRequest
 σ.op1.inputPar1.modelReference =
http://127.0.0.1/ontology/insurance.owl#PolicyRequest
 σ.op1.inputPar1.input1 = {
 σ.op1.inputPar1.input1.name = PolicyNumber,
 σ.op1.inputPar1.input1.type = long
 }
 σ.op1.inputPar1.input2 = {
 σ.op1.inputPar1.input2.name = ReferenceNumber,
 σ.op1.inputPar1.input2.type = short
 }…
}

maxSim(f(q,p)) = (f(q1,p1)+f(q2,p3)+f(q3,p2))/4 = (1.0+0.7+1.0)/4 = 0.675

p

pqfmax
pqfSimmax

qi

pj ji

||..1

||..1
)),((

)),((

})){},({(),(,, jpiqpq tttermSimSimmaxnnnameSim

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.8, Pages : 18-23 (2013)
Special Issue of ICCECT 2013 - Held during 16-17 August, 2013, Thailand

21

 ISSN 2320 -2602

 (3)

where termSimWordNet = similarity score by WordNet in

 [0,1]
 termSimLevenshtein = similarity score by Levenshtein

distance, which is normalized to [0,1]
where 1 means identical term, and

 WeightWordNet + WeightLevenshtein = 1.
For example, to compare similarity between the input

parameter name Request in Fig. 3 and ContractRequest in
Fig. 4, we obtain {tq,i} = {request} and {tp,j} = {contract,
request}. We then calculate termSim for every possible pair
of terms, using WordNet and Levenshtein distance. Suppose
WeightWordNet = 0.7 and WeightLevenshtein = 0.3. Matching
between tq,1 = request and tp,2 = request will give the
maximum WordNet score and maximum Levenshtein score
(both are 1), whereas tp,1 = contract is left unmatched. Using
nameSim (2) which uses maxSim (1), nameSim(Request,
ContractRequest) yields (1+0)/2 = 0.5.

C. Data Type Similarity Function (datatypeSim)
XML schema data types [13] are used to define types of

operation parameters and can be either simpleType or
complexType (which itself can be further expanded to a
number of simpleTypes). As mentioned earlier, URBE does
not differentiate data types in the same family (Fig. 6), e.g.
int matches long in the same manner as int matches int.
Hence we enhance by applying the concept of Generalizable
Nominal Attribute (GNA) [14] which determines similarity
between concepts within a hierarchy by their distance.

In addition, we consider the principle of contravariant
input and covariant output [10]. The input type of the
provided service which is more generalized than the input
type of the query is considered compatible and will also get
higher similarity score than the case of the provided service’s
input type that is more specialized. The reverse applies for
the output type. That is, the output type of the provided
service can be more specialized than the output type of the
query and will get higher similarity score than the case of the
provided service’s output type that is more generalized.

Table 2 shows similarity scores for simpleTypes.
Fundamentally the scores are inversely proportional to the
information loss that will occur if we apply a casting from q
to p [5], but for Integer and Real types, GNA scores apply.
The GNA scores for types in the same family are in Table 3
and Table 4.

Fig 6: Integer and Real families

Table 2: Similarity scores for simpleTypes, modified from [5]
 Query (q)

Pr
ov

id
e

(p
)

 Integer Real String Date Boolean
Integer GNAInteger(q,p) 0.5 0.3 0.1 0.1
Real 1.0 GNAReal(q,p) 0.1 0.0 0.1
String 0.7 0.7 1.0 0.8 0.3
Date 0.1 0.0 0.1 1.0 0.0
Boolean 0.1 0.0 0.1 0.0 1.0

Table 3: GNAInteger scores for Integer family

 Query (q)

Pr
ov

id
e

(p
)

 Input Output
long int short byte long int short byte

long 1 1 1 1 1 0.5 0.33 0.25
int 0.5 1 1 1 1 1 0.5 0.33

short 0.33 0.5 1 1 1 1 1 0.5
byte 0.25 0.33 0.5 1 1 1 1 1

Table 4: GNAReal scores for Real family

Pr
ov

id
e

(p
)

Query (q)

 Input Output
decimal double float decimal double float

decimal 1 1 1 1 0.5 0.3
double 0.5 1 1 1 1 0.5

float 0.33 0.5 1 1 1 1

Also, in the case that a parameter of the provided service is
optional (minOccurs=0) and is not matched to any parameter
of the query, its data type similarity score would be 1.

The datatypeSim function is shown in Fig. 7. The function
simpletypeScore refers to the score obtained from Tables 2-4.
For example, in Fig. 3, suppose ele_q1.name =
PolicyNumber, ele_q1.dt = string, ele_q2.name =
ReferenceNumber, ele_q2.dt = int. In Fig. 4, suppose
ele_p1.name = PolicyNumber, ele_p1.dt = long,
ele_p2.name = ReferenceNumber, ele_p2.dt = short.
Therefore, datatypeSim(PolicyNumber, PolicyNumber) is
1*0.3 = 0.3, and datatypeSim(ReferenceNumber,
ReferenceNumber) is 1*0.5 = 0.5.

D. Parameter Similarity Function (parSim)
To determine similarity of parameters, both parameter

names and parameter types are considered. The similarity
functions for input parameters and output parameters are
defined in (4) and (5) respectively [5]:

 (4)

 (5)

Fig 7: Pseudocode of datatypeSim, modified from [5]

where WeightnamePar + WeighttypePar = 1 and

}){},({
}){},({

}){},({

,,

,,

,,

jpiqnLevenshteinLevenshtei

jpiqWordNetWordNet

jpiq

tttermSimWeight
tttermSimWeight

tttermSim

)..,..(

)..,..(

).,.(

typeinputpoptypeinputqopmdatatypeSitypeParWeight

nameinputpopnameinputqopnameSimnameParWeight

inputpopinputqopinputparSim

function datatypeSim(ele_q, ele_p)
 if(ele_q.dt is simpleType and ele_p.dt is simpleType)

return nameSim(ele_q.name, ele_p.name)*
simpletypeScore(ele_q.dt, ele_p.dt)

 else if (ele_q.dt is complexType and
 ele_p.dt is complexType)

return nameSim(ele_q.name, ele_p.name)*
datatypeSim (ele_q.dt.elements, ele_p.dt.elements)

 else if ele_p.dt is Optional and
 ele_p is not matched by any ele_q
return 1

 else
return 0

end function

)..,..(

)..,..(

).,.(

typeoutputpoptypeoutputqopmdatatypeSitypeParWeight

nameoutputpopnameoutputqopnameSimnameParWeight

outputpopoutputqopoutputparSim

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.8, Pages : 18-23 (2013)
Special Issue of ICCECT 2013 - Held during 16-17 August, 2013, Thailand

22

 ISSN 2320 -2602

parSim is in [0,1].

E. Operation Similarity Function (opSim)
To determine similarity of operations, both operation

names and input/output parameters are considered. The
similarity function for operations is defined in (6) [5]:

 (6)

where WeightOperationName + WeightPar = 1 and
 opSim is in [0,1].

F. portType Similarity Function (fSim)
To determine similarity of the queried service and the

provided service, their portType names and operations are
considered. The similarity function for portTypes is defined
in (7) [5]:

 (7)

where WeightportTypeName + WeightOperations = 1 and
 fSim is in [0,1].

Semantic Similarity Evaluation
URBE can use semantic similarity evaluation instead of

structural similarity evaluation. The idea is the same in that it
still considers the structure of a WSDL document, but the
evaluation is on the semantic terms that are annotated to
different parts of the WSDL structure by using SAWSDL [8].
The semantic terms are ontological terms in a service domain
ontology to which the WSDL document refers by using
modelReference. When the queried service and provided
service are semantically annotated by terms from the same
domain ontology, we can determine their similarity.

For semantic similarity evaluation, the function annSim
defined in (8) [5] is used in place of nameSim in functions
(4)-(7) above:

 (8)

where aq = annotation in the queried service,
 ap = annotation in the provided service, and
 annSim is in [0,1].

A. Class-Class and Property-Property Similarity
(pathSim)
The function pathSim of URBE takes into account the

subsumption path which connects the two classes or two
properties in the service domain ontology as defined in (9)
[5]. In addition, we employ the principle of contravariant
input and covariant output when annotations are associated
with inputs and outputs, and the additional functions are
defined in (10) and (11):
 (9)

 (10)

 (11)

where pathlength(aq,ap) = the number of hops
constituting

the longest path connecting aq and ap ,
ap aq = ap is subsumed by (more specialized
than)

 aq, and
aq ap = ap subsumes (more generalized than) aq.

For example, in Fig. 3, aq refers to Request and is
associated with the input parameter request of the query. In
Fig. 4, ap refers to PolicyRequest and is associated with the
input parameter contractRequest of the provided service. If
PolicyRequest is a direct subclass of Request in the ontology
(i.e. ap is more specialized than aq), pathSim(Request,
PolicyRequest) = 1/(1+1) = 0.5, by using (10).

B. Class-Property Similarity (classPropSim)
When ap is one of the properties of class aq, similarity is

proportional to the number of properties that class aq has.
The function classPropSim is defined in (12) [5]:

 (12)

C. Property-Class Similarity (propClassSim)
When aq is one of the properties of class ap, similarity is 1

since ap has the queried property (and more). The function
propClassSim is defined in (13) [5]:

 (13)

EXPERIMENTAL RESULTS
We evaluate the performance of M-URBE in comparison

with that of URBE. The benchmark used for the evaluation is
SAWSDL-TC [15] which comprises 1,080 WSDL
documents semantically annotated by SAWSDL. Each
WSDL document belongs to one of nine domains:
communication, economy, education, food, geography,
medical, simulation, travel, and weapon. The benchmark
provides 42 WSDL documents that are used as queries, each
of which also belongs to one of the nine domains. We
randomly select five of them to use as queried services in the
experiment, i.e.
 1personbicyclecar_price_service.wsdl
 bookpersoncreditcardaccount__service.wsdl
 citycountry_hotel_service.wsdl
 surfinghiking_destination_service.wsdl

}))]output.{op},output.{op(parSim(Simmax.
}))input.{op},input.{op(parSim(Simmax.[Weight

)name.op,name.op(nameSimWeight
)op,op(opSim

pqoutput

pqinputPar

pqameOperationN

pq

50

50

}))op.{},op.{(opSim(SimmaxWeight
)name.,name.(nameSimWeight),(fSim

pqOperations

pqmeportTypeNapq

class is property, is),,(

property is class, is),,(
opertiesclasses/prboth are ,),,(

),(

pqpq

pqpq

pqpq

pq

aaaaimpropClassS
aaaaimclassPropS

aaaapathSim
aaannSim

pq
pq

pq

aa
)a,a(pathlength

Failed
Exact

)a,a(pathSim
 torelated

1
1

0
1

qp
pq

pq

pqparInput

aa
)a,a(pathlength

Failed
Partial.

aaExact

)a,a(pathSim

1
1

0
40

or 1

pq
pq

qp

pqparOutput

aa
aapathlength

Failed
Partial

aaExact

aapathSim

1),(
1

0
4.0

or 1

),(

qp

qp
q

pq

aa

aa
a

aaimclassPropS

 class ofproperty not is ,0

 class ofproperty is ,
 of properties ofnumber

1

),(

pq

pq
pq aa

aa
aaimpropClassS

 class ofproperty not is ,0
 class ofproperty is ,1

),(

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.8, Pages : 18-23 (2013)
Special Issue of ICCECT 2013 - Held during 16-17 August, 2013, Thailand

23

 ISSN 2320 -2602

 userscience-fiction-novel_price_service.wsdl
These queried services are used for retrieving provided

services with similar structure and semantics, i.e. those that
give the fSim value not less than a similarity threshold
(between 0 and 1). That is, if the fSim value of a provided
service is less than the threshold, it will not be returned as a
result. The performance measurement is by F-Measure in
(14), and we use the average of the F-Measures obtained from
all queries to represent the performance of both algorithms.

 (14)

where Precision = no. of returned services in the same

domain as the query / no. of returned services
 Recall = no. of returned services in the same

domain as the query / total no. of services in the
same domain as the query.

Considering structural similarity, we run two experiments
for both algorithms. The first one evaluates the effect of the
modification on datatypeSim, and the second one on
nameSim. In the first experiment, we set WeightLevenshtein to 0,
and identify the best values of WeightportTypeName,
WeightOperationName, and WeightNamePar by varying these
parameters to achieve all weight combinations using the
values in the set {0.1, 0.3, 0.5, 0.7, 0.9}. The best result
giving the best F-Measure values is when WeightportTypeName =
0.9, WeightOperationName = 0.7, and WeightNamePar = 0.9, as
shown in Fig. 8(a). In the second experiment, we keep these
best weights and vary WeightLevenshtein by using the values in
{0, 0.1, 0.3, 0.5, 0.7, 0.9}. We have found that
WeightLevenshtein does not help improve F-Measure values.

Considering semantic similarity, we run a similar
experiment but WeightLevenshtein is not relevant since annSim
is used in place of nameSim. The best result giving the best
F-Measure values is when WeightportTypeName = 0.1,
WeightOperationName = 0.1, and WeightNamePar = 0.1, as shown in
Fig. 8(b).

It can be seen that in both graphs, M-URBE can improve
the performance of service retrieval when the threshold is
around 0.5-0.8 which we consider to be practical for use since
very low similarity threshold can give too many returned
services whereas very high similarity threshold may give too
few services for selection.

CONCLUSION
We present M-URBE as an enhancement to URBE with
regard to similarity evaluation of data types and of textual
names. The experimental results show that different
compatibility level of types in the same family and
contravariance/covariance compatibility can help improve
the performance of service retrieval even though string name
similarity measure does not show strong impact on the
performance. This may be the case of the services in the
benchmark being named properly using complete words and
hence WordNet can already serve the purpose. We plan to
build a service retrieval tool upon the M-URBE algorithm.
The tool should also be able to recommend modification or
mapping that needs to be applied to the retrieved services to

enable seamless substitution for a queried service.

Fig 8: Performance of similarity evaluation (a) structural (b) semantic

REFERENCES
[1] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. (March

2001). Web services description language (WSDL) 1.1. [Online].
Available: http://www.w3.org/TR/wsdl

[2] OASIS. Universal description discovery and integration. [Online].
Available: http://uddi.xml.org/

[3] O. Hatzi, G. Batistatos, M. Nikolaidou, and D. Anagnostopoulos, “A
specialized search engine for Web service discovery,” in Proc. 2012
IEEE 19th Int. Conf. Web Services (ICWS 2012), Hawaii, USA, 2012,
pp. 448-455.

[4] K. Elgazzar, A. E. Hassan, and P. Martin, “Clustering WSDL
documents to bootstrap the discovery of Web services,” in Proc. 2010
IEEE Int. Conf. Web Services (ICWS 2010), Florida, USA, 2010, pp.
147-154.

[5] P. Plebani and B. Pernici, “URBE: Web service retrieval based on
similarity evaluation,” IEEE Trans. Knowledge and Data Engineering,
vol. 21, no. 11, pp. 1629-1642, November 2009.

[6] E. Stroulia and Y. Wang, “Structural and semantic matching for
assessing web-service similarity,” Int. J. Cooperative Information
Systems, vol. 14, no. 4, pp. 407–437, 2005.

[7] Princeton University. WordNet a lexical database for English. [Online].
Available: http://wordnet.princeton.edu/

[8] J. Farrell and H. Lausen. (August 2007). Semantic annotations for
WSDL and XML schema. [Online]. Available:
http://www.w3.org/TR/sawsdl/

[9] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu, “Measuring similarity of Web
services based on WSDL,” in Proc. 2010 IEEE Int. Conf. Web Services
(ICWS 2010), Florida, USA, 2010, pp. 155-162.

[10] G. Castagna, “Covariance and contravariance: conflict without a
cause,” ACM Trans. Programming Languages and Systems (TOPLAS),
vol. 3, no. 17, pp. 431-447, May 1995.

[11] V. Andrikopoulos and P. Plebani, “Retrieving compatible Web
services,” in Proc. 2011 IEEE Int. Conf. Web Services (ICWS 2011),
Washington, USA, pp. 179-186.

[12] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys (CSUR), vol. 33, no. 1, pp. 31 – 88, March 2001.

[13] P.V. Biron and A. Malhotra. (October 2004). XML schema part 2:
datatypes second edition. [Online]. Available:
http://www.w3.org/TR/xmlschema-2/

[14] X. Shen, X. Jin, R. Bie, and Y. Sun, “MSC: a semantic ranking for
hitting results of matchmaking of services,” in Proc. 30th Annu. Int.
Computer Software and Applications Conf. (COMPSAC 2006),
Chicago, USA, 2006, pp. 291-296.

[15] SemWebCentral. SAWSDL-TC. [Online]. Available:
http://projects.semwebcentral.org/projects/sawsdl-tc/

RecallPrecision
RecallPrecisionMeasureF

 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

F-
M

ea
su

re

URBE Weight (port TypeName)=0.9 Weight (Operat ionName)=0.7
Weight (NamePar)=0.9

M-URBE Weight (por tTypeName)=0.9 Weight (Operat ionName)=0.7
Weight (NamePar)=0.9 Weight (Levensht ein)=0

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

F-
M

ea
su

re

URBE Weight (por t TypeName)=0.1 Weight (Operat ionName)=0.1
Weight (NamePar)=0.1

M-URBE Weight (por t TypeName)=0.1 Weight (Operat ionName)=0.1
Weight (NamePar)=0.1

(b)

