
International Journal of Advances in Computer Science and Technology (IJACST), Vol.5 , No.3, Pages : 01-06 (2016)
Special Issue of ICDCB 2016 – Held during April 14-15, 2016 in Kuala Lumpur, Malaysia
http://warse.org/IJACST/static/pdf/Issue/icdcb2016sp01.pdf

1

ISSN 2320-2602

Abstract : In Information Retrieval (IR), the efficient
strategy of indexing large dataset and terabyte-scale data is
still an issue because of information overload as the result of
increasing the knowledge, increasing the number of different
media, increasing the number of platforms, and increasing the
interoperability of platforms. Across multiple processing
machines, MapReduce has been suggested as a suitable
platform that use for distributing the intensive data operations.
In this project, sensei and Per-posting list indexing (Terrier)
will be analyze as they are the two efficient MapReduce
indexing strategies. The two indexing will be implemented in
an existing framework of IR, and an experiment will be
performed by using the Hadoop for MapReducing with the
same large dataset. In particular, this paper will study the
effectiveness of two indexing strategies (Sensei & Terrier),
and try to find and verify the better efficient strategy between
them. The experiment will measure the performance of
retrieving when the size and processing power enlarge. The
experiment examines how the indexing strategies scaled and
work with large size of dataset and distributed number of
machines. The throughput will be measured by using MB/S
(Megabyte per Second), and the experiment results analyzing
the performance and efficiency of indexing strategies between
Sensei & Per-posting list indexing (Terrier).

Keywords: Hadoop, Indexing, MapReduce, Sensei, Terrier.

INTRODUCTION

The Web is the large place to store documents, and has the
main challenge for Information Retrieval systems (IR), which
used by search engines of the Web or Web IR researchers.
Index should be created in order to increase the efficiency of
documents information retrieval. Index is considered the
special data structure which used in this regard. The dataset
usually contains many documents which are stored in one hard
disk and sometimes in more than one hard disk. The indexing,
therefore, should cover different or many hard disks in which
the documents are stored. The IR system works through
inverted index in which every term has a posting list. This
posting list represents the documents through numbers or
integer documents (IDs), and they also contain the terms as
stated by [1]. Every document has a representing score which
stored in the posting list. The importance of this process is to
figure out the information sufficient statistics. The main goal
here is to find the sufficient statistics of information, e.g. the

terms frequencies which are occurred, and the information of
position

The textual indexes usually stored with lexicon which are
considered additional structures. These lexicons include
pointers which are important for the posting list that added to
the inverted index. In the final stage the result of the search
can be shown through using the information of the documents
such as its name and its length. This is used to display the
documents in a specific order for the user. This is what is
called indexing and an important point is that it should be in
the mode of offline before the process of searching is done.

The single pass indexing used in Terrier system that
released with Terrier 2.0 [2], this term is used to describe the
idea of building the document of single pass central structure
over the collection. In addition, single pass use low memory
consumption when creating the index. This process is
achieved through compressing the inverted files as well as
creating a temporary posting list that used in one single
machine only. According to memory consumption, this type of
indexing is considered the most efficient and the faster.

In distributed systems is that Terrier supports huge dataset
indexing through using the functions of Hadoop’s MapReduce
by using a single pass indexer. There are three organizations
for the output of functions of the Map. The first organization
is information saved about the document during its run. The
second organization is the indices of each document for every
map task. The third organization is the list of the term as well
as its posting list.

When the space of the memory and power of processing is
limited, the sharding strategy can be used. Sensei used this
strategy through the creation of the fast MapReduce job. This
is achieved through taking utilizing the data from Hadoop with
the given schema. Sensei cannot support the JOINS, but it can
create a single index. Therefore, the aim of this study is to
explain and clarify the advantages of the process of indexing
large datasets through utilizing MapReduce.

ARCHITECTURE

In this section, we give some brief description of materials
and architectures that covered in this paper.

Terrier architecture

Terrier supports many different ways to indexing the data of
documents. As shown in Fig. 1, there are four stages of the
process of indexing. The indexing process at each stage can be

Indexing Strategies of MapReduce for Information
Retrieval in Big Data

Mazen Farid, Rohaya Latip, Masnida Hussin, Mohammed Abdulkarem

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, (UPM), Serdang,
Selangor, Malaysia

 mazenfareed7@yahoo.com, rohayalt@upm.edu.my, masnida@upm.edu.my, memo.ye@gmail.com

International Journal of Advances in Computer Science and Technology (IJACST), Vol.5 , No.3, Pages : 01-06 (2016)
Special Issue of ICDCB 2016 – Held during April 14-15, 2016 in Kuala Lumpur, Malaysia
http://warse.org/IJACST/static/pdf/Issue/icdcb2016sp01.pdf

2

ISSN 2320-2602

changed by its entities [3]. According to this architecture,
there is flexibility in the various stages of the process of
indexing which are the documents dataset handling, the
parsing of each individual document in both the process of
terming the documents and the writing of the structures of the
index data. Moreover, the main and most important advantage
of Terrier is related to compressed data through the allowance
of the direct express and indexing.
Terrier can index many types of documents such as HTML,
Plain text documents, Excel, Ms Word, PowerPoint, and PDF
files through having their embedded parsers. The developers
can add other types of documents and index them. This can be
achieved through adding the formats plugins of the files so
that the terms can be extracted from them.

 There are three main properties for each grabbed term: the
string of the term textual form, the term occurrence position in
the document, and the field where the occurrence happens [3].

Fig. 1: Indexing architecture of Terrier.

The terms are transformed in different ways during the
“Pipeline term”, and the role of Terrier in this stage is to add
aliasing.

Algorithm and stopword removal components are the two
predefined variants plugins of porters. The flexibility term
processing is one of the characteristics of Terrier. Indexing is
the considered that last step in pipelining. The indexer has the
responsibility to create the index of appropriate data to create
new data structure called indexing. The number of the blocks
determines the division of the documents which in turn
considered the factor that determines the accuracy of the terms
registered. There is an index in each block created by the
block indexer. This index stores each term position in the
document blocks.

Terrier is based on the process of single-pass indexing. One
can see that the indexing process can be split into the number
of tasks for mapping the documents [1]. Every map task in the
process can operate on its own subset. The term posting list
compression in the memory is achieved through the
compression process. The all documents which are processed
in the memory run very low, and the partial index is erased
completely from the mapping task, this process can be done by

emitting the pair of <term, posting list> for each term. The
indices which are erased are sorted, map and flushed numbers
before they are passed into a reduced task. The posting list for
every term is created by the reduce function which collect
their flushes and merge them. The map numbers and flush
number are used to make sure of the posting list correct order.
The standard indexing is created when the posting list of the
term is taken by the reduce function and post it in the final
posting.

Sensei architecture

There is a need for sharding indexing when there is a huge
bulk of data and it cannot be handled by the single machine
[11]. Also, when the power of the CPU is limited or there is
not enough space in the disk, the sharding indexing is used.
The Sensei is designed for the full text search of LinkdIn as it
utilized the sharding indexing the huge data the contains the
SQL-variant query language which is called Browse Query
Language (BQL), JSON Query format in order to index them
in certain format of data < key, value>. Sensei used Hadoop
for support the multi node layers and using its MapReduce
functions. Also, Sensei can deal with the parameters numbers
which are used to determine the number of the shards and the
division of the shards of the document. Sensei also gives
number of plugins in order to allow the manager of indexing
to specify the data belongs to shards. Fig. 2 shows the
indexing architecture of Sensei.

Fig. 2: Indexing architecture of Sensei.

Hadoop architecture
There are two main components of the cluster of Hadoop

which are: Hadoop Distributed File System (HDFS) and
MapReduce [4]. HDFS in Hadoop cluster are important to
deal with its data [5]. HDFS gives the storage requirement for
MapReduce data input and output data for many reasons: (1) It
is devised as an exceptionally fault tolerant, (2) high
throughput, (3) high capacity distributed file system. It has the
ability of saving large cluster data of terabytes or petabytes
[5]. Also, it has various hardware requirements which has
commercial hard ware just like PCs. There are many
differences between HDFS and the other distributed systems:
(1) the task nature of HDFS is to read-many and write-once,
(2) the stream model here gives the ability to HDFS to
distribute the data efficiently, (3) the storage of a huge bulk of

International Journal of Advances in Computer Science and Technology (IJACST), Vol.5 , No.3, Pages : 01-06 (2016)
Special Issue of ICDCB 2016 – Held during April 14-15, 2016 in Kuala Lumpur, Malaysia
http://warse.org/IJACST/static/pdf/Issue/icdcb2016sp01.pdf

3

ISSN 2320-2602

dataset, (4) and the join of heterogeneous operating systems as
well as hardware environments. In addition, there is a division
of each file to the number of block size of (64 MB) and
storage of the duplicates in each disk of cluster nodes. The
mass dataset increases the block numbers that increases the
tolerance of the fault. HDFS is efficiently used in the
architectures that utilize master/slave.

Fig. 3: HDFS architecture.

The master known as NameNode [4], which manages
customer’s access to data and deal with file system
namespace. There are several numbers of operating nodes
called DataNodes, that can store the real data in form of
certain blocks. The NameNode build the mapping table to
maps the data and blocks to DataNodes to manage the write
and read orders in the HDFS clients.

Furthermore, HDFS gives the permission to copy the
metadata in secondary NameNode when the error occurs in the
master NameNode. The DataNodes store the blocks of data in
their local disks and perform commands, for example copying,
creating, deleting and substituting data. HDFS is accountable
for file system operations of namespace, such as opening,
closing, renaming files and directories. Fig. 3 [4] shows the
architecture of HDFS.

The status of DataNode reported according to the requests
and pulse messages of NameNode for directions. The ability
of listening to each DataNode in network accordingly lets the
other DataNodes and clients to perform write and read
operations. Furthermore, the pulse helps to identify the
communication between NameNode and its DataNodes. In
case the DataNode does not receive the pulse from the
NameNode at the appropriate period of time, data blocks
which stored at that DataNode are indicated as lost blocks and
the NameNode copy the lost blocks of that DataNode [8].

METHODOLOGY

 In the study of the indexing strategies (Sensei & Terrier),
both of them use Hadoop’s MapReduce. MapReduce
executed over multiple machines where the data typically not
store in the central file’s store, and it distributed into blocks
(64 MB) across many machines [1]. This mean the map
functions have the ability to operate on data that can be locate
in local machines without needing of transit intra or intra-data

center backbone links, and prevent overload of the central file
storage service. Therefore high bandwidth can be achieved by
local CPUs because data is always as local as possible, and the
Intermediate results of map tasks are stored on the processing
machines themselves [9].

Good throughput thus can be performed due to the
permanent locality of data to the processor which performs the
function. The results of map jobs, that are intermediary, are
stored at the local machine itself. Reduced functions at each
machine decrease the volume of output and merge it by
utilizing some combiners. A central machine provides job and
task’s scheduling, which tries to make jobs as local as possible
to input data. A central machine provides job and task’s
scheduling, which tries to make jobs as local as possible to
input data [9].

The main job here focuses on which of these two strategies
can index the large size of dataset quickly and with more
efficiency in term of speed-up.
In our hypothesis Terrier is the best indexing strategy
comparing with the other strategies. Using Terrier in searching
machines enhanced the searching performance by using a
single-pass indexing method [6], the compressed posting lists
for each term are built in memory as the dataset is scanned.

However, it is not preferred to store the posting lists of
many documents in single machine’s memory [1]. When the
memory exhausted the partial indices are flushed to disk, and
the final index created by merging the partial flushed indices.

To implement the experiment, the following systems were
installed:

Terrier-3.5

Terrier applies the art of indexing and retrieval tasks [10],
and provides an optimum platform for fast evolution and
development of retrieval applications for large dataset.

Sensei-1.5.0

Sensei used Hadoop for support the multi node layers and
using its MapReduce functions [11]. Sensei deal with the
number of parameters used to determine how many and what
shards the document can be divided to.

Hadoop-1.0.3

Hadoop[7], implements MapReduce functions with two
main categories of component Job-tracker and number of
Task-trackers. Hadoop defines how Jop-tracker commands the
Task-trackers to deal with data in parallel through two main
tasks Map and Reduce.

EXPERIMENT

The result of the underlying experiments will test the data
size and time in seconds, and the result will be measured in
terms of MB/S (Megabyte per Second). The experiment aims
and objectives are:

 Examine the two strategies with the same dataset within

different number of machines.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.5 , No.3, Pages : 01-06 (2016)
Special Issue of ICDCB 2016 – Held during April 14-15, 2016 in Kuala Lumpur, Malaysia
http://warse.org/IJACST/static/pdf/Issue/icdcb2016sp01.pdf

4

ISSN 2320-2602

 Sensei vs. Per-posting list indexing (Terrier).
 Measuring the speed-up, Sm= T1/Tm, where m is the number

of machines, T1 is the execution of the algorithm on a single
machine, and Tm is the execution time in parallel, using m
machines [1].
 In this section we offer details of our experimental setup, as

it consists three hosts linked through the D-link WAN routers.
The hosts fit out with the Intel series of processors with i5
processor operating at 1.8GHz with 8GB RAM, 10/100MB
network adapter, and windows 7 operating system. Oracle
Virtual box 4.1.18 r78361 is utilized for Linux Ubuntu release
10.04 operating system [8], 10 virtual machines with 1GB
RAM , 113.5 MB dataset with 360000 records [8].

Installing Terrier doesn’t take a long time and it is easy to
configure with Hadoop for multi-node, taking the advantages
of Hadoop features for MapReducing and Hadoop distributed
file system (HDFS).

Terrier supports the concept of desktop search engine;
according to increase the requirement of information retrieval,
Terrier can easily apply the suitable application for retrieval
tasks [3], that including query language and expansion.
Terrier desktop search can index the different types of file
format such as Office documents, PDF files and HTML.

Installing sensei is faster than Terrier and it can work inside
sensei or Hadoop environment. Sensei doesn’t take a long
time to install and it is easy to configure with Hadoop for
multi-node taking the advantages of Hadoop features for
MapReducing and Hadoop distributed file system.

Fig. 4 notes that Terrier consumes less time to finish the
indexing with the several number of machines compared with
sensei. And that because of its nature by using posting lists
and flush the intermediate data from memory and use the
available memory, at the other side Sensei consumed more
time for indexing with any number of machines comparing
with Terrier and it is using the key and value for indexing
data with the assistance of the Hadoop’s MapReduce. The
observation here the Sensei has sharpness reduce in time
through increasing numbers of machines, this maybe lead to
crossover point between Sensei and Terrier that can help to
find the most efficient indexing strategies.

Fig. 4: shows the indexing time for Terrier and Sensei.

The percentage difference used to find the percent different
of indexing time between Terrier and Sensei by calculating the
average of their indexing consuming time, the percentage
difference by them can calculated by the following formula:

Percent formula = (| (V1 - V2) | / ((V1 + V2)/2)) * 100 (1)

Where V1 is average indexing consuming time of Terrier, and
V2 is the average indexing consuming time of Sensei by
applying the Eq. (1), Terrier’s indexing time is better than
Sensei and the percentage difference between them is 130 %.

 Applying the two strategies on the suggested dataset to find

the output that support our hypothesis and measure the output
in term of MB/S, the size of used dataset is 113.5MB and it
contains 360000 records that can be used in both strategies. To
find the best results in both cases, the number of maps is
adjust to 12 and the number of reducers to 4, Table 1.

Table 1: Output in MB/S

No. of
machine

Output of
Terrier
MB/S

Output of
Sensei
MB/S

1 0.388115 0.092845
2 0.450454 0.096239
3 0.475885 0.100407
4 0.494114 0.10433
5 0.514574 0.108544
6 0.533605 0.112368
7 0.567072 0.115388
8 0.596687 0.118642
9 0.623089 0.122746

10 0.64662 0.12751

International Journal of Advances in Computer Science and Technology (IJACST), Vol.5 , No.3, Pages : 01-06 (2016)
Special Issue of ICDCB 2016 – Held during April 14-15, 2016 in Kuala Lumpur, Malaysia
http://warse.org/IJACST/static/pdf/Issue/icdcb2016sp01.pdf

5

ISSN 2320-2602

Fig. 5 shows the output of the two strategies, it shows the

great differentiate between their outputs that measured by
MB/S through various numbers of machines.

Fig. 5: Throughput of Terrier and Sensei

Measuring speed-up of the two strategies can be calculated by
the following formula:

Sm = T1/Tm (2)

Where m is the number of machines and T1 is the time
consumed by the first machine to create index structure of
dataset, and Tm is the execution time in parallel, using m
machines [1].

According to the Fig. 6 below the speed-up of Terrier

increase by increasing number of machines, same thing
happen with the speed-up of sensei, but this show that Terrier
has the better speed-up between them.

Fig. 6: The speed-up of Terrier and Sensei

According to the results of experiment Terrier is quite faster
in indexing data because of using posting list techniques<term,
posting list>, which allow it to take the advantages of flushed
partial list results and merge them to create final posting list.
In sensei using <key,value> pair cannot add more features to
its job and also sensei need addition schema of data for
treating with different types of data.

CONCLUSION

In this paper, the Information Retrieval (IR) indexing
process using the distributed context of MapReduce paradigm
was investigated. In particular, both indexing strategies,
Sensei and Terrier were discussed. Both supported by
Hadoop’s MapReduce pattern, that can be applied them on the
suggested dataset. First of all, it shows how both strategies
deal with large dataset and the efficient of the strategy was
studied and analysis according to speed-up. From the
experiments Sensei generate much intermediate data which
causing slowness of index process. In contrast, per-posting list
(Terrier) proved to be the most efficient strategy with large
scale dataset. This is because of using the local machine
memory and compressing technics of the map-reduce traffic. It
is also because Terrier can flush the partial indices to disk
when memory is exhausted, and the final index build by
merging the flushed indices. The different percentage between
the two strategies can be reached to 130%. According to our
experiment Terrier is more efficient indexing strategy than
Sensei.

REFERENCES
[1] McCreadie, R., Macdonald, C., & Ounis, I. (2012).

MapReduce indexing strategies: Studying scalability and
efficiency. Information Processing & Management, 48(5),
873-888.

[2] Macdonald, C., McCreadie, R., Santos, R. L., & Ounis, I.
(2012). From puppy to maturity: Experiences in
developing terrier. Open Source Information Retrieval, 60.

 [3] Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald,
C., & Lioma, C. (2006, August). Terrier: A high
performance and scalable information retrieval platform.
In Proceedings of the OSIR Workshop (pp. 18-25).

[4] He, C., Weitzel, D., Swanson, D., & Lu, Y. (2012,
November). Hog: Distributed hadoop MapReduce on the
grid. In High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion: (pp.
1276-1283). IEEE.

[5] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010,
May). The hadoop distributed file system. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on (pp. 1-10). IEEE.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.5 , No.3, Pages : 01-06 (2016)
Special Issue of ICDCB 2016 – Held during April 14-15, 2016 in Kuala Lumpur, Malaysia
http://warse.org/IJACST/static/pdf/Issue/icdcb2016sp01.pdf

6

ISSN 2320-2602

[6] Heinz, S., & Zobel, J. (2003). Efficient single‐pass index
construction for text databases. Journal of the American
Society for Information Science and Technology, 54(8),
713-729.

[7] Yu, W., Wang, Y., & Que, X. (2014). Design and
evaluation of network-levitated merge for hadoop
acceleration. Parallel and Distributed Systems, IEEE
Transactions on, 25(3), 602-611.

[8] Abdulkarem, M., & Latip, R. (October, 2015). Data
Transmission Performance Analysis in Cloud and Grid.
ARPN Journal of Engineering and Applied Sciences.
VOL. 10, NO. 18.

[9] McCreadie, R., Macdonald, C., & Ounis, I. (2009).
Comparing distributed indexing: To MapReduce or not?.
Proc. LSDS-IR, 41-48.

[10] http://Terrier.org.
[11] http://senseidb.github.io/sensei/overview.html

