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Abstract : In Information Retrieval (IR), the efficient 
strategy  of  indexing  large dataset and terabyte-scale data is 
still an issue because of information overload as the result of 
increasing the knowledge, increasing the number of different 
media, increasing the number of platforms, and increasing the 
interoperability of platforms. Across multiple processing 
machines, MapReduce has been suggested as a suitable 
platform that use for distributing the intensive data operations. 
In this project, sensei and Per-posting list indexing (Terrier) 
will be analyze as they are the two efficient MapReduce 
indexing strategies. The two indexing will be implemented in 
an existing framework of IR, and an experiment will be 
performed by using the Hadoop for MapReducing with the 
same large dataset. In particular, this paper will study the 
effectiveness of two indexing strategies (Sensei & Terrier), 
and try to find and verify the better efficient strategy between 
them. The experiment will measure the performance of 
retrieving when the size and processing power enlarge. The 
experiment examines how the indexing strategies scaled and 
work with large size of dataset and distributed number of 
machines. The throughput will be measured by using MB/S 
(Megabyte per Second), and the experiment results analyzing 
the performance and efficiency of indexing strategies between 
Sensei & Per-posting list indexing (Terrier).  
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INTRODUCTION  

The Web is the large place to store documents, and has the 
main challenge for Information Retrieval systems (IR), which 
used by search engines of the Web or Web IR researchers. 
Index should be created in order to increase the efficiency of 
documents information retrieval. Index is considered the 
special data structure which used in this regard. The dataset 
usually contains many documents which are stored in one hard 
disk and sometimes in more than one hard disk. The indexing, 
therefore, should cover different or many hard disks in which 
the documents are stored. The IR system works through 
inverted index in which every term has a posting list. This 
posting list represents the documents through numbers or 
integer documents (IDs), and they also contain the terms as 
stated by [1]. Every document has a representing score which 
stored in the posting list. The importance of this process is to 
figure out the information sufficient statistics. The main goal 
here is to find the sufficient statistics of information, e.g. the 

terms frequencies which are occurred, and the information of 
position 

The textual indexes usually stored with lexicon which are 
considered additional structures. These lexicons include 
pointers which are important for the posting list that added to 
the inverted index. In the final stage the result of the search 
can be shown through using the information of the documents 
such as its name and its length. This is used to display the 
documents in a specific order for the user. This is what is 
called indexing and an important point is that it should be in 
the mode of offline before the process of searching is done.  

The single pass indexing used in Terrier system that 
released with Terrier 2.0 [2], this term is used to describe the 
idea of building the document of single pass central structure 
over the collection. In addition, single pass use low memory 
consumption when creating the index. This process is 
achieved through compressing the inverted files as well as 
creating a temporary posting list that used in one single 
machine only. According to memory consumption, this type of 
indexing is considered the most efficient and the faster.  

In distributed systems is that Terrier supports huge dataset 
indexing through using the functions of Hadoop’s MapReduce 
by using a single pass indexer. There are three organizations 
for the output of functions of the Map. The first organization 
is information saved about the document during its run. The 
second organization is the indices of each document for every 
map task. The third organization is the list of the term as well 
as its posting list.  

When the space of the memory and power of processing is 
limited, the sharding strategy can be used. Sensei used this 
strategy through the creation of the fast MapReduce job. This 
is achieved through taking utilizing the data from Hadoop with 
the given schema. Sensei cannot support the JOINS, but it can 
create a single index. Therefore, the aim of this study is to 
explain and clarify the advantages of the process of indexing 
large datasets through utilizing MapReduce. 
 
 
ARCHITECTURE 

In this section, we give some brief description of materials 
and architectures that covered in this paper. 

 
Terrier architecture 

Terrier supports many different ways to indexing the data of 
documents. As shown in Fig. 1, there are four stages of the 
process of indexing. The indexing process at each stage can be 
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changed by its entities [3]. According to this architecture, 
there is flexibility in the various stages of the process of 
indexing which are the documents dataset handling, the 
parsing of each individual document in both the process of 
terming the documents and the writing of the structures of the 
index data. Moreover, the main and most important advantage 
of Terrier is related to compressed data through the allowance 
of the direct express and indexing. 
Terrier can index many types of documents such as HTML, 
Plain text documents, Excel, Ms Word, PowerPoint, and PDF 
files through having their embedded parsers. The developers 
can add other types of documents and index them. This can be 
achieved through adding the formats plugins of the files so 
that the terms can be extracted from them. 

 There are three main properties for each grabbed term: the 
string of the term textual form, the term occurrence position in 
the document, and the field where the occurrence happens [3]. 
 

Fig. 1: Indexing architecture of Terrier. 
 
 

The terms are transformed in different ways during the 
“Pipeline term”, and the role of Terrier in this stage is to add 
aliasing. 

Algorithm and stopword removal components are the two 
predefined variants plugins of porters. The flexibility term 
processing is one of the characteristics of Terrier. Indexing is 
the considered that last step in pipelining. The indexer has the 
responsibility to create the index of appropriate data to create 
new data structure called indexing.  The number of the blocks 
determines the division of the documents which in turn 
considered the factor that determines the accuracy of the terms 
registered. There is an index in each block created by the 
block indexer. This index stores each term position in the 
document blocks.  

Terrier is based on the process of single-pass indexing. One 
can see that the indexing process can be split into the number 
of tasks for mapping the documents [1]. Every map task in the 
process can operate on its own subset. The term posting list 
compression in the memory is achieved through the 
compression process. The  all documents which are processed 
in the memory run very low, and the partial index is erased 
completely from the mapping task, this process can be done by 

emitting the pair of <term, posting list> for each term. The 
indices which are erased are sorted, map and flushed numbers 
before they are passed into a reduced task. The posting list for 
every term is created by the reduce function which collect 
their flushes and merge them. The map numbers and flush 
number are used to make sure of the posting list correct order. 
The standard indexing is created when the posting list of the 
term is taken by the reduce function and post it in the final 
posting. 
 
Sensei architecture 

There is a need for sharding indexing when there is a huge 
bulk of data and it cannot be handled by the single machine 
[11]. Also, when the power of the CPU is limited or there is 
not enough space in the disk, the sharding indexing is used. 
The Sensei is designed for the full text search of LinkdIn as it 
utilized the sharding indexing the huge data the contains the 
SQL-variant query language which is called Browse Query 
Language (BQL), JSON Query format in order to index them 
in certain format of data < key, value>. Sensei used Hadoop 
for support the multi node layers and using its MapReduce 
functions. Also, Sensei can deal with the parameters numbers 
which are used to determine the number of the shards and the 
division of the shards of the document. Sensei also gives 
number of plugins in order to allow the manager of indexing 
to specify the data belongs to shards. Fig. 2 shows the 
indexing architecture of Sensei. 

 

Fig. 2: Indexing architecture of Sensei. 
 

Hadoop architecture 
There are two main components of the cluster of Hadoop 

which are: Hadoop Distributed File System (HDFS) and 
MapReduce [4]. HDFS in Hadoop cluster are important to 
deal with its data [5]. HDFS gives the storage requirement for 
MapReduce data input and output data for many reasons: (1) It 
is devised as an exceptionally fault tolerant, (2) high 
throughput, (3) high capacity distributed file system. It has the 
ability of saving large cluster data of terabytes or petabytes 
[5]. Also, it has various hardware requirements which has 
commercial hard ware just like PCs. There are many 
differences between HDFS and the other distributed systems: 
(1) the task nature of HDFS is to read-many and write-once, 
(2) the stream model here gives the ability to HDFS to 
distribute the data efficiently, (3) the storage of a huge bulk of 
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dataset, (4) and the join of heterogeneous operating systems as 
well as hardware environments. In addition, there is a division 
of each file to the number of block size of (64 MB) and 
storage of the duplicates in each disk of cluster nodes. The 
mass dataset increases the block numbers that increases the 
tolerance of the fault. HDFS is efficiently used in the 
architectures that utilize master/slave. 

Fig. 3: HDFS architecture. 
 
 

The master known as NameNode [4], which manages 
customer’s access to data and deal with file system 
namespace. There are several numbers of operating nodes 
called DataNodes, that can store the real data in form of 
certain blocks. The NameNode build the mapping table to 
maps the data and blocks to DataNodes to manage the write 
and read orders in the HDFS clients. 

Furthermore, HDFS gives the permission to copy the 
metadata in secondary NameNode when the error occurs in the 
master NameNode. The DataNodes store the blocks of data in 
their local disks and perform commands, for example copying, 
creating, deleting and substituting data. HDFS is accountable 
for file system operations of namespace, such as opening, 
closing, renaming files and directories. Fig. 3 [4] shows the 
architecture of HDFS. 

The status of DataNode reported according to the requests 
and pulse messages of NameNode for directions. The ability 
of listening to each DataNode in network accordingly lets the 
other DataNodes and clients to perform write and read 
operations. Furthermore, the pulse helps to identify the 
communication between NameNode and its DataNodes. In 
case the DataNode does not receive the pulse from the 
NameNode at the appropriate period of time, data blocks 
which stored at that DataNode are indicated as lost blocks and 
the NameNode copy the lost blocks of that DataNode [8]. 
 
 
METHODOLOGY 

 In the study of the indexing strategies (Sensei & Terrier), 
both of them use Hadoop’s MapReduce.  MapReduce 
executed over multiple machines where the data typically not 
store in the central file’s store, and it distributed into blocks 
(64 MB) across many machines [1]. This mean the map 
functions have the ability to operate on data that can be locate 
in local machines without needing of transit intra or intra-data 

center backbone links, and prevent overload of the central file 
storage service. Therefore high bandwidth can be achieved by 
local CPUs because data is always as local as possible, and the 
Intermediate results of map tasks are stored on the processing 
machines themselves [9]. 

Good throughput thus can be performed due to the 
permanent locality of data to the processor which performs the 
function. The results of map jobs, that are intermediary, are 
stored at the local machine itself. Reduced functions at each 
machine decrease the volume of output and merge it by 
utilizing some combiners. A central machine provides job and 
task’s scheduling, which tries to make jobs as local as possible 
to input data. A central machine provides job and task’s 
scheduling, which tries to make jobs as local as possible to 
input data [9]. 

The main job here focuses on which of these two strategies 
can index the large size of dataset quickly and with more 
efficiency in term of speed-up. 
In our hypothesis Terrier is the best indexing strategy 
comparing with the other strategies. Using Terrier in searching 
machines enhanced the searching performance by using a 
single-pass indexing method [6], the compressed posting lists 
for each term are built in memory as the dataset is scanned. 

However, it is not preferred to store the posting lists of 
many documents in single machine’s memory [1]. When the 
memory exhausted the partial indices are flushed to disk, and 
the final index created by merging the partial flushed indices. 
 

To implement the experiment, the following systems were 
installed:   
 
Terrier-3.5  

Terrier applies the art of indexing and retrieval tasks [10], 
and provides an optimum platform for fast evolution and 
development of retrieval applications for large dataset. 
 
Sensei-1.5.0 

Sensei used Hadoop for support the multi node layers and 
using its MapReduce functions [11]. Sensei deal with the 
number of parameters used to determine how many and what 
shards the document can be divided to. 
 
Hadoop-1.0.3 

Hadoop[7], implements MapReduce functions with two 
main categories of component Job-tracker and number of 
Task-trackers. Hadoop defines how Jop-tracker commands the 
Task-trackers to deal with data in parallel through two main 
tasks Map and Reduce. 
 
EXPERIMENT 

The result of the underlying experiments will test the data 
size and time in seconds, and the result will be measured in 
terms of MB/S (Megabyte per Second). The experiment aims 
and objectives are: 

 
 Examine the two strategies with the same dataset within 

different number of machines. 
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 Sensei vs. Per-posting list indexing (Terrier). 
 Measuring the speed-up, Sm= T1/Tm, where m is the number 

of machines, T1 is the execution of the algorithm on a single 
machine, and Tm is the execution time in parallel, using m 
machines [1]. 
 In this section we offer details of our experimental setup, as 

it consists three hosts linked through the D-link WAN routers. 
The hosts fit out with the Intel series of processors with i5 
processor operating at 1.8GHz with 8GB RAM, 10/100MB 
network adapter, and windows 7 operating system. Oracle 
Virtual box 4.1.18 r78361 is utilized for Linux Ubuntu release 
10.04 operating system [8], 10 virtual machines with 1GB 
RAM , 113.5 MB dataset with 360000 records [8]. 

Installing Terrier doesn’t take a long time and it is easy to 
configure with Hadoop for multi-node, taking the advantages 
of Hadoop features for MapReducing and Hadoop distributed 
file system (HDFS).    

Terrier supports the concept of desktop search engine; 
according to increase the requirement of information retrieval, 
Terrier can easily apply the suitable application for retrieval 
tasks [3], that including query language and expansion.  
Terrier desktop search can index the different types of file 
format such as Office documents, PDF files and HTML. 

Installing sensei is faster than Terrier and it can work inside 
sensei or Hadoop environment. Sensei doesn’t take a long 
time to install and it is easy to configure with Hadoop for 
multi-node taking the advantages of Hadoop features for 
MapReducing and Hadoop distributed file system. 

Fig. 4 notes that Terrier consumes less time to finish the 
indexing with the several number of machines compared with 
sensei. And that because of its nature by using posting lists 
and flush the intermediate data from memory and use the 
available memory, at the other side Sensei consumed more 
time for indexing with any number of machines comparing 
with Terrier and it is  using the key and value for indexing 
data with the assistance of the Hadoop’s MapReduce. The 
observation here the Sensei has sharpness reduce in time 
through increasing numbers of machines, this maybe lead to 
crossover point between Sensei and Terrier that can help to 
find the most efficient indexing strategies. 

 
 

 
Fig. 4: shows the indexing time for Terrier and Sensei. 

 

The percentage difference used to find the percent different 
of indexing time between Terrier and Sensei by calculating the  
average of their indexing consuming time, the percentage 
difference by them can calculated by the following formula: 

 
Percent formula = ( | (V1 - V2) | / ((V1 + V2)/2) ) * 100        (1) 

 
Where V1 is average indexing consuming time of Terrier, and 
V2 is the average indexing consuming time of Sensei by 
applying the Eq. (1), Terrier’s indexing time is better than 
Sensei and the percentage difference between them is 130 %.  

 
 Applying the two strategies on the suggested dataset to find 

the output that support our hypothesis and measure the output 
in term of MB/S, the size of used dataset is 113.5MB and it 
contains 360000 records that can be used in both strategies. To 
find the best results in both cases, the number of maps is 
adjust to 12 and the number of reducers to 4, Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1: Output in MB/S 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

No. of 
machine 

Output of 
Terrier 
MB/S 

Output of 
Sensei 
MB/S 

1 0.388115 0.092845 
2 0.450454 0.096239 
3 0.475885 0.100407 
4 0.494114 0.10433 
5 0.514574 0.108544 
6 0.533605 0.112368 
7 0.567072 0.115388 
8 0.596687 0.118642 
9 0.623089 0.122746 

10 0.64662 0.12751 
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Fig. 5 shows the output of the two strategies, it shows the 

great differentiate between their outputs that measured by 
MB/S through various numbers of machines. 

 

 
 

Fig. 5: Throughput of Terrier and Sensei 
 

 
Measuring speed-up of the two strategies can be calculated by 
the following formula: 
 
Sm = T1/Tm       (2) 
 
Where m is the number of machines and T1 is the time 
consumed by the first machine to create index structure of 
dataset, and Tm is the execution time in parallel, using m 
machines [1]. 

 
According to the Fig. 6 below the speed-up of Terrier 

increase by increasing number of machines, same thing 
happen with the speed-up of sensei, but this show that Terrier 
has the better speed-up between them. 

 

 
Fig. 6: The speed-up of Terrier and Sensei 

 

According to the results of  experiment Terrier is quite faster 
in indexing data because of using posting list techniques<term, 
posting list>, which allow it to take the advantages of flushed 
partial list results and merge them to create final posting list. 
In sensei using <key,value> pair cannot add more features to 
its job and also sensei need addition schema of data for 
treating with different types of data. 
 
 
CONCLUSION 

In this paper, the Information Retrieval (IR) indexing 
process using the distributed context of MapReduce paradigm 
was investigated. In particular, both indexing strategies, 
Sensei and Terrier were discussed.  Both supported by 
Hadoop’s MapReduce pattern, that can be applied them on the 
suggested dataset. First of all, it shows how both strategies 
deal with large dataset and the efficient of the strategy was 
studied and analysis according to speed-up. From the 
experiments Sensei generate much intermediate data which 
causing slowness of index process. In contrast, per-posting list 
(Terrier) proved to be the most efficient strategy with large 
scale dataset. This is because of using the local machine 
memory and compressing technics of the map-reduce traffic. It 
is also because Terrier can flush the partial indices to disk 
when memory is exhausted, and the final index build by 
merging the flushed indices. The different percentage between 
the two strategies can be reached to 130%. According to our 
experiment Terrier is more efficient indexing strategy than 
Sensei. 
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